738791d7e5691378abe0af6c9b3a76ad6ab04ee8
1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LLVM module linker.
11 //
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Linker/Linker.h"
15 #include "llvm-c/Linker.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DiagnosticInfo.h"
23 #include "llvm/IR/DiagnosticPrinter.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/TypeFinder.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Transforms/Utils/Cloning.h"
31 #include <cctype>
32 #include <tuple>
33 using namespace llvm;
36 //===----------------------------------------------------------------------===//
37 // TypeMap implementation.
38 //===----------------------------------------------------------------------===//
40 namespace {
41 class TypeMapTy : public ValueMapTypeRemapper {
42 /// This is a mapping from a source type to a destination type to use.
43 DenseMap<Type*, Type*> MappedTypes;
45 /// When checking to see if two subgraphs are isomorphic, we speculatively
46 /// add types to MappedTypes, but keep track of them here in case we need to
47 /// roll back.
48 SmallVector<Type*, 16> SpeculativeTypes;
50 SmallVector<StructType*, 16> SpeculativeDstOpaqueTypes;
52 /// This is a list of non-opaque structs in the source module that are mapped
53 /// to an opaque struct in the destination module.
54 SmallVector<StructType*, 16> SrcDefinitionsToResolve;
56 /// This is the set of opaque types in the destination modules who are
57 /// getting a body from the source module.
58 SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
60 public:
61 TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet)
62 : DstStructTypesSet(DstStructTypesSet) {}
64 Linker::IdentifiedStructTypeSet &DstStructTypesSet;
65 /// Indicate that the specified type in the destination module is conceptually
66 /// equivalent to the specified type in the source module.
67 void addTypeMapping(Type *DstTy, Type *SrcTy);
69 /// Produce a body for an opaque type in the dest module from a type
70 /// definition in the source module.
71 void linkDefinedTypeBodies();
73 /// Return the mapped type to use for the specified input type from the
74 /// source module.
75 Type *get(Type *SrcTy);
76 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
78 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
80 FunctionType *get(FunctionType *T) {
81 return cast<FunctionType>(get((Type *)T));
82 }
84 /// Dump out the type map for debugging purposes.
85 void dump() const {
86 for (auto &Pair : MappedTypes) {
87 dbgs() << "TypeMap: ";
88 Pair.first->print(dbgs());
89 dbgs() << " => ";
90 Pair.second->print(dbgs());
91 dbgs() << '\n';
92 }
93 }
95 private:
96 Type *remapType(Type *SrcTy) override { return get(SrcTy); }
98 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
99 };
100 }
102 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
103 assert(SpeculativeTypes.empty());
104 assert(SpeculativeDstOpaqueTypes.empty());
106 // Check to see if these types are recursively isomorphic and establish a
107 // mapping between them if so.
108 if (!areTypesIsomorphic(DstTy, SrcTy)) {
109 // Oops, they aren't isomorphic. Just discard this request by rolling out
110 // any speculative mappings we've established.
111 for (Type *Ty : SpeculativeTypes)
112 MappedTypes.erase(Ty);
114 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
115 SpeculativeDstOpaqueTypes.size());
116 for (StructType *Ty : SpeculativeDstOpaqueTypes)
117 DstResolvedOpaqueTypes.erase(Ty);
118 } else {
119 for (Type *Ty : SpeculativeTypes)
120 if (auto *STy = dyn_cast<StructType>(Ty))
121 if (STy->hasName())
122 STy->setName("");
123 }
124 SpeculativeTypes.clear();
125 SpeculativeDstOpaqueTypes.clear();
126 }
128 /// Recursively walk this pair of types, returning true if they are isomorphic,
129 /// false if they are not.
130 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
131 // Two types with differing kinds are clearly not isomorphic.
132 if (DstTy->getTypeID() != SrcTy->getTypeID())
133 return false;
135 // If we have an entry in the MappedTypes table, then we have our answer.
136 Type *&Entry = MappedTypes[SrcTy];
137 if (Entry)
138 return Entry == DstTy;
140 // Two identical types are clearly isomorphic. Remember this
141 // non-speculatively.
142 if (DstTy == SrcTy) {
143 Entry = DstTy;
144 return true;
145 }
147 // Okay, we have two types with identical kinds that we haven't seen before.
149 // If this is an opaque struct type, special case it.
150 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
151 // Mapping an opaque type to any struct, just keep the dest struct.
152 if (SSTy->isOpaque()) {
153 Entry = DstTy;
154 SpeculativeTypes.push_back(SrcTy);
155 return true;
156 }
158 // Mapping a non-opaque source type to an opaque dest. If this is the first
159 // type that we're mapping onto this destination type then we succeed. Keep
160 // the dest, but fill it in later. If this is the second (different) type
161 // that we're trying to map onto the same opaque type then we fail.
162 if (cast<StructType>(DstTy)->isOpaque()) {
163 // We can only map one source type onto the opaque destination type.
164 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
165 return false;
166 SrcDefinitionsToResolve.push_back(SSTy);
167 SpeculativeTypes.push_back(SrcTy);
168 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
169 Entry = DstTy;
170 return true;
171 }
172 }
174 // If the number of subtypes disagree between the two types, then we fail.
175 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
176 return false;
178 // Fail if any of the extra properties (e.g. array size) of the type disagree.
179 if (isa<IntegerType>(DstTy))
180 return false; // bitwidth disagrees.
181 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
182 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
183 return false;
185 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
186 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
187 return false;
188 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
189 StructType *SSTy = cast<StructType>(SrcTy);
190 if (DSTy->isLiteral() != SSTy->isLiteral() ||
191 DSTy->isPacked() != SSTy->isPacked())
192 return false;
193 } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
194 if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
195 return false;
196 } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
197 if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
198 return false;
199 }
201 // Otherwise, we speculate that these two types will line up and recursively
202 // check the subelements.
203 Entry = DstTy;
204 SpeculativeTypes.push_back(SrcTy);
206 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
207 if (!areTypesIsomorphic(DstTy->getContainedType(I),
208 SrcTy->getContainedType(I)))
209 return false;
211 // If everything seems to have lined up, then everything is great.
212 return true;
213 }
215 void TypeMapTy::linkDefinedTypeBodies() {
216 SmallVector<Type*, 16> Elements;
217 for (StructType *SrcSTy : SrcDefinitionsToResolve) {
218 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
219 assert(DstSTy->isOpaque());
221 // Map the body of the source type over to a new body for the dest type.
222 Elements.resize(SrcSTy->getNumElements());
223 for (unsigned I = 0, E = Elements.size(); I != E; ++I)
224 Elements[I] = get(SrcSTy->getElementType(I));
226 DstSTy->setBody(Elements, SrcSTy->isPacked());
227 }
228 SrcDefinitionsToResolve.clear();
229 DstResolvedOpaqueTypes.clear();
230 }
232 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
233 ArrayRef<Type *> ETypes) {
234 DTy->setBody(ETypes, STy->isPacked());
236 // Steal STy's name.
237 if (STy->hasName()) {
238 SmallString<16> TmpName = STy->getName();
239 STy->setName("");
240 DTy->setName(TmpName);
241 }
243 DstStructTypesSet.addNonOpaque(DTy);
244 }
246 Type *TypeMapTy::get(Type *Ty) {
247 SmallPtrSet<StructType *, 8> Visited;
248 return get(Ty, Visited);
249 }
251 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
252 // If we already have an entry for this type, return it.
253 Type **Entry = &MappedTypes[Ty];
254 if (*Entry)
255 return *Entry;
257 // These are types that LLVM itself will unique.
258 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
260 #ifndef NDEBUG
261 if (!IsUniqued) {
262 for (auto &Pair : MappedTypes) {
263 assert(!(Pair.first != Ty && Pair.second == Ty) &&
264 "mapping to a source type");
265 }
266 }
267 #endif
269 if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
270 StructType *DTy = StructType::create(Ty->getContext());
271 return *Entry = DTy;
272 }
274 // If this is not a recursive type, then just map all of the elements and
275 // then rebuild the type from inside out.
276 SmallVector<Type *, 4> ElementTypes;
278 // If there are no element types to map, then the type is itself. This is
279 // true for the anonymous {} struct, things like 'float', integers, etc.
280 if (Ty->getNumContainedTypes() == 0 && IsUniqued)
281 return *Entry = Ty;
283 // Remap all of the elements, keeping track of whether any of them change.
284 bool AnyChange = false;
285 ElementTypes.resize(Ty->getNumContainedTypes());
286 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
287 ElementTypes[I] = get(Ty->getContainedType(I), Visited);
288 AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
289 }
291 // If we found our type while recursively processing stuff, just use it.
292 Entry = &MappedTypes[Ty];
293 if (*Entry) {
294 if (auto *DTy = dyn_cast<StructType>(*Entry)) {
295 if (DTy->isOpaque()) {
296 auto *STy = cast<StructType>(Ty);
297 finishType(DTy, STy, ElementTypes);
298 }
299 }
300 return *Entry;
301 }
303 // If all of the element types mapped directly over and the type is not
304 // a nomed struct, then the type is usable as-is.
305 if (!AnyChange && IsUniqued)
306 return *Entry = Ty;
308 // Otherwise, rebuild a modified type.
309 switch (Ty->getTypeID()) {
310 default:
311 llvm_unreachable("unknown derived type to remap");
312 case Type::ArrayTyID:
313 return *Entry = ArrayType::get(ElementTypes[0],
314 cast<ArrayType>(Ty)->getNumElements());
315 case Type::VectorTyID:
316 return *Entry = VectorType::get(ElementTypes[0],
317 cast<VectorType>(Ty)->getNumElements());
318 case Type::PointerTyID:
319 return *Entry = PointerType::get(ElementTypes[0],
320 cast<PointerType>(Ty)->getAddressSpace());
321 case Type::FunctionTyID:
322 return *Entry = FunctionType::get(ElementTypes[0],
323 makeArrayRef(ElementTypes).slice(1),
324 cast<FunctionType>(Ty)->isVarArg());
325 case Type::StructTyID: {
326 auto *STy = cast<StructType>(Ty);
327 bool IsPacked = STy->isPacked();
328 if (IsUniqued)
329 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
331 // If the type is opaque, we can just use it directly.
332 if (STy->isOpaque()) {
333 DstStructTypesSet.addOpaque(STy);
334 return *Entry = Ty;
335 }
337 if (StructType *OldT =
338 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
339 STy->setName("");
340 return *Entry = OldT;
341 }
343 if (!AnyChange) {
344 DstStructTypesSet.addNonOpaque(STy);
345 return *Entry = Ty;
346 }
348 StructType *DTy = StructType::create(Ty->getContext());
349 finishType(DTy, STy, ElementTypes);
350 return *Entry = DTy;
351 }
352 }
353 }
355 //===----------------------------------------------------------------------===//
356 // ModuleLinker implementation.
357 //===----------------------------------------------------------------------===//
359 namespace {
360 class ModuleLinker;
362 /// Creates prototypes for functions that are lazily linked on the fly. This
363 /// speeds up linking for modules with many/ lazily linked functions of which
364 /// few get used.
365 class ValueMaterializerTy : public ValueMaterializer {
366 TypeMapTy &TypeMap;
367 Module *DstM;
368 std::vector<Function *> &LazilyLinkFunctions;
370 public:
371 ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
372 std::vector<Function *> &LazilyLinkFunctions)
373 : ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
374 LazilyLinkFunctions(LazilyLinkFunctions) {}
376 Value *materializeValueFor(Value *V) override;
377 };
379 class LinkDiagnosticInfo : public DiagnosticInfo {
380 const Twine &Msg;
382 public:
383 LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg);
384 void print(DiagnosticPrinter &DP) const override;
385 };
386 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
387 const Twine &Msg)
388 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
389 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
391 /// This is an implementation class for the LinkModules function, which is the
392 /// entrypoint for this file.
393 class ModuleLinker {
394 Module *DstM, *SrcM;
396 TypeMapTy TypeMap;
397 ValueMaterializerTy ValMaterializer;
399 /// Mapping of values from what they used to be in Src, to what they are now
400 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
401 /// due to the use of Value handles which the Linker doesn't actually need,
402 /// but this allows us to reuse the ValueMapper code.
403 ValueToValueMapTy ValueMap;
405 struct AppendingVarInfo {
406 GlobalVariable *NewGV; // New aggregate global in dest module.
407 const Constant *DstInit; // Old initializer from dest module.
408 const Constant *SrcInit; // Old initializer from src module.
409 };
411 std::vector<AppendingVarInfo> AppendingVars;
413 // Set of items not to link in from source.
414 SmallPtrSet<const Value *, 16> DoNotLinkFromSource;
416 // Vector of functions to lazily link in.
417 std::vector<Function *> LazilyLinkFunctions;
419 Linker::DiagnosticHandlerFunction DiagnosticHandler;
421 public:
422 ModuleLinker(Module *dstM, Linker::IdentifiedStructTypeSet &Set, Module *srcM,
423 Linker::DiagnosticHandlerFunction DiagnosticHandler)
424 : DstM(dstM), SrcM(srcM), TypeMap(Set),
425 ValMaterializer(TypeMap, DstM, LazilyLinkFunctions),
426 DiagnosticHandler(DiagnosticHandler) {}
428 bool run();
430 private:
431 bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest,
432 const GlobalValue &Src);
434 /// Helper method for setting a message and returning an error code.
435 bool emitError(const Twine &Message) {
436 DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message));
437 return true;
438 }
440 void emitWarning(const Twine &Message) {
441 DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message));
442 }
444 bool getComdatLeader(Module *M, StringRef ComdatName,
445 const GlobalVariable *&GVar);
446 bool computeResultingSelectionKind(StringRef ComdatName,
447 Comdat::SelectionKind Src,
448 Comdat::SelectionKind Dst,
449 Comdat::SelectionKind &Result,
450 bool &LinkFromSrc);
451 std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
452 ComdatsChosen;
453 bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
454 bool &LinkFromSrc);
456 /// Given a global in the source module, return the global in the
457 /// destination module that is being linked to, if any.
458 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
459 // If the source has no name it can't link. If it has local linkage,
460 // there is no name match-up going on.
461 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
462 return nullptr;
464 // Otherwise see if we have a match in the destination module's symtab.
465 GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
466 if (!DGV)
467 return nullptr;
469 // If we found a global with the same name in the dest module, but it has
470 // internal linkage, we are really not doing any linkage here.
471 if (DGV->hasLocalLinkage())
472 return nullptr;
474 // Otherwise, we do in fact link to the destination global.
475 return DGV;
476 }
478 void computeTypeMapping();
480 void upgradeMismatchedGlobalArray(StringRef Name);
481 void upgradeMismatchedGlobals();
483 bool linkAppendingVarProto(GlobalVariable *DstGV,
484 const GlobalVariable *SrcGV);
486 bool linkGlobalValueProto(GlobalValue *GV);
487 GlobalValue *linkGlobalVariableProto(const GlobalVariable *SGVar,
488 GlobalValue *DGV, bool LinkFromSrc);
489 GlobalValue *linkFunctionProto(const Function *SF, GlobalValue *DGV,
490 bool LinkFromSrc);
491 GlobalValue *linkGlobalAliasProto(const GlobalAlias *SGA, GlobalValue *DGV,
492 bool LinkFromSrc);
494 bool linkModuleFlagsMetadata();
496 void linkAppendingVarInit(const AppendingVarInfo &AVI);
497 void linkGlobalInits();
498 void linkFunctionBody(Function *Dst, Function *Src);
499 void linkAliasBodies();
500 void linkNamedMDNodes();
501 };
502 }
504 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
505 /// table. This is good for all clients except for us. Go through the trouble
506 /// to force this back.
507 static void forceRenaming(GlobalValue *GV, StringRef Name) {
508 // If the global doesn't force its name or if it already has the right name,
509 // there is nothing for us to do.
510 if (GV->hasLocalLinkage() || GV->getName() == Name)
511 return;
513 Module *M = GV->getParent();
515 // If there is a conflict, rename the conflict.
516 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
517 GV->takeName(ConflictGV);
518 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
519 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
520 } else {
521 GV->setName(Name); // Force the name back
522 }
523 }
525 /// copy additional attributes (those not needed to construct a GlobalValue)
526 /// from the SrcGV to the DestGV.
527 static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
528 DestGV->copyAttributesFrom(SrcGV);
529 forceRenaming(DestGV, SrcGV->getName());
530 }
532 static bool isLessConstraining(GlobalValue::VisibilityTypes a,
533 GlobalValue::VisibilityTypes b) {
534 if (a == GlobalValue::HiddenVisibility)
535 return false;
536 if (b == GlobalValue::HiddenVisibility)
537 return true;
538 if (a == GlobalValue::ProtectedVisibility)
539 return false;
540 if (b == GlobalValue::ProtectedVisibility)
541 return true;
542 return false;
543 }
545 Value *ValueMaterializerTy::materializeValueFor(Value *V) {
546 Function *SF = dyn_cast<Function>(V);
547 if (!SF)
548 return nullptr;
550 Function *DF = Function::Create(TypeMap.get(SF->getFunctionType()),
551 SF->getLinkage(), SF->getName(), DstM);
552 copyGVAttributes(DF, SF);
554 if (Comdat *SC = SF->getComdat()) {
555 Comdat *DC = DstM->getOrInsertComdat(SC->getName());
556 DF->setComdat(DC);
557 }
559 LazilyLinkFunctions.push_back(SF);
560 return DF;
561 }
563 bool ModuleLinker::getComdatLeader(Module *M, StringRef ComdatName,
564 const GlobalVariable *&GVar) {
565 const GlobalValue *GVal = M->getNamedValue(ComdatName);
566 if (const auto *GA = dyn_cast_or_null<GlobalAlias>(GVal)) {
567 GVal = GA->getBaseObject();
568 if (!GVal)
569 // We cannot resolve the size of the aliasee yet.
570 return emitError("Linking COMDATs named '" + ComdatName +
571 "': COMDAT key involves incomputable alias size.");
572 }
574 GVar = dyn_cast_or_null<GlobalVariable>(GVal);
575 if (!GVar)
576 return emitError(
577 "Linking COMDATs named '" + ComdatName +
578 "': GlobalVariable required for data dependent selection!");
580 return false;
581 }
583 bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName,
584 Comdat::SelectionKind Src,
585 Comdat::SelectionKind Dst,
586 Comdat::SelectionKind &Result,
587 bool &LinkFromSrc) {
588 // The ability to mix Comdat::SelectionKind::Any with
589 // Comdat::SelectionKind::Largest is a behavior that comes from COFF.
590 bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any ||
591 Dst == Comdat::SelectionKind::Largest;
592 bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any ||
593 Src == Comdat::SelectionKind::Largest;
594 if (DstAnyOrLargest && SrcAnyOrLargest) {
595 if (Dst == Comdat::SelectionKind::Largest ||
596 Src == Comdat::SelectionKind::Largest)
597 Result = Comdat::SelectionKind::Largest;
598 else
599 Result = Comdat::SelectionKind::Any;
600 } else if (Src == Dst) {
601 Result = Dst;
602 } else {
603 return emitError("Linking COMDATs named '" + ComdatName +
604 "': invalid selection kinds!");
605 }
607 switch (Result) {
608 case Comdat::SelectionKind::Any:
609 // Go with Dst.
610 LinkFromSrc = false;
611 break;
612 case Comdat::SelectionKind::NoDuplicates:
613 return emitError("Linking COMDATs named '" + ComdatName +
614 "': noduplicates has been violated!");
615 case Comdat::SelectionKind::ExactMatch:
616 case Comdat::SelectionKind::Largest:
617 case Comdat::SelectionKind::SameSize: {
618 const GlobalVariable *DstGV;
619 const GlobalVariable *SrcGV;
620 if (getComdatLeader(DstM, ComdatName, DstGV) ||
621 getComdatLeader(SrcM, ComdatName, SrcGV))
622 return true;
624 const DataLayout *DstDL = DstM->getDataLayout();
625 const DataLayout *SrcDL = SrcM->getDataLayout();
626 if (!DstDL || !SrcDL) {
627 return emitError(
628 "Linking COMDATs named '" + ComdatName +
629 "': can't do size dependent selection without DataLayout!");
630 }
631 uint64_t DstSize =
632 DstDL->getTypeAllocSize(DstGV->getType()->getPointerElementType());
633 uint64_t SrcSize =
634 SrcDL->getTypeAllocSize(SrcGV->getType()->getPointerElementType());
635 if (Result == Comdat::SelectionKind::ExactMatch) {
636 if (SrcGV->getInitializer() != DstGV->getInitializer())
637 return emitError("Linking COMDATs named '" + ComdatName +
638 "': ExactMatch violated!");
639 LinkFromSrc = false;
640 } else if (Result == Comdat::SelectionKind::Largest) {
641 LinkFromSrc = SrcSize > DstSize;
642 } else if (Result == Comdat::SelectionKind::SameSize) {
643 if (SrcSize != DstSize)
644 return emitError("Linking COMDATs named '" + ComdatName +
645 "': SameSize violated!");
646 LinkFromSrc = false;
647 } else {
648 llvm_unreachable("unknown selection kind");
649 }
650 break;
651 }
652 }
654 return false;
655 }
657 bool ModuleLinker::getComdatResult(const Comdat *SrcC,
658 Comdat::SelectionKind &Result,
659 bool &LinkFromSrc) {
660 Comdat::SelectionKind SSK = SrcC->getSelectionKind();
661 StringRef ComdatName = SrcC->getName();
662 Module::ComdatSymTabType &ComdatSymTab = DstM->getComdatSymbolTable();
663 Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName);
665 if (DstCI == ComdatSymTab.end()) {
666 // Use the comdat if it is only available in one of the modules.
667 LinkFromSrc = true;
668 Result = SSK;
669 return false;
670 }
672 const Comdat *DstC = &DstCI->second;
673 Comdat::SelectionKind DSK = DstC->getSelectionKind();
674 return computeResultingSelectionKind(ComdatName, SSK, DSK, Result,
675 LinkFromSrc);
676 }
678 bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
679 const GlobalValue &Dest,
680 const GlobalValue &Src) {
681 // We always have to add Src if it has appending linkage.
682 if (Src.hasAppendingLinkage()) {
683 LinkFromSrc = true;
684 return false;
685 }
687 bool SrcIsDeclaration = Src.isDeclarationForLinker();
688 bool DestIsDeclaration = Dest.isDeclarationForLinker();
690 if (SrcIsDeclaration) {
691 // If Src is external or if both Src & Dest are external.. Just link the
692 // external globals, we aren't adding anything.
693 if (Src.hasDLLImportStorageClass()) {
694 // If one of GVs is marked as DLLImport, result should be dllimport'ed.
695 LinkFromSrc = DestIsDeclaration;
696 return false;
697 }
698 // If the Dest is weak, use the source linkage.
699 LinkFromSrc = Dest.hasExternalWeakLinkage();
700 return false;
701 }
703 if (DestIsDeclaration) {
704 // If Dest is external but Src is not:
705 LinkFromSrc = true;
706 return false;
707 }
709 if (Src.hasCommonLinkage()) {
710 if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) {
711 LinkFromSrc = true;
712 return false;
713 }
715 if (!Dest.hasCommonLinkage()) {
716 LinkFromSrc = false;
717 return false;
718 }
720 // FIXME: Make datalayout mandatory and just use getDataLayout().
721 DataLayout DL(Dest.getParent());
723 uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType());
724 uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType());
725 LinkFromSrc = SrcSize > DestSize;
726 return false;
727 }
729 if (Src.isWeakForLinker()) {
730 assert(!Dest.hasExternalWeakLinkage());
731 assert(!Dest.hasAvailableExternallyLinkage());
733 if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) {
734 LinkFromSrc = true;
735 return false;
736 }
738 LinkFromSrc = false;
739 return false;
740 }
742 if (Dest.isWeakForLinker()) {
743 assert(Src.hasExternalLinkage());
744 LinkFromSrc = true;
745 return false;
746 }
748 assert(!Src.hasExternalWeakLinkage());
749 assert(!Dest.hasExternalWeakLinkage());
750 assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() &&
751 "Unexpected linkage type!");
752 return emitError("Linking globals named '" + Src.getName() +
753 "': symbol multiply defined!");
754 }
756 /// Loop over all of the linked values to compute type mappings. For example,
757 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
758 /// types 'Foo' but one got renamed when the module was loaded into the same
759 /// LLVMContext.
760 void ModuleLinker::computeTypeMapping() {
761 for (GlobalValue &SGV : SrcM->globals()) {
762 GlobalValue *DGV = getLinkedToGlobal(&SGV);
763 if (!DGV)
764 continue;
766 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
767 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
768 continue;
769 }
771 // Unify the element type of appending arrays.
772 ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
773 ArrayType *SAT = cast<ArrayType>(SGV.getType()->getElementType());
774 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
775 }
777 for (GlobalValue &SGV : *SrcM) {
778 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
779 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
780 }
782 for (GlobalValue &SGV : SrcM->aliases()) {
783 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
784 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
785 }
787 // Incorporate types by name, scanning all the types in the source module.
788 // At this point, the destination module may have a type "%foo = { i32 }" for
789 // example. When the source module got loaded into the same LLVMContext, if
790 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
791 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
792 for (StructType *ST : Types) {
793 if (!ST->hasName())
794 continue;
796 // Check to see if there is a dot in the name followed by a digit.
797 size_t DotPos = ST->getName().rfind('.');
798 if (DotPos == 0 || DotPos == StringRef::npos ||
799 ST->getName().back() == '.' ||
800 !isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
801 continue;
803 // Check to see if the destination module has a struct with the prefix name.
804 StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos));
805 if (!DST)
806 continue;
808 // Don't use it if this actually came from the source module. They're in
809 // the same LLVMContext after all. Also don't use it unless the type is
810 // actually used in the destination module. This can happen in situations
811 // like this:
812 //
813 // Module A Module B
814 // -------- --------
815 // %Z = type { %A } %B = type { %C.1 }
816 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
817 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
818 // %C = type { i8* } %B.3 = type { %C.1 }
819 //
820 // When we link Module B with Module A, the '%B' in Module B is
821 // used. However, that would then use '%C.1'. But when we process '%C.1',
822 // we prefer to take the '%C' version. So we are then left with both
823 // '%C.1' and '%C' being used for the same types. This leads to some
824 // variables using one type and some using the other.
825 if (TypeMap.DstStructTypesSet.hasType(DST))
826 TypeMap.addTypeMapping(DST, ST);
827 }
829 // Now that we have discovered all of the type equivalences, get a body for
830 // any 'opaque' types in the dest module that are now resolved.
831 TypeMap.linkDefinedTypeBodies();
832 }
834 static void upgradeGlobalArray(GlobalVariable *GV) {
835 ArrayType *ATy = cast<ArrayType>(GV->getType()->getElementType());
836 StructType *OldTy = cast<StructType>(ATy->getElementType());
837 assert(OldTy->getNumElements() == 2 && "Expected to upgrade from 2 elements");
839 // Get the upgraded 3 element type.
840 PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo();
841 Type *Tys[3] = {OldTy->getElementType(0), OldTy->getElementType(1),
842 VoidPtrTy};
843 StructType *NewTy = StructType::get(GV->getContext(), Tys, false);
845 // Build new constants with a null third field filled in.
846 Constant *OldInitC = GV->getInitializer();
847 ConstantArray *OldInit = dyn_cast<ConstantArray>(OldInitC);
848 if (!OldInit && !isa<ConstantAggregateZero>(OldInitC))
849 // Invalid initializer; give up.
850 return;
851 std::vector<Constant *> Initializers;
852 if (OldInit && OldInit->getNumOperands()) {
853 Value *Null = Constant::getNullValue(VoidPtrTy);
854 for (Use &U : OldInit->operands()) {
855 ConstantStruct *Init = cast<ConstantStruct>(U.get());
856 Initializers.push_back(ConstantStruct::get(
857 NewTy, Init->getOperand(0), Init->getOperand(1), Null, nullptr));
858 }
859 }
860 assert(Initializers.size() == ATy->getNumElements() &&
861 "Failed to copy all array elements");
863 // Replace the old GV with a new one.
864 ATy = ArrayType::get(NewTy, Initializers.size());
865 Constant *NewInit = ConstantArray::get(ATy, Initializers);
866 GlobalVariable *NewGV = new GlobalVariable(
867 *GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "",
868 GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(),
869 GV->isExternallyInitialized());
870 NewGV->copyAttributesFrom(GV);
871 NewGV->takeName(GV);
872 assert(GV->use_empty() && "program cannot use initializer list");
873 GV->eraseFromParent();
874 }
876 void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) {
877 // Look for the global arrays.
878 auto *DstGV = dyn_cast_or_null<GlobalVariable>(DstM->getNamedValue(Name));
879 if (!DstGV)
880 return;
881 auto *SrcGV = dyn_cast_or_null<GlobalVariable>(SrcM->getNamedValue(Name));
882 if (!SrcGV)
883 return;
885 // Check if the types already match.
886 auto *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
887 auto *SrcTy =
888 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
889 if (DstTy == SrcTy)
890 return;
892 // Grab the element types. We can only upgrade an array of a two-field
893 // struct. Only bother if the other one has three-fields.
894 auto *DstEltTy = cast<StructType>(DstTy->getElementType());
895 auto *SrcEltTy = cast<StructType>(SrcTy->getElementType());
896 if (DstEltTy->getNumElements() == 2 && SrcEltTy->getNumElements() == 3) {
897 upgradeGlobalArray(DstGV);
898 return;
899 }
900 if (DstEltTy->getNumElements() == 3 && SrcEltTy->getNumElements() == 2)
901 upgradeGlobalArray(SrcGV);
903 // We can't upgrade any other differences.
904 }
906 void ModuleLinker::upgradeMismatchedGlobals() {
907 upgradeMismatchedGlobalArray("llvm.global_ctors");
908 upgradeMismatchedGlobalArray("llvm.global_dtors");
909 }
911 /// If there were any appending global variables, link them together now.
912 /// Return true on error.
913 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
914 const GlobalVariable *SrcGV) {
916 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
917 return emitError("Linking globals named '" + SrcGV->getName() +
918 "': can only link appending global with another appending global!");
920 ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
921 ArrayType *SrcTy =
922 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
923 Type *EltTy = DstTy->getElementType();
925 // Check to see that they two arrays agree on type.
926 if (EltTy != SrcTy->getElementType())
927 return emitError("Appending variables with different element types!");
928 if (DstGV->isConstant() != SrcGV->isConstant())
929 return emitError("Appending variables linked with different const'ness!");
931 if (DstGV->getAlignment() != SrcGV->getAlignment())
932 return emitError(
933 "Appending variables with different alignment need to be linked!");
935 if (DstGV->getVisibility() != SrcGV->getVisibility())
936 return emitError(
937 "Appending variables with different visibility need to be linked!");
939 if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
940 return emitError(
941 "Appending variables with different unnamed_addr need to be linked!");
943 if (StringRef(DstGV->getSection()) != SrcGV->getSection())
944 return emitError(
945 "Appending variables with different section name need to be linked!");
947 uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
948 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
950 // Create the new global variable.
951 GlobalVariable *NG =
952 new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
953 DstGV->getLinkage(), /*init*/nullptr, /*name*/"", DstGV,
954 DstGV->getThreadLocalMode(),
955 DstGV->getType()->getAddressSpace());
957 // Propagate alignment, visibility and section info.
958 copyGVAttributes(NG, DstGV);
960 AppendingVarInfo AVI;
961 AVI.NewGV = NG;
962 AVI.DstInit = DstGV->getInitializer();
963 AVI.SrcInit = SrcGV->getInitializer();
964 AppendingVars.push_back(AVI);
966 // Replace any uses of the two global variables with uses of the new
967 // global.
968 ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
970 DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
971 DstGV->eraseFromParent();
973 // Track the source variable so we don't try to link it.
974 DoNotLinkFromSource.insert(SrcGV);
976 return false;
977 }
979 bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
980 GlobalValue *DGV = getLinkedToGlobal(SGV);
982 // Handle the ultra special appending linkage case first.
983 if (DGV && DGV->hasAppendingLinkage())
984 return linkAppendingVarProto(cast<GlobalVariable>(DGV),
985 cast<GlobalVariable>(SGV));
987 bool LinkFromSrc = true;
988 Comdat *C = nullptr;
989 GlobalValue::VisibilityTypes Visibility = SGV->getVisibility();
990 bool HasUnnamedAddr = SGV->hasUnnamedAddr();
992 if (const Comdat *SC = SGV->getComdat()) {
993 Comdat::SelectionKind SK;
994 std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
995 C = DstM->getOrInsertComdat(SC->getName());
996 C->setSelectionKind(SK);
997 } else if (DGV) {
998 if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV))
999 return true;
1000 }
1002 if (!LinkFromSrc) {
1003 // Track the source global so that we don't attempt to copy it over when
1004 // processing global initializers.
1005 DoNotLinkFromSource.insert(SGV);
1007 if (DGV)
1008 // Make sure to remember this mapping.
1009 ValueMap[SGV] =
1010 ConstantExpr::getBitCast(DGV, TypeMap.get(SGV->getType()));
1011 }
1013 if (DGV) {
1014 Visibility = isLessConstraining(Visibility, DGV->getVisibility())
1015 ? DGV->getVisibility()
1016 : Visibility;
1017 HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
1018 }
1020 if (!LinkFromSrc && !DGV)
1021 return false;
1023 GlobalValue *NewGV;
1024 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
1025 NewGV = linkGlobalVariableProto(SGVar, DGV, LinkFromSrc);
1026 if (!NewGV)
1027 return true;
1028 } else if (auto *SF = dyn_cast<Function>(SGV)) {
1029 NewGV = linkFunctionProto(SF, DGV, LinkFromSrc);
1030 } else {
1031 NewGV = linkGlobalAliasProto(cast<GlobalAlias>(SGV), DGV, LinkFromSrc);
1032 }
1034 if (NewGV) {
1035 if (NewGV != DGV)
1036 copyGVAttributes(NewGV, SGV);
1038 NewGV->setUnnamedAddr(HasUnnamedAddr);
1039 NewGV->setVisibility(Visibility);
1041 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
1042 if (C)
1043 NewGO->setComdat(C);
1045 if (DGV && DGV->hasCommonLinkage() && SGV->hasCommonLinkage())
1046 NewGO->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
1047 }
1049 // Make sure to remember this mapping.
1050 if (NewGV != DGV) {
1051 if (DGV) {
1052 DGV->replaceAllUsesWith(
1053 ConstantExpr::getBitCast(NewGV, DGV->getType()));
1054 DGV->eraseFromParent();
1055 }
1056 ValueMap[SGV] = NewGV;
1057 }
1058 }
1060 return false;
1061 }
1063 /// Loop through the global variables in the src module and merge them into the
1064 /// dest module.
1065 GlobalValue *ModuleLinker::linkGlobalVariableProto(const GlobalVariable *SGVar,
1066 GlobalValue *DGV,
1067 bool LinkFromSrc) {
1068 bool ClearConstant = false;
1070 if (DGV) {
1071 auto *DGVar = dyn_cast<GlobalVariable>(DGV);
1072 if (!SGVar->isConstant() || (DGVar && !DGVar->isConstant()))
1073 ClearConstant = true;
1074 }
1076 if (!LinkFromSrc) {
1077 if (auto *NewGVar = dyn_cast<GlobalVariable>(DGV)) {
1078 if (NewGVar->isDeclaration() && ClearConstant)
1079 NewGVar->setConstant(false);
1080 }
1081 return DGV;
1082 }
1084 // No linking to be performed or linking from the source: simply create an
1085 // identical version of the symbol over in the dest module... the
1086 // initializer will be filled in later by LinkGlobalInits.
1087 GlobalVariable *NewDGV = new GlobalVariable(
1088 *DstM, TypeMap.get(SGVar->getType()->getElementType()),
1089 SGVar->isConstant(), SGVar->getLinkage(), /*init*/ nullptr,
1090 SGVar->getName(), /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
1091 SGVar->getType()->getAddressSpace());
1093 return NewDGV;
1094 }
1096 /// Link the function in the source module into the destination module if
1097 /// needed, setting up mapping information.
1098 GlobalValue *ModuleLinker::linkFunctionProto(const Function *SF,
1099 GlobalValue *DGV,
1100 bool LinkFromSrc) {
1101 if (!LinkFromSrc)
1102 return DGV;
1104 // If the function is to be lazily linked, don't create it just yet.
1105 // The ValueMaterializerTy will deal with creating it if it's used.
1106 if (!DGV && (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
1107 SF->hasAvailableExternallyLinkage())) {
1108 DoNotLinkFromSource.insert(SF);
1109 return nullptr;
1110 }
1112 // If there is no linkage to be performed or we are linking from the source,
1113 // bring SF over.
1114 return Function::Create(TypeMap.get(SF->getFunctionType()), SF->getLinkage(),
1115 SF->getName(), DstM);
1116 }
1118 /// Set up prototypes for any aliases that come over from the source module.
1119 GlobalValue *ModuleLinker::linkGlobalAliasProto(const GlobalAlias *SGA,
1120 GlobalValue *DGV,
1121 bool LinkFromSrc) {
1122 if (!LinkFromSrc)
1123 return DGV;
1125 // If there is no linkage to be performed or we're linking from the source,
1126 // bring over SGA.
1127 auto *PTy = cast<PointerType>(TypeMap.get(SGA->getType()));
1128 return GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
1129 SGA->getLinkage(), SGA->getName(), DstM);
1130 }
1132 static void getArrayElements(const Constant *C,
1133 SmallVectorImpl<Constant *> &Dest) {
1134 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
1136 for (unsigned i = 0; i != NumElements; ++i)
1137 Dest.push_back(C->getAggregateElement(i));
1138 }
1140 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
1141 // Merge the initializer.
1142 SmallVector<Constant *, 16> DstElements;
1143 getArrayElements(AVI.DstInit, DstElements);
1145 SmallVector<Constant *, 16> SrcElements;
1146 getArrayElements(AVI.SrcInit, SrcElements);
1148 ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
1150 StringRef Name = AVI.NewGV->getName();
1151 bool IsNewStructor =
1152 (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") &&
1153 cast<StructType>(NewType->getElementType())->getNumElements() == 3;
1155 for (auto *V : SrcElements) {
1156 if (IsNewStructor) {
1157 Constant *Key = V->getAggregateElement(2);
1158 if (DoNotLinkFromSource.count(Key))
1159 continue;
1160 }
1161 DstElements.push_back(
1162 MapValue(V, ValueMap, RF_None, &TypeMap, &ValMaterializer));
1163 }
1164 if (IsNewStructor) {
1165 NewType = ArrayType::get(NewType->getElementType(), DstElements.size());
1166 AVI.NewGV->mutateType(PointerType::get(NewType, 0));
1167 }
1169 AVI.NewGV->setInitializer(ConstantArray::get(NewType, DstElements));
1170 }
1172 /// Update the initializers in the Dest module now that all globals that may be
1173 /// referenced are in Dest.
1174 void ModuleLinker::linkGlobalInits() {
1175 // Loop over all of the globals in the src module, mapping them over as we go
1176 for (Module::const_global_iterator I = SrcM->global_begin(),
1177 E = SrcM->global_end(); I != E; ++I) {
1179 // Only process initialized GV's or ones not already in dest.
1180 if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
1182 // Grab destination global variable.
1183 GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
1184 // Figure out what the initializer looks like in the dest module.
1185 DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
1186 RF_None, &TypeMap, &ValMaterializer));
1187 }
1188 }
1190 /// Copy the source function over into the dest function and fix up references
1191 /// to values. At this point we know that Dest is an external function, and
1192 /// that Src is not.
1193 void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
1194 assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
1196 // Go through and convert function arguments over, remembering the mapping.
1197 Function::arg_iterator DI = Dst->arg_begin();
1198 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1199 I != E; ++I, ++DI) {
1200 DI->setName(I->getName()); // Copy the name over.
1202 // Add a mapping to our mapping.
1203 ValueMap[I] = DI;
1204 }
1206 // Splice the body of the source function into the dest function.
1207 Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
1209 // At this point, all of the instructions and values of the function are now
1210 // copied over. The only problem is that they are still referencing values in
1211 // the Source function as operands. Loop through all of the operands of the
1212 // functions and patch them up to point to the local versions.
1213 for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
1214 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1215 RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap,
1216 &ValMaterializer);
1218 // There is no need to map the arguments anymore.
1219 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1220 I != E; ++I)
1221 ValueMap.erase(I);
1223 }
1225 /// Insert all of the aliases in Src into the Dest module.
1226 void ModuleLinker::linkAliasBodies() {
1227 for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
1228 I != E; ++I) {
1229 if (DoNotLinkFromSource.count(I))
1230 continue;
1231 if (Constant *Aliasee = I->getAliasee()) {
1232 GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
1233 Constant *Val =
1234 MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer);
1235 DA->setAliasee(Val);
1236 }
1237 }
1238 }
1240 /// Insert all of the named MDNodes in Src into the Dest module.
1241 void ModuleLinker::linkNamedMDNodes() {
1242 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1243 for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
1244 E = SrcM->named_metadata_end(); I != E; ++I) {
1245 // Don't link module flags here. Do them separately.
1246 if (&*I == SrcModFlags) continue;
1247 NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
1248 // Add Src elements into Dest node.
1249 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1250 DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
1251 RF_None, &TypeMap, &ValMaterializer));
1252 }
1253 }
1255 /// Merge the linker flags in Src into the Dest module.
1256 bool ModuleLinker::linkModuleFlagsMetadata() {
1257 // If the source module has no module flags, we are done.
1258 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1259 if (!SrcModFlags) return false;
1261 // If the destination module doesn't have module flags yet, then just copy
1262 // over the source module's flags.
1263 NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1264 if (DstModFlags->getNumOperands() == 0) {
1265 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1266 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1268 return false;
1269 }
1271 // First build a map of the existing module flags and requirements.
1272 DenseMap<MDString*, MDNode*> Flags;
1273 SmallSetVector<MDNode*, 16> Requirements;
1274 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1275 MDNode *Op = DstModFlags->getOperand(I);
1276 ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
1277 MDString *ID = cast<MDString>(Op->getOperand(1));
1279 if (Behavior->getZExtValue() == Module::Require) {
1280 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1281 } else {
1282 Flags[ID] = Op;
1283 }
1284 }
1286 // Merge in the flags from the source module, and also collect its set of
1287 // requirements.
1288 bool HasErr = false;
1289 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1290 MDNode *SrcOp = SrcModFlags->getOperand(I);
1291 ConstantInt *SrcBehavior = cast<ConstantInt>(SrcOp->getOperand(0));
1292 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1293 MDNode *DstOp = Flags.lookup(ID);
1294 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1296 // If this is a requirement, add it and continue.
1297 if (SrcBehaviorValue == Module::Require) {
1298 // If the destination module does not already have this requirement, add
1299 // it.
1300 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1301 DstModFlags->addOperand(SrcOp);
1302 }
1303 continue;
1304 }
1306 // If there is no existing flag with this ID, just add it.
1307 if (!DstOp) {
1308 Flags[ID] = SrcOp;
1309 DstModFlags->addOperand(SrcOp);
1310 continue;
1311 }
1313 // Otherwise, perform a merge.
1314 ConstantInt *DstBehavior = cast<ConstantInt>(DstOp->getOperand(0));
1315 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1317 // If either flag has override behavior, handle it first.
1318 if (DstBehaviorValue == Module::Override) {
1319 // Diagnose inconsistent flags which both have override behavior.
1320 if (SrcBehaviorValue == Module::Override &&
1321 SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1322 HasErr |= emitError("linking module flags '" + ID->getString() +
1323 "': IDs have conflicting override values");
1324 }
1325 continue;
1326 } else if (SrcBehaviorValue == Module::Override) {
1327 // Update the destination flag to that of the source.
1328 DstOp->replaceOperandWith(0, SrcBehavior);
1329 DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
1330 continue;
1331 }
1333 // Diagnose inconsistent merge behavior types.
1334 if (SrcBehaviorValue != DstBehaviorValue) {
1335 HasErr |= emitError("linking module flags '" + ID->getString() +
1336 "': IDs have conflicting behaviors");
1337 continue;
1338 }
1340 // Perform the merge for standard behavior types.
1341 switch (SrcBehaviorValue) {
1342 case Module::Require:
1343 case Module::Override: llvm_unreachable("not possible");
1344 case Module::Error: {
1345 // Emit an error if the values differ.
1346 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1347 HasErr |= emitError("linking module flags '" + ID->getString() +
1348 "': IDs have conflicting values");
1349 }
1350 continue;
1351 }
1352 case Module::Warning: {
1353 // Emit a warning if the values differ.
1354 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1355 emitWarning("linking module flags '" + ID->getString() +
1356 "': IDs have conflicting values");
1357 }
1358 continue;
1359 }
1360 case Module::Append: {
1361 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1362 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1363 unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands();
1364 Value **VP, **Values = VP = new Value*[NumOps];
1365 for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP)
1366 *VP = DstValue->getOperand(i);
1367 for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP)
1368 *VP = SrcValue->getOperand(i);
1369 DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1370 ArrayRef<Value*>(Values,
1371 NumOps)));
1372 delete[] Values;
1373 break;
1374 }
1375 case Module::AppendUnique: {
1376 SmallSetVector<Value*, 16> Elts;
1377 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1378 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1379 for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
1380 Elts.insert(DstValue->getOperand(i));
1381 for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
1382 Elts.insert(SrcValue->getOperand(i));
1383 DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1384 ArrayRef<Value*>(Elts.begin(),
1385 Elts.end())));
1386 break;
1387 }
1388 }
1389 }
1391 // Check all of the requirements.
1392 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1393 MDNode *Requirement = Requirements[I];
1394 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1395 Value *ReqValue = Requirement->getOperand(1);
1397 MDNode *Op = Flags[Flag];
1398 if (!Op || Op->getOperand(2) != ReqValue) {
1399 HasErr |= emitError("linking module flags '" + Flag->getString() +
1400 "': does not have the required value");
1401 continue;
1402 }
1403 }
1405 return HasErr;
1406 }
1408 bool ModuleLinker::run() {
1409 assert(DstM && "Null destination module");
1410 assert(SrcM && "Null source module");
1412 // Inherit the target data from the source module if the destination module
1413 // doesn't have one already.
1414 if (!DstM->getDataLayout() && SrcM->getDataLayout())
1415 DstM->setDataLayout(SrcM->getDataLayout());
1417 // Copy the target triple from the source to dest if the dest's is empty.
1418 if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1419 DstM->setTargetTriple(SrcM->getTargetTriple());
1421 if (SrcM->getDataLayout() && DstM->getDataLayout() &&
1422 *SrcM->getDataLayout() != *DstM->getDataLayout()) {
1423 emitWarning("Linking two modules of different data layouts: '" +
1424 SrcM->getModuleIdentifier() + "' is '" +
1425 SrcM->getDataLayoutStr() + "' whereas '" +
1426 DstM->getModuleIdentifier() + "' is '" +
1427 DstM->getDataLayoutStr() + "'\n");
1428 }
1429 if (!SrcM->getTargetTriple().empty() &&
1430 DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1431 emitWarning("Linking two modules of different target triples: " +
1432 SrcM->getModuleIdentifier() + "' is '" +
1433 SrcM->getTargetTriple() + "' whereas '" +
1434 DstM->getModuleIdentifier() + "' is '" +
1435 DstM->getTargetTriple() + "'\n");
1436 }
1438 // Append the module inline asm string.
1439 if (!SrcM->getModuleInlineAsm().empty()) {
1440 if (DstM->getModuleInlineAsm().empty())
1441 DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1442 else
1443 DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1444 SrcM->getModuleInlineAsm());
1445 }
1447 // Loop over all of the linked values to compute type mappings.
1448 computeTypeMapping();
1450 ComdatsChosen.clear();
1451 for (const auto &SMEC : SrcM->getComdatSymbolTable()) {
1452 const Comdat &C = SMEC.getValue();
1453 if (ComdatsChosen.count(&C))
1454 continue;
1455 Comdat::SelectionKind SK;
1456 bool LinkFromSrc;
1457 if (getComdatResult(&C, SK, LinkFromSrc))
1458 return true;
1459 ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc);
1460 }
1462 // Upgrade mismatched global arrays.
1463 upgradeMismatchedGlobals();
1465 // Insert all of the globals in src into the DstM module... without linking
1466 // initializers (which could refer to functions not yet mapped over).
1467 for (Module::global_iterator I = SrcM->global_begin(),
1468 E = SrcM->global_end(); I != E; ++I)
1469 if (linkGlobalValueProto(I))
1470 return true;
1472 // Link the functions together between the two modules, without doing function
1473 // bodies... this just adds external function prototypes to the DstM
1474 // function... We do this so that when we begin processing function bodies,
1475 // all of the global values that may be referenced are available in our
1476 // ValueMap.
1477 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1478 if (linkGlobalValueProto(I))
1479 return true;
1481 // If there were any aliases, link them now.
1482 for (Module::alias_iterator I = SrcM->alias_begin(),
1483 E = SrcM->alias_end(); I != E; ++I)
1484 if (linkGlobalValueProto(I))
1485 return true;
1487 for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1488 linkAppendingVarInit(AppendingVars[i]);
1490 // Link in the function bodies that are defined in the source module into
1491 // DstM.
1492 for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1493 // Skip if not linking from source.
1494 if (DoNotLinkFromSource.count(SF)) continue;
1496 Function *DF = cast<Function>(ValueMap[SF]);
1498 // Link in the prefix data.
1499 if (SF->hasPrefixData())
1500 DF->setPrefixData(MapValue(
1501 SF->getPrefixData(), ValueMap, RF_None, &TypeMap, &ValMaterializer));
1503 // Link in the prologue data.
1504 if (SF->hasPrologueData())
1505 DF->setPrologueData(MapValue(
1506 SF->getPrologueData(), ValueMap, RF_None, &TypeMap, &ValMaterializer));
1508 // Materialize if needed.
1509 if (std::error_code EC = SF->materialize())
1510 return emitError(EC.message());
1512 // Skip if no body (function is external).
1513 if (SF->isDeclaration())
1514 continue;
1516 linkFunctionBody(DF, SF);
1517 SF->Dematerialize();
1518 }
1520 // Resolve all uses of aliases with aliasees.
1521 linkAliasBodies();
1523 // Remap all of the named MDNodes in Src into the DstM module. We do this
1524 // after linking GlobalValues so that MDNodes that reference GlobalValues
1525 // are properly remapped.
1526 linkNamedMDNodes();
1528 // Merge the module flags into the DstM module.
1529 if (linkModuleFlagsMetadata())
1530 return true;
1532 // Update the initializers in the DstM module now that all globals that may
1533 // be referenced are in DstM.
1534 linkGlobalInits();
1536 // Process vector of lazily linked in functions.
1537 bool LinkedInAnyFunctions;
1538 do {
1539 LinkedInAnyFunctions = false;
1541 for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1542 E = LazilyLinkFunctions.end(); I != E; ++I) {
1543 Function *SF = *I;
1544 if (!SF)
1545 continue;
1547 Function *DF = cast<Function>(ValueMap[SF]);
1548 if (SF->hasPrefixData()) {
1549 // Link in the prefix data.
1550 DF->setPrefixData(MapValue(SF->getPrefixData(),
1551 ValueMap,
1552 RF_None,
1553 &TypeMap,
1554 &ValMaterializer));
1555 }
1557 // Materialize if needed.
1558 if (std::error_code EC = SF->materialize())
1559 return emitError(EC.message());
1561 // Skip if no body (function is external).
1562 if (SF->isDeclaration())
1563 continue;
1565 // Erase from vector *before* the function body is linked - linkFunctionBody could
1566 // invalidate I.
1567 LazilyLinkFunctions.erase(I);
1569 // Link in function body.
1570 linkFunctionBody(DF, SF);
1571 SF->Dematerialize();
1573 // Set flag to indicate we may have more functions to lazily link in
1574 // since we linked in a function.
1575 LinkedInAnyFunctions = true;
1576 break;
1577 }
1578 } while (LinkedInAnyFunctions);
1580 return false;
1581 }
1583 Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1584 : ETypes(E), IsPacked(P) {}
1586 Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1587 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1589 bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1590 if (IsPacked != That.IsPacked)
1591 return false;
1592 if (ETypes != That.ETypes)
1593 return false;
1594 return true;
1595 }
1597 bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1598 return !this->operator==(That);
1599 }
1601 StructType *Linker::StructTypeKeyInfo::getEmptyKey() {
1602 return DenseMapInfo<StructType *>::getEmptyKey();
1603 }
1605 StructType *Linker::StructTypeKeyInfo::getTombstoneKey() {
1606 return DenseMapInfo<StructType *>::getTombstoneKey();
1607 }
1609 unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1610 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1611 Key.IsPacked);
1612 }
1614 unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1615 return getHashValue(KeyTy(ST));
1616 }
1618 bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1619 const StructType *RHS) {
1620 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1621 return false;
1622 return LHS == KeyTy(RHS);
1623 }
1625 bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS,
1626 const StructType *RHS) {
1627 if (RHS == getEmptyKey())
1628 return LHS == getEmptyKey();
1630 if (RHS == getTombstoneKey())
1631 return LHS == getTombstoneKey();
1633 return KeyTy(LHS) == KeyTy(RHS);
1634 }
1636 void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1637 assert(!Ty->isOpaque());
1638 bool &Entry = NonOpaqueStructTypes[Ty];
1639 Entry = true;
1640 }
1642 void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1643 assert(Ty->isOpaque());
1644 OpaqueStructTypes.insert(Ty);
1645 }
1647 StructType *
1648 Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1649 bool IsPacked) {
1650 Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1651 auto I = NonOpaqueStructTypes.find_as(Key);
1652 if (I == NonOpaqueStructTypes.end())
1653 return nullptr;
1654 return I->first;
1655 }
1657 bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1658 if (Ty->isOpaque())
1659 return OpaqueStructTypes.count(Ty);
1660 auto I = NonOpaqueStructTypes.find(Ty);
1661 if (I == NonOpaqueStructTypes.end())
1662 return false;
1663 return I->first == Ty;
1664 }
1666 void Linker::init(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
1667 this->Composite = M;
1668 this->DiagnosticHandler = DiagnosticHandler;
1670 TypeFinder StructTypes;
1671 StructTypes.run(*M, true);
1672 for (StructType *Ty : StructTypes) {
1673 if (Ty->isOpaque())
1674 IdentifiedStructTypes.addOpaque(Ty);
1675 else
1676 IdentifiedStructTypes.addNonOpaque(Ty);
1677 }
1678 }
1680 Linker::Linker(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
1681 init(M, DiagnosticHandler);
1682 }
1684 Linker::Linker(Module *M) {
1685 init(M, [this](const DiagnosticInfo &DI) {
1686 Composite->getContext().diagnose(DI);
1687 });
1688 }
1690 Linker::~Linker() {
1691 }
1693 void Linker::deleteModule() {
1694 delete Composite;
1695 Composite = nullptr;
1696 }
1698 bool Linker::linkInModule(Module *Src) {
1699 ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src,
1700 DiagnosticHandler);
1701 return TheLinker.run();
1702 }
1704 //===----------------------------------------------------------------------===//
1705 // LinkModules entrypoint.
1706 //===----------------------------------------------------------------------===//
1708 /// This function links two modules together, with the resulting Dest module
1709 /// modified to be the composite of the two input modules. If an error occurs,
1710 /// true is returned and ErrorMsg (if not null) is set to indicate the problem.
1711 /// Upon failure, the Dest module could be in a modified state, and shouldn't be
1712 /// relied on to be consistent.
1713 bool Linker::LinkModules(Module *Dest, Module *Src,
1714 DiagnosticHandlerFunction DiagnosticHandler) {
1715 Linker L(Dest, DiagnosticHandler);
1716 return L.linkInModule(Src);
1717 }
1719 bool Linker::LinkModules(Module *Dest, Module *Src) {
1720 Linker L(Dest);
1721 return L.linkInModule(Src);
1722 }
1724 //===----------------------------------------------------------------------===//
1725 // C API.
1726 //===----------------------------------------------------------------------===//
1728 LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
1729 LLVMLinkerMode Mode, char **OutMessages) {
1730 Module *D = unwrap(Dest);
1731 std::string Message;
1732 raw_string_ostream Stream(Message);
1733 DiagnosticPrinterRawOStream DP(Stream);
1735 LLVMBool Result = Linker::LinkModules(
1736 D, unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); });
1738 if (OutMessages && Result)
1739 *OutMessages = strdup(Message.c_str());
1740 return Result;
1741 }