]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - opencl/llvm.git/blob - lib/Target/ARM/ARMAsmPrinter.cpp
Bug fix 13622: Add paired register support for inline asm with 64-bit data on ARM
[opencl/llvm.git] / lib / Target / ARM / ARMAsmPrinter.cpp
1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format ARM assembly language.
12 //
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "asm-printer"
16 #include "ARMAsmPrinter.h"
17 #include "ARM.h"
18 #include "ARMBuildAttrs.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMMachineFunctionInfo.h"
21 #include "ARMTargetMachine.h"
22 #include "ARMTargetObjectFile.h"
23 #include "InstPrinter/ARMInstPrinter.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMMCExpr.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/Assembly/Writer.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
32 #include "llvm/DebugInfo.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCAssembler.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCELFStreamer.h"
41 #include "llvm/MC/MCInst.h"
42 #include "llvm/MC/MCInstBuilder.h"
43 #include "llvm/MC/MCObjectStreamer.h"
44 #include "llvm/MC/MCSectionMachO.h"
45 #include "llvm/MC/MCStreamer.h"
46 #include "llvm/MC/MCSymbol.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ELF.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/TargetRegistry.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/Mangler.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include <cctype>
56 using namespace llvm;
58 namespace {
60   // Per section and per symbol attributes are not supported.
61   // To implement them we would need the ability to delay this emission
62   // until the assembly file is fully parsed/generated as only then do we
63   // know the symbol and section numbers.
64   class AttributeEmitter {
65   public:
66     virtual void MaybeSwitchVendor(StringRef Vendor) = 0;
67     virtual void EmitAttribute(unsigned Attribute, unsigned Value) = 0;
68     virtual void EmitTextAttribute(unsigned Attribute, StringRef String) = 0;
69     virtual void Finish() = 0;
70     virtual ~AttributeEmitter() {}
71   };
73   class AsmAttributeEmitter : public AttributeEmitter {
74     MCStreamer &Streamer;
76   public:
77     AsmAttributeEmitter(MCStreamer &Streamer_) : Streamer(Streamer_) {}
78     void MaybeSwitchVendor(StringRef Vendor) { }
80     void EmitAttribute(unsigned Attribute, unsigned Value) {
81       Streamer.EmitRawText("\t.eabi_attribute " +
82                            Twine(Attribute) + ", " + Twine(Value));
83     }
85     void EmitTextAttribute(unsigned Attribute, StringRef String) {
86       switch (Attribute) {
87       default: llvm_unreachable("Unsupported Text attribute in ASM Mode");
88       case ARMBuildAttrs::CPU_name:
89         Streamer.EmitRawText(StringRef("\t.cpu ") + String.lower());
90         break;
91       /* GAS requires .fpu to be emitted regardless of EABI attribute */
92       case ARMBuildAttrs::Advanced_SIMD_arch:
93       case ARMBuildAttrs::VFP_arch:
94         Streamer.EmitRawText(StringRef("\t.fpu ") + String.lower());
95         break;
96       }
97     }
98     void Finish() { }
99   };
101   class ObjectAttributeEmitter : public AttributeEmitter {
102     // This structure holds all attributes, accounting for
103     // their string/numeric value, so we can later emmit them
104     // in declaration order, keeping all in the same vector
105     struct AttributeItemType {
106       enum {
107         HiddenAttribute = 0,
108         NumericAttribute,
109         TextAttribute
110       } Type;
111       unsigned Tag;
112       unsigned IntValue;
113       StringRef StringValue;
114     } AttributeItem;
116     MCObjectStreamer &Streamer;
117     StringRef CurrentVendor;
118     SmallVector<AttributeItemType, 64> Contents;
120     // Account for the ULEB/String size of each item,
121     // not just the number of items
122     size_t ContentsSize;
123     // FIXME: this should be in a more generic place, but
124     // getULEBSize() is in MCAsmInfo and will be moved to MCDwarf
125     size_t getULEBSize(int Value) {
126       size_t Size = 0;
127       do {
128         Value >>= 7;
129         Size += sizeof(int8_t); // Is this really necessary?
130       } while (Value);
131       return Size;
132     }
134   public:
135     ObjectAttributeEmitter(MCObjectStreamer &Streamer_) :
136       Streamer(Streamer_), CurrentVendor(""), ContentsSize(0) { }
138     void MaybeSwitchVendor(StringRef Vendor) {
139       assert(!Vendor.empty() && "Vendor cannot be empty.");
141       if (CurrentVendor.empty())
142         CurrentVendor = Vendor;
143       else if (CurrentVendor == Vendor)
144         return;
145       else
146         Finish();
148       CurrentVendor = Vendor;
150       assert(Contents.size() == 0);
151     }
153     void EmitAttribute(unsigned Attribute, unsigned Value) {
154       AttributeItemType attr = {
155         AttributeItemType::NumericAttribute,
156         Attribute,
157         Value,
158         StringRef("")
159       };
160       ContentsSize += getULEBSize(Attribute);
161       ContentsSize += getULEBSize(Value);
162       Contents.push_back(attr);
163     }
165     void EmitTextAttribute(unsigned Attribute, StringRef String) {
166       AttributeItemType attr = {
167         AttributeItemType::TextAttribute,
168         Attribute,
169         0,
170         String
171       };
172       ContentsSize += getULEBSize(Attribute);
173       // String + \0
174       ContentsSize += String.size()+1;
176       Contents.push_back(attr);
177     }
179     void Finish() {
180       // Vendor size + Vendor name + '\0'
181       const size_t VendorHeaderSize = 4 + CurrentVendor.size() + 1;
183       // Tag + Tag Size
184       const size_t TagHeaderSize = 1 + 4;
186       Streamer.EmitIntValue(VendorHeaderSize + TagHeaderSize + ContentsSize, 4);
187       Streamer.EmitBytes(CurrentVendor);
188       Streamer.EmitIntValue(0, 1); // '\0'
190       Streamer.EmitIntValue(ARMBuildAttrs::File, 1);
191       Streamer.EmitIntValue(TagHeaderSize + ContentsSize, 4);
193       // Size should have been accounted for already, now
194       // emit each field as its type (ULEB or String)
195       for (unsigned int i=0; i<Contents.size(); ++i) {
196         AttributeItemType item = Contents[i];
197         Streamer.EmitULEB128IntValue(item.Tag);
198         switch (item.Type) {
199         default: llvm_unreachable("Invalid attribute type");
200         case AttributeItemType::NumericAttribute:
201           Streamer.EmitULEB128IntValue(item.IntValue);
202           break;
203         case AttributeItemType::TextAttribute:
204           Streamer.EmitBytes(item.StringValue.upper());
205           Streamer.EmitIntValue(0, 1); // '\0'
206           break;
207         }
208       }
210       Contents.clear();
211     }
212   };
214 } // end of anonymous namespace
216 MachineLocation ARMAsmPrinter::
217 getDebugValueLocation(const MachineInstr *MI) const {
218   MachineLocation Location;
219   assert(MI->getNumOperands() == 4 && "Invalid no. of machine operands!");
220   // Frame address.  Currently handles register +- offset only.
221   if (MI->getOperand(0).isReg() && MI->getOperand(1).isImm())
222     Location.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm());
223   else {
224     DEBUG(dbgs() << "DBG_VALUE instruction ignored! " << *MI << "\n");
225   }
226   return Location;
229 /// EmitDwarfRegOp - Emit dwarf register operation.
230 void ARMAsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
231   const TargetRegisterInfo *RI = TM.getRegisterInfo();
232   if (RI->getDwarfRegNum(MLoc.getReg(), false) != -1)
233     AsmPrinter::EmitDwarfRegOp(MLoc);
234   else {
235     unsigned Reg = MLoc.getReg();
236     if (Reg >= ARM::S0 && Reg <= ARM::S31) {
237       assert(ARM::S0 + 31 == ARM::S31 && "Unexpected ARM S register numbering");
238       // S registers are described as bit-pieces of a register
239       // S[2x] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 0)
240       // S[2x+1] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 32)
242       unsigned SReg = Reg - ARM::S0;
243       bool odd = SReg & 0x1;
244       unsigned Rx = 256 + (SReg >> 1);
246       OutStreamer.AddComment("DW_OP_regx for S register");
247       EmitInt8(dwarf::DW_OP_regx);
249       OutStreamer.AddComment(Twine(SReg));
250       EmitULEB128(Rx);
252       if (odd) {
253         OutStreamer.AddComment("DW_OP_bit_piece 32 32");
254         EmitInt8(dwarf::DW_OP_bit_piece);
255         EmitULEB128(32);
256         EmitULEB128(32);
257       } else {
258         OutStreamer.AddComment("DW_OP_bit_piece 32 0");
259         EmitInt8(dwarf::DW_OP_bit_piece);
260         EmitULEB128(32);
261         EmitULEB128(0);
262       }
263     } else if (Reg >= ARM::Q0 && Reg <= ARM::Q15) {
264       assert(ARM::Q0 + 15 == ARM::Q15 && "Unexpected ARM Q register numbering");
265       // Q registers Q0-Q15 are described by composing two D registers together.
266       // Qx = DW_OP_regx(256+2x) DW_OP_piece(8) DW_OP_regx(256+2x+1)
267       // DW_OP_piece(8)
269       unsigned QReg = Reg - ARM::Q0;
270       unsigned D1 = 256 + 2 * QReg;
271       unsigned D2 = D1 + 1;
273       OutStreamer.AddComment("DW_OP_regx for Q register: D1");
274       EmitInt8(dwarf::DW_OP_regx);
275       EmitULEB128(D1);
276       OutStreamer.AddComment("DW_OP_piece 8");
277       EmitInt8(dwarf::DW_OP_piece);
278       EmitULEB128(8);
280       OutStreamer.AddComment("DW_OP_regx for Q register: D2");
281       EmitInt8(dwarf::DW_OP_regx);
282       EmitULEB128(D2);
283       OutStreamer.AddComment("DW_OP_piece 8");
284       EmitInt8(dwarf::DW_OP_piece);
285       EmitULEB128(8);
286     }
287   }
290 void ARMAsmPrinter::EmitFunctionBodyEnd() {
291   // Make sure to terminate any constant pools that were at the end
292   // of the function.
293   if (!InConstantPool)
294     return;
295   InConstantPool = false;
296   OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
299 void ARMAsmPrinter::EmitFunctionEntryLabel() {
300   if (AFI->isThumbFunction()) {
301     OutStreamer.EmitAssemblerFlag(MCAF_Code16);
302     OutStreamer.EmitThumbFunc(CurrentFnSym);
303   }
305   OutStreamer.EmitLabel(CurrentFnSym);
308 void ARMAsmPrinter::EmitXXStructor(const Constant *CV) {
309   uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
310   assert(Size && "C++ constructor pointer had zero size!");
312   const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
313   assert(GV && "C++ constructor pointer was not a GlobalValue!");
315   const MCExpr *E = MCSymbolRefExpr::Create(Mang->getSymbol(GV),
316                                             (Subtarget->isTargetDarwin()
317                                              ? MCSymbolRefExpr::VK_None
318                                              : MCSymbolRefExpr::VK_ARM_TARGET1),
319                                             OutContext);
320   
321   OutStreamer.EmitValue(E, Size);
324 /// runOnMachineFunction - This uses the EmitInstruction()
325 /// method to print assembly for each instruction.
326 ///
327 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
328   AFI = MF.getInfo<ARMFunctionInfo>();
329   MCP = MF.getConstantPool();
331   return AsmPrinter::runOnMachineFunction(MF);
334 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
335                                  raw_ostream &O, const char *Modifier) {
336   const MachineOperand &MO = MI->getOperand(OpNum);
337   unsigned TF = MO.getTargetFlags();
339   switch (MO.getType()) {
340   default: llvm_unreachable("<unknown operand type>");
341   case MachineOperand::MO_Register: {
342     unsigned Reg = MO.getReg();
343     assert(TargetRegisterInfo::isPhysicalRegister(Reg));
344     assert(!MO.getSubReg() && "Subregs should be eliminated!");
345     if(ARM::GPRPairRegClass.contains(Reg)) {
346       const MachineFunction &MF = *MI->getParent()->getParent();
347       const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
348       Reg = TRI->getSubReg(Reg, ARM::gsub_0);
349     }
350     O << ARMInstPrinter::getRegisterName(Reg);
351     break;
352   }
353   case MachineOperand::MO_Immediate: {
354     int64_t Imm = MO.getImm();
355     O << '#';
356     if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
357         (TF == ARMII::MO_LO16))
358       O << ":lower16:";
359     else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
360              (TF == ARMII::MO_HI16))
361       O << ":upper16:";
362     O << Imm;
363     break;
364   }
365   case MachineOperand::MO_MachineBasicBlock:
366     O << *MO.getMBB()->getSymbol();
367     return;
368   case MachineOperand::MO_GlobalAddress: {
369     const GlobalValue *GV = MO.getGlobal();
370     if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
371         (TF & ARMII::MO_LO16))
372       O << ":lower16:";
373     else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
374              (TF & ARMII::MO_HI16))
375       O << ":upper16:";
376     O << *Mang->getSymbol(GV);
378     printOffset(MO.getOffset(), O);
379     if (TF == ARMII::MO_PLT)
380       O << "(PLT)";
381     break;
382   }
383   case MachineOperand::MO_ExternalSymbol: {
384     O << *GetExternalSymbolSymbol(MO.getSymbolName());
385     if (TF == ARMII::MO_PLT)
386       O << "(PLT)";
387     break;
388   }
389   case MachineOperand::MO_ConstantPoolIndex:
390     O << *GetCPISymbol(MO.getIndex());
391     break;
392   case MachineOperand::MO_JumpTableIndex:
393     O << *GetJTISymbol(MO.getIndex());
394     break;
395   }
398 //===--------------------------------------------------------------------===//
400 MCSymbol *ARMAsmPrinter::
401 GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
402   SmallString<60> Name;
403   raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "JTI"
404     << getFunctionNumber() << '_' << uid << '_' << uid2;
405   return OutContext.GetOrCreateSymbol(Name.str());
409 MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel() const {
410   SmallString<60> Name;
411   raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "SJLJEH"
412     << getFunctionNumber();
413   return OutContext.GetOrCreateSymbol(Name.str());
416 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
417                                     unsigned AsmVariant, const char *ExtraCode,
418                                     raw_ostream &O) {
419   // Does this asm operand have a single letter operand modifier?
420   if (ExtraCode && ExtraCode[0]) {
421     if (ExtraCode[1] != 0) return true; // Unknown modifier.
423     switch (ExtraCode[0]) {
424     default:
425       // See if this is a generic print operand
426       return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
427     case 'a': // Print as a memory address.
428       if (MI->getOperand(OpNum).isReg()) {
429         O << "["
430           << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
431           << "]";
432         return false;
433       }
434       // Fallthrough
435     case 'c': // Don't print "#" before an immediate operand.
436       if (!MI->getOperand(OpNum).isImm())
437         return true;
438       O << MI->getOperand(OpNum).getImm();
439       return false;
440     case 'P': // Print a VFP double precision register.
441     case 'q': // Print a NEON quad precision register.
442       printOperand(MI, OpNum, O);
443       return false;
444     case 'y': // Print a VFP single precision register as indexed double.
445       if (MI->getOperand(OpNum).isReg()) {
446         unsigned Reg = MI->getOperand(OpNum).getReg();
447         const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
448         // Find the 'd' register that has this 's' register as a sub-register,
449         // and determine the lane number.
450         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
451           if (!ARM::DPRRegClass.contains(*SR))
452             continue;
453           bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
454           O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
455           return false;
456         }
457       }
458       return true;
459     case 'B': // Bitwise inverse of integer or symbol without a preceding #.
460       if (!MI->getOperand(OpNum).isImm())
461         return true;
462       O << ~(MI->getOperand(OpNum).getImm());
463       return false;
464     case 'L': // The low 16 bits of an immediate constant.
465       if (!MI->getOperand(OpNum).isImm())
466         return true;
467       O << (MI->getOperand(OpNum).getImm() & 0xffff);
468       return false;
469     case 'M': { // A register range suitable for LDM/STM.
470       if (!MI->getOperand(OpNum).isReg())
471         return true;
472       const MachineOperand &MO = MI->getOperand(OpNum);
473       unsigned RegBegin = MO.getReg();
474       // This takes advantage of the 2 operand-ness of ldm/stm and that we've
475       // already got the operands in registers that are operands to the
476       // inline asm statement.
478       O << "{" << ARMInstPrinter::getRegisterName(RegBegin);
480       // FIXME: The register allocator not only may not have given us the
481       // registers in sequence, but may not be in ascending registers. This
482       // will require changes in the register allocator that'll need to be
483       // propagated down here if the operands change.
484       unsigned RegOps = OpNum + 1;
485       while (MI->getOperand(RegOps).isReg()) {
486         O << ", "
487           << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
488         RegOps++;
489       }
491       O << "}";
493       return false;
494     }
495     case 'R': // The most significant register of a pair.
496     case 'Q': { // The least significant register of a pair.
497       if (OpNum == 0)
498         return true;
499       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
500       if (!FlagsOP.isImm())
501         return true;
502       unsigned Flags = FlagsOP.getImm();
503       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
504       if (NumVals != 2)
505         return true;
506       unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
507       if (RegOp >= MI->getNumOperands())
508         return true;
509       const MachineOperand &MO = MI->getOperand(RegOp);
510       if (!MO.isReg())
511         return true;
512       unsigned Reg = MO.getReg();
513       O << ARMInstPrinter::getRegisterName(Reg);
514       return false;
515     }
517     case 'e': // The low doubleword register of a NEON quad register.
518     case 'f': { // The high doubleword register of a NEON quad register.
519       if (!MI->getOperand(OpNum).isReg())
520         return true;
521       unsigned Reg = MI->getOperand(OpNum).getReg();
522       if (!ARM::QPRRegClass.contains(Reg))
523         return true;
524       const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
525       unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
526                                        ARM::dsub_0 : ARM::dsub_1);
527       O << ARMInstPrinter::getRegisterName(SubReg);
528       return false;
529     }
531     // This modifier is not yet supported.
532     case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
533       return true;
534     case 'H': { // The highest-numbered register of a pair.
535       const MachineOperand &MO = MI->getOperand(OpNum);
536       if (!MO.isReg())
537         return true;
538       const MachineFunction &MF = *MI->getParent()->getParent();
539       const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
540       unsigned Reg = MO.getReg();
541       if(!ARM::GPRPairRegClass.contains(Reg))
542         return false;
543       Reg = TRI->getSubReg(Reg, ARM::gsub_1);
544       O << ARMInstPrinter::getRegisterName(Reg);
545       return false;
546     }
547     }
548   }
550   printOperand(MI, OpNum, O);
551   return false;
554 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
555                                           unsigned OpNum, unsigned AsmVariant,
556                                           const char *ExtraCode,
557                                           raw_ostream &O) {
558   // Does this asm operand have a single letter operand modifier?
559   if (ExtraCode && ExtraCode[0]) {
560     if (ExtraCode[1] != 0) return true; // Unknown modifier.
562     switch (ExtraCode[0]) {
563       case 'A': // A memory operand for a VLD1/VST1 instruction.
564       default: return true;  // Unknown modifier.
565       case 'm': // The base register of a memory operand.
566         if (!MI->getOperand(OpNum).isReg())
567           return true;
568         O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
569         return false;
570     }
571   }
573   const MachineOperand &MO = MI->getOperand(OpNum);
574   assert(MO.isReg() && "unexpected inline asm memory operand");
575   O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
576   return false;
579 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
580   if (Subtarget->isTargetDarwin()) {
581     Reloc::Model RelocM = TM.getRelocationModel();
582     if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
583       // Declare all the text sections up front (before the DWARF sections
584       // emitted by AsmPrinter::doInitialization) so the assembler will keep
585       // them together at the beginning of the object file.  This helps
586       // avoid out-of-range branches that are due a fundamental limitation of
587       // the way symbol offsets are encoded with the current Darwin ARM
588       // relocations.
589       const TargetLoweringObjectFileMachO &TLOFMacho =
590         static_cast<const TargetLoweringObjectFileMachO &>(
591           getObjFileLowering());
593       // Collect the set of sections our functions will go into.
594       SetVector<const MCSection *, SmallVector<const MCSection *, 8>,
595         SmallPtrSet<const MCSection *, 8> > TextSections;
596       // Default text section comes first.
597       TextSections.insert(TLOFMacho.getTextSection());
598       // Now any user defined text sections from function attributes.
599       for (Module::iterator F = M.begin(), e = M.end(); F != e; ++F)
600         if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage())
601           TextSections.insert(TLOFMacho.SectionForGlobal(F, Mang, TM));
602       // Now the coalescable sections.
603       TextSections.insert(TLOFMacho.getTextCoalSection());
604       TextSections.insert(TLOFMacho.getConstTextCoalSection());
606       // Emit the sections in the .s file header to fix the order.
607       for (unsigned i = 0, e = TextSections.size(); i != e; ++i)
608         OutStreamer.SwitchSection(TextSections[i]);
610       if (RelocM == Reloc::DynamicNoPIC) {
611         const MCSection *sect =
612           OutContext.getMachOSection("__TEXT", "__symbol_stub4",
613                                      MCSectionMachO::S_SYMBOL_STUBS,
614                                      12, SectionKind::getText());
615         OutStreamer.SwitchSection(sect);
616       } else {
617         const MCSection *sect =
618           OutContext.getMachOSection("__TEXT", "__picsymbolstub4",
619                                      MCSectionMachO::S_SYMBOL_STUBS,
620                                      16, SectionKind::getText());
621         OutStreamer.SwitchSection(sect);
622       }
623       const MCSection *StaticInitSect =
624         OutContext.getMachOSection("__TEXT", "__StaticInit",
625                                    MCSectionMachO::S_REGULAR |
626                                    MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
627                                    SectionKind::getText());
628       OutStreamer.SwitchSection(StaticInitSect);
629     }
630   }
632   // Use unified assembler syntax.
633   OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified);
635   // Emit ARM Build Attributes
636   if (Subtarget->isTargetELF())
637     emitAttributes();
641 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
642   if (Subtarget->isTargetDarwin()) {
643     // All darwin targets use mach-o.
644     const TargetLoweringObjectFileMachO &TLOFMacho =
645       static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
646     MachineModuleInfoMachO &MMIMacho =
647       MMI->getObjFileInfo<MachineModuleInfoMachO>();
649     // Output non-lazy-pointers for external and common global variables.
650     MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
652     if (!Stubs.empty()) {
653       // Switch with ".non_lazy_symbol_pointer" directive.
654       OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
655       EmitAlignment(2);
656       for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
657         // L_foo$stub:
658         OutStreamer.EmitLabel(Stubs[i].first);
659         //   .indirect_symbol _foo
660         MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
661         OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol);
663         if (MCSym.getInt())
664           // External to current translation unit.
665           OutStreamer.EmitIntValue(0, 4/*size*/);
666         else
667           // Internal to current translation unit.
668           //
669           // When we place the LSDA into the TEXT section, the type info
670           // pointers need to be indirect and pc-rel. We accomplish this by
671           // using NLPs; however, sometimes the types are local to the file.
672           // We need to fill in the value for the NLP in those cases.
673           OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(),
674                                                         OutContext),
675                                 4/*size*/);
676       }
678       Stubs.clear();
679       OutStreamer.AddBlankLine();
680     }
682     Stubs = MMIMacho.GetHiddenGVStubList();
683     if (!Stubs.empty()) {
684       OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
685       EmitAlignment(2);
686       for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
687         // L_foo$stub:
688         OutStreamer.EmitLabel(Stubs[i].first);
689         //   .long _foo
690         OutStreamer.EmitValue(MCSymbolRefExpr::
691                               Create(Stubs[i].second.getPointer(),
692                                      OutContext),
693                               4/*size*/);
694       }
696       Stubs.clear();
697       OutStreamer.AddBlankLine();
698     }
700     // Funny Darwin hack: This flag tells the linker that no global symbols
701     // contain code that falls through to other global symbols (e.g. the obvious
702     // implementation of multiple entry points).  If this doesn't occur, the
703     // linker can safely perform dead code stripping.  Since LLVM never
704     // generates code that does this, it is always safe to set.
705     OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
706   }
707   // FIXME: This should eventually end up somewhere else where more
708   // intelligent flag decisions can be made. For now we are just maintaining
709   // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default.
710   if (MCELFStreamer *MES = dyn_cast<MCELFStreamer>(&OutStreamer))
711     MES->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
714 //===----------------------------------------------------------------------===//
715 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
716 // FIXME:
717 // The following seem like one-off assembler flags, but they actually need
718 // to appear in the .ARM.attributes section in ELF.
719 // Instead of subclassing the MCELFStreamer, we do the work here.
721 void ARMAsmPrinter::emitAttributes() {
723   emitARMAttributeSection();
725   /* GAS expect .fpu to be emitted, regardless of VFP build attribute */
726   bool emitFPU = false;
727   AttributeEmitter *AttrEmitter;
728   if (OutStreamer.hasRawTextSupport()) {
729     AttrEmitter = new AsmAttributeEmitter(OutStreamer);
730     emitFPU = true;
731   } else {
732     MCObjectStreamer &O = static_cast<MCObjectStreamer&>(OutStreamer);
733     AttrEmitter = new ObjectAttributeEmitter(O);
734   }
736   AttrEmitter->MaybeSwitchVendor("aeabi");
738   std::string CPUString = Subtarget->getCPUString();
740   if (CPUString == "cortex-a8" ||
741       Subtarget->isCortexA8()) {
742     AttrEmitter->EmitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a8");
743     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v7);
744     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch_profile,
745                                ARMBuildAttrs::ApplicationProfile);
746     AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
747                                ARMBuildAttrs::Allowed);
748     AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
749                                ARMBuildAttrs::AllowThumb32);
750     // Fixme: figure out when this is emitted.
751     //AttrEmitter->EmitAttribute(ARMBuildAttrs::WMMX_arch,
752     //                           ARMBuildAttrs::AllowWMMXv1);
753     //
755     /// ADD additional Else-cases here!
756   } else if (CPUString == "xscale") {
757     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5TEJ);
758     AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
759                                ARMBuildAttrs::Allowed);
760     AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
761                                ARMBuildAttrs::Allowed);
762   } else if (CPUString == "generic") {
763     // For a generic CPU, we assume a standard v7a architecture in Subtarget.
764     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v7);
765     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch_profile,
766                                ARMBuildAttrs::ApplicationProfile);
767     AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
768                                ARMBuildAttrs::Allowed);
769     AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
770                                ARMBuildAttrs::AllowThumb32);
771   } else if (Subtarget->hasV7Ops()) {
772     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v7);
773     AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
774                                ARMBuildAttrs::AllowThumb32);
775   } else if (Subtarget->hasV6T2Ops())
776     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v6T2);
777   else if (Subtarget->hasV6Ops())
778     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v6);
779   else if (Subtarget->hasV5TEOps())
780     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5TE);
781   else if (Subtarget->hasV5TOps())
782     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5T);
783   else if (Subtarget->hasV4TOps())
784     AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v4T);
786   if (Subtarget->hasNEON() && emitFPU) {
787     /* NEON is not exactly a VFP architecture, but GAS emit one of
788      * neon/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
789     if (Subtarget->hasVFP4())
790       AttrEmitter->EmitTextAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
791                                      "neon-vfpv4");
792     else
793       AttrEmitter->EmitTextAttribute(ARMBuildAttrs::Advanced_SIMD_arch, "neon");
794     /* If emitted for NEON, omit from VFP below, since you can have both
795      * NEON and VFP in build attributes but only one .fpu */
796     emitFPU = false;
797   }
799   /* VFPv4 + .fpu */
800   if (Subtarget->hasVFP4()) {
801     AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
802                                ARMBuildAttrs::AllowFPv4A);
803     if (emitFPU)
804       AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv4");
806   /* VFPv3 + .fpu */
807   } else if (Subtarget->hasVFP3()) {
808     AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
809                                ARMBuildAttrs::AllowFPv3A);
810     if (emitFPU)
811       AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv3");
813   /* VFPv2 + .fpu */
814   } else if (Subtarget->hasVFP2()) {
815     AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
816                                ARMBuildAttrs::AllowFPv2);
817     if (emitFPU)
818       AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv2");
819   }
821   /* TODO: ARMBuildAttrs::Allowed is not completely accurate,
822    * since NEON can have 1 (allowed) or 2 (MAC operations) */
823   if (Subtarget->hasNEON()) {
824     AttrEmitter->EmitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
825                                ARMBuildAttrs::Allowed);
826   }
828   // Signal various FP modes.
829   if (!TM.Options.UnsafeFPMath) {
830     AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_denormal,
831                                ARMBuildAttrs::Allowed);
832     AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
833                                ARMBuildAttrs::Allowed);
834   }
836   if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
837     AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model,
838                                ARMBuildAttrs::Allowed);
839   else
840     AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model,
841                                ARMBuildAttrs::AllowIEE754);
843   // FIXME: add more flags to ARMBuildAttrs.h
844   // 8-bytes alignment stuff.
845   AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_needed, 1);
846   AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_preserved, 1);
848   // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
849   if (Subtarget->isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) {
850     AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_HardFP_use, 3);
851     AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_VFP_args, 1);
852   }
853   // FIXME: Should we signal R9 usage?
855   if (Subtarget->hasDivide())
856     AttrEmitter->EmitAttribute(ARMBuildAttrs::DIV_use, 1);
858   AttrEmitter->Finish();
859   delete AttrEmitter;
862 void ARMAsmPrinter::emitARMAttributeSection() {
863   // <format-version>
864   // [ <section-length> "vendor-name"
865   // [ <file-tag> <size> <attribute>*
866   //   | <section-tag> <size> <section-number>* 0 <attribute>*
867   //   | <symbol-tag> <size> <symbol-number>* 0 <attribute>*
868   //   ]+
869   // ]*
871   if (OutStreamer.hasRawTextSupport())
872     return;
874   const ARMElfTargetObjectFile &TLOFELF =
875     static_cast<const ARMElfTargetObjectFile &>
876     (getObjFileLowering());
878   OutStreamer.SwitchSection(TLOFELF.getAttributesSection());
880   // Format version
881   OutStreamer.EmitIntValue(0x41, 1);
884 //===----------------------------------------------------------------------===//
886 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
887                              unsigned LabelId, MCContext &Ctx) {
889   MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix)
890                        + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
891   return Label;
894 static MCSymbolRefExpr::VariantKind
895 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
896   switch (Modifier) {
897   case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None;
898   case ARMCP::TLSGD:       return MCSymbolRefExpr::VK_ARM_TLSGD;
899   case ARMCP::TPOFF:       return MCSymbolRefExpr::VK_ARM_TPOFF;
900   case ARMCP::GOTTPOFF:    return MCSymbolRefExpr::VK_ARM_GOTTPOFF;
901   case ARMCP::GOT:         return MCSymbolRefExpr::VK_ARM_GOT;
902   case ARMCP::GOTOFF:      return MCSymbolRefExpr::VK_ARM_GOTOFF;
903   }
904   llvm_unreachable("Invalid ARMCPModifier!");
907 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV) {
908   bool isIndirect = Subtarget->isTargetDarwin() &&
909     Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
910   if (!isIndirect)
911     return Mang->getSymbol(GV);
913   // FIXME: Remove this when Darwin transition to @GOT like syntax.
914   MCSymbol *MCSym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
915   MachineModuleInfoMachO &MMIMachO =
916     MMI->getObjFileInfo<MachineModuleInfoMachO>();
917   MachineModuleInfoImpl::StubValueTy &StubSym =
918     GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym) :
919     MMIMachO.getGVStubEntry(MCSym);
920   if (StubSym.getPointer() == 0)
921     StubSym = MachineModuleInfoImpl::
922       StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage());
923   return MCSym;
926 void ARMAsmPrinter::
927 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
928   int Size = TM.getDataLayout()->getTypeAllocSize(MCPV->getType());
930   ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
932   MCSymbol *MCSym;
933   if (ACPV->isLSDA()) {
934     SmallString<128> Str;
935     raw_svector_ostream OS(Str);
936     OS << MAI->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber();
937     MCSym = OutContext.GetOrCreateSymbol(OS.str());
938   } else if (ACPV->isBlockAddress()) {
939     const BlockAddress *BA =
940       cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
941     MCSym = GetBlockAddressSymbol(BA);
942   } else if (ACPV->isGlobalValue()) {
943     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
944     MCSym = GetARMGVSymbol(GV);
945   } else if (ACPV->isMachineBasicBlock()) {
946     const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
947     MCSym = MBB->getSymbol();
948   } else {
949     assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
950     const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
951     MCSym = GetExternalSymbolSymbol(Sym);
952   }
954   // Create an MCSymbol for the reference.
955   const MCExpr *Expr =
956     MCSymbolRefExpr::Create(MCSym, getModifierVariantKind(ACPV->getModifier()),
957                             OutContext);
959   if (ACPV->getPCAdjustment()) {
960     MCSymbol *PCLabel = getPICLabel(MAI->getPrivateGlobalPrefix(),
961                                     getFunctionNumber(),
962                                     ACPV->getLabelId(),
963                                     OutContext);
964     const MCExpr *PCRelExpr = MCSymbolRefExpr::Create(PCLabel, OutContext);
965     PCRelExpr =
966       MCBinaryExpr::CreateAdd(PCRelExpr,
967                               MCConstantExpr::Create(ACPV->getPCAdjustment(),
968                                                      OutContext),
969                               OutContext);
970     if (ACPV->mustAddCurrentAddress()) {
971       // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
972       // label, so just emit a local label end reference that instead.
973       MCSymbol *DotSym = OutContext.CreateTempSymbol();
974       OutStreamer.EmitLabel(DotSym);
975       const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
976       PCRelExpr = MCBinaryExpr::CreateSub(PCRelExpr, DotExpr, OutContext);
977     }
978     Expr = MCBinaryExpr::CreateSub(Expr, PCRelExpr, OutContext);
979   }
980   OutStreamer.EmitValue(Expr, Size);
983 void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) {
984   unsigned Opcode = MI->getOpcode();
985   int OpNum = 1;
986   if (Opcode == ARM::BR_JTadd)
987     OpNum = 2;
988   else if (Opcode == ARM::BR_JTm)
989     OpNum = 3;
991   const MachineOperand &MO1 = MI->getOperand(OpNum);
992   const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
993   unsigned JTI = MO1.getIndex();
995   // Emit a label for the jump table.
996   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
997   OutStreamer.EmitLabel(JTISymbol);
999   // Mark the jump table as data-in-code.
1000   OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1002   // Emit each entry of the table.
1003   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1004   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1005   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1007   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
1008     MachineBasicBlock *MBB = JTBBs[i];
1009     // Construct an MCExpr for the entry. We want a value of the form:
1010     // (BasicBlockAddr - TableBeginAddr)
1011     //
1012     // For example, a table with entries jumping to basic blocks BB0 and BB1
1013     // would look like:
1014     // LJTI_0_0:
1015     //    .word (LBB0 - LJTI_0_0)
1016     //    .word (LBB1 - LJTI_0_0)
1017     const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1019     if (TM.getRelocationModel() == Reloc::PIC_)
1020       Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol,
1021                                                                    OutContext),
1022                                      OutContext);
1023     // If we're generating a table of Thumb addresses in static relocation
1024     // model, we need to add one to keep interworking correctly.
1025     else if (AFI->isThumbFunction())
1026       Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(1,OutContext),
1027                                      OutContext);
1028     OutStreamer.EmitValue(Expr, 4);
1029   }
1030   // Mark the end of jump table data-in-code region.
1031   OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1034 void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) {
1035   unsigned Opcode = MI->getOpcode();
1036   int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1;
1037   const MachineOperand &MO1 = MI->getOperand(OpNum);
1038   const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
1039   unsigned JTI = MO1.getIndex();
1041   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
1042   OutStreamer.EmitLabel(JTISymbol);
1044   // Emit each entry of the table.
1045   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1046   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1047   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1048   unsigned OffsetWidth = 4;
1049   if (MI->getOpcode() == ARM::t2TBB_JT) {
1050     OffsetWidth = 1;
1051     // Mark the jump table as data-in-code.
1052     OutStreamer.EmitDataRegion(MCDR_DataRegionJT8);
1053   } else if (MI->getOpcode() == ARM::t2TBH_JT) {
1054     OffsetWidth = 2;
1055     // Mark the jump table as data-in-code.
1056     OutStreamer.EmitDataRegion(MCDR_DataRegionJT16);
1057   }
1059   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
1060     MachineBasicBlock *MBB = JTBBs[i];
1061     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(),
1062                                                       OutContext);
1063     // If this isn't a TBB or TBH, the entries are direct branch instructions.
1064     if (OffsetWidth == 4) {
1065       OutStreamer.EmitInstruction(MCInstBuilder(ARM::t2B)
1066         .addExpr(MBBSymbolExpr)
1067         .addImm(ARMCC::AL)
1068         .addReg(0));
1069       continue;
1070     }
1071     // Otherwise it's an offset from the dispatch instruction. Construct an
1072     // MCExpr for the entry. We want a value of the form:
1073     // (BasicBlockAddr - TableBeginAddr) / 2
1074     //
1075     // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1076     // would look like:
1077     // LJTI_0_0:
1078     //    .byte (LBB0 - LJTI_0_0) / 2
1079     //    .byte (LBB1 - LJTI_0_0) / 2
1080     const MCExpr *Expr =
1081       MCBinaryExpr::CreateSub(MBBSymbolExpr,
1082                               MCSymbolRefExpr::Create(JTISymbol, OutContext),
1083                               OutContext);
1084     Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext),
1085                                    OutContext);
1086     OutStreamer.EmitValue(Expr, OffsetWidth);
1087   }
1088   // Mark the end of jump table data-in-code region. 32-bit offsets use
1089   // actual branch instructions here, so we don't mark those as a data-region
1090   // at all.
1091   if (OffsetWidth != 4)
1092     OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1095 void ARMAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
1096                                            raw_ostream &OS) {
1097   unsigned NOps = MI->getNumOperands();
1098   assert(NOps==4);
1099   OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: ";
1100   // cast away const; DIetc do not take const operands for some reason.
1101   DIVariable V(const_cast<MDNode *>(MI->getOperand(NOps-1).getMetadata()));
1102   OS << V.getName();
1103   OS << " <- ";
1104   // Frame address.  Currently handles register +- offset only.
1105   assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm());
1106   OS << '['; printOperand(MI, 0, OS); OS << '+'; printOperand(MI, 1, OS);
1107   OS << ']';
1108   OS << "+";
1109   printOperand(MI, NOps-2, OS);
1112 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1113   assert(MI->getFlag(MachineInstr::FrameSetup) &&
1114       "Only instruction which are involved into frame setup code are allowed");
1116   const MachineFunction &MF = *MI->getParent()->getParent();
1117   const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
1118   const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
1120   unsigned FramePtr = RegInfo->getFrameRegister(MF);
1121   unsigned Opc = MI->getOpcode();
1122   unsigned SrcReg, DstReg;
1124   if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1125     // Two special cases:
1126     // 1) tPUSH does not have src/dst regs.
1127     // 2) for Thumb1 code we sometimes materialize the constant via constpool
1128     // load. Yes, this is pretty fragile, but for now I don't see better
1129     // way... :(
1130     SrcReg = DstReg = ARM::SP;
1131   } else {
1132     SrcReg = MI->getOperand(1).getReg();
1133     DstReg = MI->getOperand(0).getReg();
1134   }
1136   // Try to figure out the unwinding opcode out of src / dst regs.
1137   if (MI->mayStore()) {
1138     // Register saves.
1139     assert(DstReg == ARM::SP &&
1140            "Only stack pointer as a destination reg is supported");
1142     SmallVector<unsigned, 4> RegList;
1143     // Skip src & dst reg, and pred ops.
1144     unsigned StartOp = 2 + 2;
1145     // Use all the operands.
1146     unsigned NumOffset = 0;
1148     switch (Opc) {
1149     default:
1150       MI->dump();
1151       llvm_unreachable("Unsupported opcode for unwinding information");
1152     case ARM::tPUSH:
1153       // Special case here: no src & dst reg, but two extra imp ops.
1154       StartOp = 2; NumOffset = 2;
1155     case ARM::STMDB_UPD:
1156     case ARM::t2STMDB_UPD:
1157     case ARM::VSTMDDB_UPD:
1158       assert(SrcReg == ARM::SP &&
1159              "Only stack pointer as a source reg is supported");
1160       for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1161            i != NumOps; ++i) {
1162         const MachineOperand &MO = MI->getOperand(i);
1163         // Actually, there should never be any impdef stuff here. Skip it
1164         // temporary to workaround PR11902.
1165         if (MO.isImplicit())
1166           continue;
1167         RegList.push_back(MO.getReg());
1168       }
1169       break;
1170     case ARM::STR_PRE_IMM:
1171     case ARM::STR_PRE_REG:
1172     case ARM::t2STR_PRE:
1173       assert(MI->getOperand(2).getReg() == ARM::SP &&
1174              "Only stack pointer as a source reg is supported");
1175       RegList.push_back(SrcReg);
1176       break;
1177     }
1178     OutStreamer.EmitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1179   } else {
1180     // Changes of stack / frame pointer.
1181     if (SrcReg == ARM::SP) {
1182       int64_t Offset = 0;
1183       switch (Opc) {
1184       default:
1185         MI->dump();
1186         llvm_unreachable("Unsupported opcode for unwinding information");
1187       case ARM::MOVr:
1188       case ARM::tMOVr:
1189         Offset = 0;
1190         break;
1191       case ARM::ADDri:
1192         Offset = -MI->getOperand(2).getImm();
1193         break;
1194       case ARM::SUBri:
1195       case ARM::t2SUBri:
1196         Offset = MI->getOperand(2).getImm();
1197         break;
1198       case ARM::tSUBspi:
1199         Offset = MI->getOperand(2).getImm()*4;
1200         break;
1201       case ARM::tADDspi:
1202       case ARM::tADDrSPi:
1203         Offset = -MI->getOperand(2).getImm()*4;
1204         break;
1205       case ARM::tLDRpci: {
1206         // Grab the constpool index and check, whether it corresponds to
1207         // original or cloned constpool entry.
1208         unsigned CPI = MI->getOperand(1).getIndex();
1209         const MachineConstantPool *MCP = MF.getConstantPool();
1210         if (CPI >= MCP->getConstants().size())
1211           CPI = AFI.getOriginalCPIdx(CPI);
1212         assert(CPI != -1U && "Invalid constpool index");
1214         // Derive the actual offset.
1215         const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1216         assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1217         // FIXME: Check for user, it should be "add" instruction!
1218         Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1219         break;
1220       }
1221       }
1223       if (DstReg == FramePtr && FramePtr != ARM::SP)
1224         // Set-up of the frame pointer. Positive values correspond to "add"
1225         // instruction.
1226         OutStreamer.EmitSetFP(FramePtr, ARM::SP, -Offset);
1227       else if (DstReg == ARM::SP) {
1228         // Change of SP by an offset. Positive values correspond to "sub"
1229         // instruction.
1230         OutStreamer.EmitPad(Offset);
1231       } else {
1232         MI->dump();
1233         llvm_unreachable("Unsupported opcode for unwinding information");
1234       }
1235     } else if (DstReg == ARM::SP) {
1236       // FIXME: .movsp goes here
1237       MI->dump();
1238       llvm_unreachable("Unsupported opcode for unwinding information");
1239     }
1240     else {
1241       MI->dump();
1242       llvm_unreachable("Unsupported opcode for unwinding information");
1243     }
1244   }
1247 extern cl::opt<bool> EnableARMEHABI;
1249 // Simple pseudo-instructions have their lowering (with expansion to real
1250 // instructions) auto-generated.
1251 #include "ARMGenMCPseudoLowering.inc"
1253 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
1254   // If we just ended a constant pool, mark it as such.
1255   if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1256     OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1257     InConstantPool = false;
1258   }
1260   // Emit unwinding stuff for frame-related instructions
1261   if (EnableARMEHABI && MI->getFlag(MachineInstr::FrameSetup))
1262     EmitUnwindingInstruction(MI);
1264   // Do any auto-generated pseudo lowerings.
1265   if (emitPseudoExpansionLowering(OutStreamer, MI))
1266     return;
1268   assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1269          "Pseudo flag setting opcode should be expanded early");
1271   // Check for manual lowerings.
1272   unsigned Opc = MI->getOpcode();
1273   switch (Opc) {
1274   case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1275   case ARM::DBG_VALUE: {
1276     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
1277       SmallString<128> TmpStr;
1278       raw_svector_ostream OS(TmpStr);
1279       PrintDebugValueComment(MI, OS);
1280       OutStreamer.EmitRawText(StringRef(OS.str()));
1281     }
1282     return;
1283   }
1284   case ARM::LEApcrel:
1285   case ARM::tLEApcrel:
1286   case ARM::t2LEApcrel: {
1287     // FIXME: Need to also handle globals and externals
1288     MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1289     OutStreamer.EmitInstruction(MCInstBuilder(MI->getOpcode() ==
1290                                               ARM::t2LEApcrel ? ARM::t2ADR
1291                   : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1292                      : ARM::ADR))
1293       .addReg(MI->getOperand(0).getReg())
1294       .addExpr(MCSymbolRefExpr::Create(CPISymbol, OutContext))
1295       // Add predicate operands.
1296       .addImm(MI->getOperand(2).getImm())
1297       .addReg(MI->getOperand(3).getReg()));
1298     return;
1299   }
1300   case ARM::LEApcrelJT:
1301   case ARM::tLEApcrelJT:
1302   case ARM::t2LEApcrelJT: {
1303     MCSymbol *JTIPICSymbol =
1304       GetARMJTIPICJumpTableLabel2(MI->getOperand(1).getIndex(),
1305                                   MI->getOperand(2).getImm());
1306     OutStreamer.EmitInstruction(MCInstBuilder(MI->getOpcode() ==
1307                                               ARM::t2LEApcrelJT ? ARM::t2ADR
1308                   : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1309                      : ARM::ADR))
1310       .addReg(MI->getOperand(0).getReg())
1311       .addExpr(MCSymbolRefExpr::Create(JTIPICSymbol, OutContext))
1312       // Add predicate operands.
1313       .addImm(MI->getOperand(3).getImm())
1314       .addReg(MI->getOperand(4).getReg()));
1315     return;
1316   }
1317   // Darwin call instructions are just normal call instructions with different
1318   // clobber semantics (they clobber R9).
1319   case ARM::BX_CALL: {
1320     OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
1321       .addReg(ARM::LR)
1322       .addReg(ARM::PC)
1323       // Add predicate operands.
1324       .addImm(ARMCC::AL)
1325       .addReg(0)
1326       // Add 's' bit operand (always reg0 for this)
1327       .addReg(0));
1329     OutStreamer.EmitInstruction(MCInstBuilder(ARM::BX)
1330       .addReg(MI->getOperand(0).getReg()));
1331     return;
1332   }
1333   case ARM::tBX_CALL: {
1334     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
1335       .addReg(ARM::LR)
1336       .addReg(ARM::PC)
1337       // Add predicate operands.
1338       .addImm(ARMCC::AL)
1339       .addReg(0));
1341     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tBX)
1342       .addReg(MI->getOperand(0).getReg())
1343       // Add predicate operands.
1344       .addImm(ARMCC::AL)
1345       .addReg(0));
1346     return;
1347   }
1348   case ARM::BMOVPCRX_CALL: {
1349     OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
1350       .addReg(ARM::LR)
1351       .addReg(ARM::PC)
1352       // Add predicate operands.
1353       .addImm(ARMCC::AL)
1354       .addReg(0)
1355       // Add 's' bit operand (always reg0 for this)
1356       .addReg(0));
1358     OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
1359       .addReg(ARM::PC)
1360       .addImm(MI->getOperand(0).getReg())
1361       // Add predicate operands.
1362       .addImm(ARMCC::AL)
1363       .addReg(0)
1364       // Add 's' bit operand (always reg0 for this)
1365       .addReg(0));
1366     return;
1367   }
1368   case ARM::BMOVPCB_CALL: {
1369     OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
1370       .addReg(ARM::LR)
1371       .addReg(ARM::PC)
1372       // Add predicate operands.
1373       .addImm(ARMCC::AL)
1374       .addReg(0)
1375       // Add 's' bit operand (always reg0 for this)
1376       .addReg(0));
1378     const GlobalValue *GV = MI->getOperand(0).getGlobal();
1379     MCSymbol *GVSym = Mang->getSymbol(GV);
1380     const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
1381     OutStreamer.EmitInstruction(MCInstBuilder(ARM::Bcc)
1382       .addExpr(GVSymExpr)
1383       // Add predicate operands.
1384       .addImm(ARMCC::AL)
1385       .addReg(0));
1386     return;
1387   }
1388   case ARM::MOVi16_ga_pcrel:
1389   case ARM::t2MOVi16_ga_pcrel: {
1390     MCInst TmpInst;
1391     TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1392     TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1394     unsigned TF = MI->getOperand(1).getTargetFlags();
1395     bool isPIC = TF == ARMII::MO_LO16_NONLAZY_PIC;
1396     const GlobalValue *GV = MI->getOperand(1).getGlobal();
1397     MCSymbol *GVSym = GetARMGVSymbol(GV);
1398     const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
1399     if (isPIC) {
1400       MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(),
1401                                        getFunctionNumber(),
1402                                        MI->getOperand(2).getImm(), OutContext);
1403       const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
1404       unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1405       const MCExpr *PCRelExpr =
1406         ARMMCExpr::CreateLower16(MCBinaryExpr::CreateSub(GVSymExpr,
1407                                   MCBinaryExpr::CreateAdd(LabelSymExpr,
1408                                       MCConstantExpr::Create(PCAdj, OutContext),
1409                                           OutContext), OutContext), OutContext);
1410       TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
1411     } else {
1412       const MCExpr *RefExpr= ARMMCExpr::CreateLower16(GVSymExpr, OutContext);
1413       TmpInst.addOperand(MCOperand::CreateExpr(RefExpr));
1414     }
1416     // Add predicate operands.
1417     TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1418     TmpInst.addOperand(MCOperand::CreateReg(0));
1419     // Add 's' bit operand (always reg0 for this)
1420     TmpInst.addOperand(MCOperand::CreateReg(0));
1421     OutStreamer.EmitInstruction(TmpInst);
1422     return;
1423   }
1424   case ARM::MOVTi16_ga_pcrel:
1425   case ARM::t2MOVTi16_ga_pcrel: {
1426     MCInst TmpInst;
1427     TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1428                       ? ARM::MOVTi16 : ARM::t2MOVTi16);
1429     TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1430     TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
1432     unsigned TF = MI->getOperand(2).getTargetFlags();
1433     bool isPIC = TF == ARMII::MO_HI16_NONLAZY_PIC;
1434     const GlobalValue *GV = MI->getOperand(2).getGlobal();
1435     MCSymbol *GVSym = GetARMGVSymbol(GV);
1436     const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
1437     if (isPIC) {
1438       MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(),
1439                                        getFunctionNumber(),
1440                                        MI->getOperand(3).getImm(), OutContext);
1441       const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
1442       unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1443       const MCExpr *PCRelExpr =
1444         ARMMCExpr::CreateUpper16(MCBinaryExpr::CreateSub(GVSymExpr,
1445                                    MCBinaryExpr::CreateAdd(LabelSymExpr,
1446                                       MCConstantExpr::Create(PCAdj, OutContext),
1447                                           OutContext), OutContext), OutContext);
1448       TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
1449     } else {
1450       const MCExpr *RefExpr= ARMMCExpr::CreateUpper16(GVSymExpr, OutContext);
1451       TmpInst.addOperand(MCOperand::CreateExpr(RefExpr));
1452     }
1453     // Add predicate operands.
1454     TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1455     TmpInst.addOperand(MCOperand::CreateReg(0));
1456     // Add 's' bit operand (always reg0 for this)
1457     TmpInst.addOperand(MCOperand::CreateReg(0));
1458     OutStreamer.EmitInstruction(TmpInst);
1459     return;
1460   }
1461   case ARM::tPICADD: {
1462     // This is a pseudo op for a label + instruction sequence, which looks like:
1463     // LPC0:
1464     //     add r0, pc
1465     // This adds the address of LPC0 to r0.
1467     // Emit the label.
1468     OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
1469                           getFunctionNumber(), MI->getOperand(2).getImm(),
1470                           OutContext));
1472     // Form and emit the add.
1473     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tADDhirr)
1474       .addReg(MI->getOperand(0).getReg())
1475       .addReg(MI->getOperand(0).getReg())
1476       .addReg(ARM::PC)
1477       // Add predicate operands.
1478       .addImm(ARMCC::AL)
1479       .addReg(0));
1480     return;
1481   }
1482   case ARM::PICADD: {
1483     // This is a pseudo op for a label + instruction sequence, which looks like:
1484     // LPC0:
1485     //     add r0, pc, r0
1486     // This adds the address of LPC0 to r0.
1488     // Emit the label.
1489     OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
1490                           getFunctionNumber(), MI->getOperand(2).getImm(),
1491                           OutContext));
1493     // Form and emit the add.
1494     OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDrr)
1495       .addReg(MI->getOperand(0).getReg())
1496       .addReg(ARM::PC)
1497       .addReg(MI->getOperand(1).getReg())
1498       // Add predicate operands.
1499       .addImm(MI->getOperand(3).getImm())
1500       .addReg(MI->getOperand(4).getReg())
1501       // Add 's' bit operand (always reg0 for this)
1502       .addReg(0));
1503     return;
1504   }
1505   case ARM::PICSTR:
1506   case ARM::PICSTRB:
1507   case ARM::PICSTRH:
1508   case ARM::PICLDR:
1509   case ARM::PICLDRB:
1510   case ARM::PICLDRH:
1511   case ARM::PICLDRSB:
1512   case ARM::PICLDRSH: {
1513     // This is a pseudo op for a label + instruction sequence, which looks like:
1514     // LPC0:
1515     //     OP r0, [pc, r0]
1516     // The LCP0 label is referenced by a constant pool entry in order to get
1517     // a PC-relative address at the ldr instruction.
1519     // Emit the label.
1520     OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
1521                           getFunctionNumber(), MI->getOperand(2).getImm(),
1522                           OutContext));
1524     // Form and emit the load
1525     unsigned Opcode;
1526     switch (MI->getOpcode()) {
1527     default:
1528       llvm_unreachable("Unexpected opcode!");
1529     case ARM::PICSTR:   Opcode = ARM::STRrs; break;
1530     case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
1531     case ARM::PICSTRH:  Opcode = ARM::STRH; break;
1532     case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
1533     case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
1534     case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
1535     case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1536     case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1537     }
1538     OutStreamer.EmitInstruction(MCInstBuilder(Opcode)
1539       .addReg(MI->getOperand(0).getReg())
1540       .addReg(ARM::PC)
1541       .addReg(MI->getOperand(1).getReg())
1542       .addImm(0)
1543       // Add predicate operands.
1544       .addImm(MI->getOperand(3).getImm())
1545       .addReg(MI->getOperand(4).getReg()));
1547     return;
1548   }
1549   case ARM::CONSTPOOL_ENTRY: {
1550     /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1551     /// in the function.  The first operand is the ID# for this instruction, the
1552     /// second is the index into the MachineConstantPool that this is, the third
1553     /// is the size in bytes of this constant pool entry.
1554     /// The required alignment is specified on the basic block holding this MI.
1555     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1556     unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
1558     // If this is the first entry of the pool, mark it.
1559     if (!InConstantPool) {
1560       OutStreamer.EmitDataRegion(MCDR_DataRegion);
1561       InConstantPool = true;
1562     }
1564     OutStreamer.EmitLabel(GetCPISymbol(LabelId));
1566     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1567     if (MCPE.isMachineConstantPoolEntry())
1568       EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1569     else
1570       EmitGlobalConstant(MCPE.Val.ConstVal);
1571     return;
1572   }
1573   case ARM::t2BR_JT: {
1574     // Lower and emit the instruction itself, then the jump table following it.
1575     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
1576       .addReg(ARM::PC)
1577       .addReg(MI->getOperand(0).getReg())
1578       // Add predicate operands.
1579       .addImm(ARMCC::AL)
1580       .addReg(0));
1582     // Output the data for the jump table itself
1583     EmitJump2Table(MI);
1584     return;
1585   }
1586   case ARM::t2TBB_JT: {
1587     // Lower and emit the instruction itself, then the jump table following it.
1588     OutStreamer.EmitInstruction(MCInstBuilder(ARM::t2TBB)
1589       .addReg(ARM::PC)
1590       .addReg(MI->getOperand(0).getReg())
1591       // Add predicate operands.
1592       .addImm(ARMCC::AL)
1593       .addReg(0));
1595     // Output the data for the jump table itself
1596     EmitJump2Table(MI);
1597     // Make sure the next instruction is 2-byte aligned.
1598     EmitAlignment(1);
1599     return;
1600   }
1601   case ARM::t2TBH_JT: {
1602     // Lower and emit the instruction itself, then the jump table following it.
1603     OutStreamer.EmitInstruction(MCInstBuilder(ARM::t2TBH)
1604       .addReg(ARM::PC)
1605       .addReg(MI->getOperand(0).getReg())
1606       // Add predicate operands.
1607       .addImm(ARMCC::AL)
1608       .addReg(0));
1610     // Output the data for the jump table itself
1611     EmitJump2Table(MI);
1612     return;
1613   }
1614   case ARM::tBR_JTr:
1615   case ARM::BR_JTr: {
1616     // Lower and emit the instruction itself, then the jump table following it.
1617     // mov pc, target
1618     MCInst TmpInst;
1619     unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1620       ARM::MOVr : ARM::tMOVr;
1621     TmpInst.setOpcode(Opc);
1622     TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1623     TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1624     // Add predicate operands.
1625     TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1626     TmpInst.addOperand(MCOperand::CreateReg(0));
1627     // Add 's' bit operand (always reg0 for this)
1628     if (Opc == ARM::MOVr)
1629       TmpInst.addOperand(MCOperand::CreateReg(0));
1630     OutStreamer.EmitInstruction(TmpInst);
1632     // Make sure the Thumb jump table is 4-byte aligned.
1633     if (Opc == ARM::tMOVr)
1634       EmitAlignment(2);
1636     // Output the data for the jump table itself
1637     EmitJumpTable(MI);
1638     return;
1639   }
1640   case ARM::BR_JTm: {
1641     // Lower and emit the instruction itself, then the jump table following it.
1642     // ldr pc, target
1643     MCInst TmpInst;
1644     if (MI->getOperand(1).getReg() == 0) {
1645       // literal offset
1646       TmpInst.setOpcode(ARM::LDRi12);
1647       TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1648       TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1649       TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
1650     } else {
1651       TmpInst.setOpcode(ARM::LDRrs);
1652       TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
1653       TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
1654       TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
1655       TmpInst.addOperand(MCOperand::CreateImm(0));
1656     }
1657     // Add predicate operands.
1658     TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
1659     TmpInst.addOperand(MCOperand::CreateReg(0));
1660     OutStreamer.EmitInstruction(TmpInst);
1662     // Output the data for the jump table itself
1663     EmitJumpTable(MI);
1664     return;
1665   }
1666   case ARM::BR_JTadd: {
1667     // Lower and emit the instruction itself, then the jump table following it.
1668     // add pc, target, idx
1669     OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDrr)
1670       .addReg(ARM::PC)
1671       .addReg(MI->getOperand(0).getReg())
1672       .addReg(MI->getOperand(1).getReg())
1673       // Add predicate operands.
1674       .addImm(ARMCC::AL)
1675       .addReg(0)
1676       // Add 's' bit operand (always reg0 for this)
1677       .addReg(0));
1679     // Output the data for the jump table itself
1680     EmitJumpTable(MI);
1681     return;
1682   }
1683   case ARM::TRAP: {
1684     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1685     // FIXME: Remove this special case when they do.
1686     if (!Subtarget->isTargetDarwin()) {
1687       //.long 0xe7ffdefe @ trap
1688       uint32_t Val = 0xe7ffdefeUL;
1689       OutStreamer.AddComment("trap");
1690       OutStreamer.EmitIntValue(Val, 4);
1691       return;
1692     }
1693     break;
1694   }
1695   case ARM::TRAPNaCl: {
1696     //.long 0xe7fedef0 @ trap
1697     uint32_t Val = 0xe7fedef0UL;
1698     OutStreamer.AddComment("trap");
1699     OutStreamer.EmitIntValue(Val, 4);
1700     return;
1701   }
1702   case ARM::tTRAP: {
1703     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1704     // FIXME: Remove this special case when they do.
1705     if (!Subtarget->isTargetDarwin()) {
1706       //.short 57086 @ trap
1707       uint16_t Val = 0xdefe;
1708       OutStreamer.AddComment("trap");
1709       OutStreamer.EmitIntValue(Val, 2);
1710       return;
1711     }
1712     break;
1713   }
1714   case ARM::t2Int_eh_sjlj_setjmp:
1715   case ARM::t2Int_eh_sjlj_setjmp_nofp:
1716   case ARM::tInt_eh_sjlj_setjmp: {
1717     // Two incoming args: GPR:$src, GPR:$val
1718     // mov $val, pc
1719     // adds $val, #7
1720     // str $val, [$src, #4]
1721     // movs r0, #0
1722     // b 1f
1723     // movs r0, #1
1724     // 1:
1725     unsigned SrcReg = MI->getOperand(0).getReg();
1726     unsigned ValReg = MI->getOperand(1).getReg();
1727     MCSymbol *Label = GetARMSJLJEHLabel();
1728     OutStreamer.AddComment("eh_setjmp begin");
1729     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
1730       .addReg(ValReg)
1731       .addReg(ARM::PC)
1732       // Predicate.
1733       .addImm(ARMCC::AL)
1734       .addReg(0));
1736     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tADDi3)
1737       .addReg(ValReg)
1738       // 's' bit operand
1739       .addReg(ARM::CPSR)
1740       .addReg(ValReg)
1741       .addImm(7)
1742       // Predicate.
1743       .addImm(ARMCC::AL)
1744       .addReg(0));
1746     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tSTRi)
1747       .addReg(ValReg)
1748       .addReg(SrcReg)
1749       // The offset immediate is #4. The operand value is scaled by 4 for the
1750       // tSTR instruction.
1751       .addImm(1)
1752       // Predicate.
1753       .addImm(ARMCC::AL)
1754       .addReg(0));
1756     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVi8)
1757       .addReg(ARM::R0)
1758       .addReg(ARM::CPSR)
1759       .addImm(0)
1760       // Predicate.
1761       .addImm(ARMCC::AL)
1762       .addReg(0));
1764     const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext);
1765     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tB)
1766       .addExpr(SymbolExpr)
1767       .addImm(ARMCC::AL)
1768       .addReg(0));
1770     OutStreamer.AddComment("eh_setjmp end");
1771     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVi8)
1772       .addReg(ARM::R0)
1773       .addReg(ARM::CPSR)
1774       .addImm(1)
1775       // Predicate.
1776       .addImm(ARMCC::AL)
1777       .addReg(0));
1779     OutStreamer.EmitLabel(Label);
1780     return;
1781   }
1783   case ARM::Int_eh_sjlj_setjmp_nofp:
1784   case ARM::Int_eh_sjlj_setjmp: {
1785     // Two incoming args: GPR:$src, GPR:$val
1786     // add $val, pc, #8
1787     // str $val, [$src, #+4]
1788     // mov r0, #0
1789     // add pc, pc, #0
1790     // mov r0, #1
1791     unsigned SrcReg = MI->getOperand(0).getReg();
1792     unsigned ValReg = MI->getOperand(1).getReg();
1794     OutStreamer.AddComment("eh_setjmp begin");
1795     OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDri)
1796       .addReg(ValReg)
1797       .addReg(ARM::PC)
1798       .addImm(8)
1799       // Predicate.
1800       .addImm(ARMCC::AL)
1801       .addReg(0)
1802       // 's' bit operand (always reg0 for this).
1803       .addReg(0));
1805     OutStreamer.EmitInstruction(MCInstBuilder(ARM::STRi12)
1806       .addReg(ValReg)
1807       .addReg(SrcReg)
1808       .addImm(4)
1809       // Predicate.
1810       .addImm(ARMCC::AL)
1811       .addReg(0));
1813     OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVi)
1814       .addReg(ARM::R0)
1815       .addImm(0)
1816       // Predicate.
1817       .addImm(ARMCC::AL)
1818       .addReg(0)
1819       // 's' bit operand (always reg0 for this).
1820       .addReg(0));
1822     OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDri)
1823       .addReg(ARM::PC)
1824       .addReg(ARM::PC)
1825       .addImm(0)
1826       // Predicate.
1827       .addImm(ARMCC::AL)
1828       .addReg(0)
1829       // 's' bit operand (always reg0 for this).
1830       .addReg(0));
1832     OutStreamer.AddComment("eh_setjmp end");
1833     OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVi)
1834       .addReg(ARM::R0)
1835       .addImm(1)
1836       // Predicate.
1837       .addImm(ARMCC::AL)
1838       .addReg(0)
1839       // 's' bit operand (always reg0 for this).
1840       .addReg(0));
1841     return;
1842   }
1843   case ARM::Int_eh_sjlj_longjmp: {
1844     // ldr sp, [$src, #8]
1845     // ldr $scratch, [$src, #4]
1846     // ldr r7, [$src]
1847     // bx $scratch
1848     unsigned SrcReg = MI->getOperand(0).getReg();
1849     unsigned ScratchReg = MI->getOperand(1).getReg();
1850     OutStreamer.EmitInstruction(MCInstBuilder(ARM::LDRi12)
1851       .addReg(ARM::SP)
1852       .addReg(SrcReg)
1853       .addImm(8)
1854       // Predicate.
1855       .addImm(ARMCC::AL)
1856       .addReg(0));
1858     OutStreamer.EmitInstruction(MCInstBuilder(ARM::LDRi12)
1859       .addReg(ScratchReg)
1860       .addReg(SrcReg)
1861       .addImm(4)
1862       // Predicate.
1863       .addImm(ARMCC::AL)
1864       .addReg(0));
1866     OutStreamer.EmitInstruction(MCInstBuilder(ARM::LDRi12)
1867       .addReg(ARM::R7)
1868       .addReg(SrcReg)
1869       .addImm(0)
1870       // Predicate.
1871       .addImm(ARMCC::AL)
1872       .addReg(0));
1874     OutStreamer.EmitInstruction(MCInstBuilder(ARM::BX)
1875       .addReg(ScratchReg)
1876       // Predicate.
1877       .addImm(ARMCC::AL)
1878       .addReg(0));
1879     return;
1880   }
1881   case ARM::tInt_eh_sjlj_longjmp: {
1882     // ldr $scratch, [$src, #8]
1883     // mov sp, $scratch
1884     // ldr $scratch, [$src, #4]
1885     // ldr r7, [$src]
1886     // bx $scratch
1887     unsigned SrcReg = MI->getOperand(0).getReg();
1888     unsigned ScratchReg = MI->getOperand(1).getReg();
1889     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tLDRi)
1890       .addReg(ScratchReg)
1891       .addReg(SrcReg)
1892       // The offset immediate is #8. The operand value is scaled by 4 for the
1893       // tLDR instruction.
1894       .addImm(2)
1895       // Predicate.
1896       .addImm(ARMCC::AL)
1897       .addReg(0));
1899     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
1900       .addReg(ARM::SP)
1901       .addReg(ScratchReg)
1902       // Predicate.
1903       .addImm(ARMCC::AL)
1904       .addReg(0));
1906     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tLDRi)
1907       .addReg(ScratchReg)
1908       .addReg(SrcReg)
1909       .addImm(1)
1910       // Predicate.
1911       .addImm(ARMCC::AL)
1912       .addReg(0));
1914     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tLDRi)
1915       .addReg(ARM::R7)
1916       .addReg(SrcReg)
1917       .addImm(0)
1918       // Predicate.
1919       .addImm(ARMCC::AL)
1920       .addReg(0));
1922     OutStreamer.EmitInstruction(MCInstBuilder(ARM::tBX)
1923       .addReg(ScratchReg)
1924       // Predicate.
1925       .addImm(ARMCC::AL)
1926       .addReg(0));
1927     return;
1928   }
1929   }
1931   MCInst TmpInst;
1932   LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
1934   OutStreamer.EmitInstruction(TmpInst);
1937 //===----------------------------------------------------------------------===//
1938 // Target Registry Stuff
1939 //===----------------------------------------------------------------------===//
1941 // Force static initialization.
1942 extern "C" void LLVMInitializeARMAsmPrinter() {
1943   RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget);
1944   RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget);