]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - opencl/llvm.git/blob - lib/Target/PowerPC/PPCISelLowering.h
[PowerPC] Refactor setMinReservedArea and CalculateParameterAndLinkageAreaSize
[opencl/llvm.git] / lib / Target / PowerPC / PPCISelLowering.h
1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that PPC uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16 #define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
18 #include "PPC.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCRegisterInfo.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/Target/TargetLowering.h"
25 namespace llvm {
26   namespace PPCISD {
27     enum NodeType {
28       // Start the numbering where the builtin ops and target ops leave off.
29       FIRST_NUMBER = ISD::BUILTIN_OP_END,
31       /// FSEL - Traditional three-operand fsel node.
32       ///
33       FSEL,
35       /// FCFID - The FCFID instruction, taking an f64 operand and producing
36       /// and f64 value containing the FP representation of the integer that
37       /// was temporarily in the f64 operand.
38       FCFID,
40       /// Newer FCFID[US] integer-to-floating-point conversion instructions for
41       /// unsigned integers and single-precision outputs.
42       FCFIDU, FCFIDS, FCFIDUS,
44       /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
45       /// operand, producing an f64 value containing the integer representation
46       /// of that FP value.
47       FCTIDZ, FCTIWZ,
49       /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
50       /// unsigned integers.
51       FCTIDUZ, FCTIWUZ,
53       /// Reciprocal estimate instructions (unary FP ops).
54       FRE, FRSQRTE,
56       // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
57       // three v4f32 operands and producing a v4f32 result.
58       VMADDFP, VNMSUBFP,
60       /// VPERM - The PPC VPERM Instruction.
61       ///
62       VPERM,
64       /// Hi/Lo - These represent the high and low 16-bit parts of a global
65       /// address respectively.  These nodes have two operands, the first of
66       /// which must be a TargetGlobalAddress, and the second of which must be a
67       /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
68       /// though these are usually folded into other nodes.
69       Hi, Lo,
71       TOC_ENTRY,
73       /// The following two target-specific nodes are used for calls through
74       /// function pointers in the 64-bit SVR4 ABI.
76       /// Like a regular LOAD but additionally taking/producing a flag.
77       LOAD,
79       /// Like LOAD (taking/producing a flag), but using r2 as hard-coded
80       /// destination.
81       LOAD_TOC,
83       /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
84       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
85       /// compute an allocation on the stack.
86       DYNALLOC,
88       /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
89       /// at function entry, used for PIC code.
90       GlobalBaseReg,
92       /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
93       /// shift amounts.  These nodes are generated by the multi-precision shift
94       /// code.
95       SRL, SRA, SHL,
97       /// CALL - A direct function call.
98       /// CALL_NOP is a call with the special NOP which follows 64-bit
99       /// SVR4 calls.
100       CALL, CALL_NOP,
102       /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
103       /// MTCTR instruction.
104       MTCTR,
106       /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
107       /// BCTRL instruction.
108       BCTRL,
110       /// Return with a flag operand, matched by 'blr'
111       RET_FLAG,
113       /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
114       /// This copies the bits corresponding to the specified CRREG into the
115       /// resultant GPR.  Bits corresponding to other CR regs are undefined.
116       MFOCRF,
118       // FIXME: Remove these once the ANDI glue bug is fixed:
119       /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
120       /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
121       /// implement truncation of i32 or i64 to i1.
122       ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
124       // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
125       EH_SJLJ_SETJMP,
127       // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
128       EH_SJLJ_LONGJMP,
130       /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
131       /// instructions.  For lack of better number, we use the opcode number
132       /// encoding for the OPC field to identify the compare.  For example, 838
133       /// is VCMPGTSH.
134       VCMP,
136       /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
137       /// altivec VCMP*o instructions.  For lack of better number, we use the
138       /// opcode number encoding for the OPC field to identify the compare.  For
139       /// example, 838 is VCMPGTSH.
140       VCMPo,
142       /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
143       /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
144       /// condition register to branch on, OPC is the branch opcode to use (e.g.
145       /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
146       /// an optional input flag argument.
147       COND_BRANCH,
149       /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
150       /// loops.
151       BDNZ, BDZ,
153       /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
154       /// towards zero.  Used only as part of the long double-to-int
155       /// conversion sequence.
156       FADDRTZ,
158       /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
159       MFFS,
161       /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
162       /// reserve indexed. This is used to implement atomic operations.
163       LARX,
165       /// STCX = This corresponds to PPC stcx. instrcution: store conditional
166       /// indexed. This is used to implement atomic operations.
167       STCX,
169       /// TC_RETURN - A tail call return.
170       ///   operand #0 chain
171       ///   operand #1 callee (register or absolute)
172       ///   operand #2 stack adjustment
173       ///   operand #3 optional in flag
174       TC_RETURN,
176       /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
177       CR6SET,
178       CR6UNSET,
180       /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
181       /// on PPC32.
182       PPC32_GOT,
184       /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
185       /// TLS model, produces an ADDIS8 instruction that adds the GOT
186       /// base to sym\@got\@tprel\@ha.
187       ADDIS_GOT_TPREL_HA,
189       /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
190       /// TLS model, produces a LD instruction with base register G8RReg
191       /// and offset sym\@got\@tprel\@l.  This completes the addition that
192       /// finds the offset of "sym" relative to the thread pointer.
193       LD_GOT_TPREL_L,
195       /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
196       /// model, produces an ADD instruction that adds the contents of
197       /// G8RReg to the thread pointer.  Symbol contains a relocation
198       /// sym\@tls which is to be replaced by the thread pointer and
199       /// identifies to the linker that the instruction is part of a
200       /// TLS sequence.
201       ADD_TLS,
203       /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
204       /// model, produces an ADDIS8 instruction that adds the GOT base
205       /// register to sym\@got\@tlsgd\@ha.
206       ADDIS_TLSGD_HA,
208       /// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
209       /// model, produces an ADDI8 instruction that adds G8RReg to
210       /// sym\@got\@tlsgd\@l.
211       ADDI_TLSGD_L,
213       /// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
214       /// model, produces a call to __tls_get_addr(sym\@tlsgd).
215       GET_TLS_ADDR,
217       /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
218       /// model, produces an ADDIS8 instruction that adds the GOT base
219       /// register to sym\@got\@tlsld\@ha.
220       ADDIS_TLSLD_HA,
222       /// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
223       /// model, produces an ADDI8 instruction that adds G8RReg to
224       /// sym\@got\@tlsld\@l.
225       ADDI_TLSLD_L,
227       /// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
228       /// model, produces a call to __tls_get_addr(sym\@tlsld).
229       GET_TLSLD_ADDR,
231       /// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the
232       /// local-dynamic TLS model, produces an ADDIS8 instruction
233       /// that adds X3 to sym\@dtprel\@ha. The Chain operand is needed
234       /// to tie this in place following a copy to %X3 from the result
235       /// of a GET_TLSLD_ADDR.
236       ADDIS_DTPREL_HA,
238       /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
239       /// model, produces an ADDI8 instruction that adds G8RReg to
240       /// sym\@got\@dtprel\@l.
241       ADDI_DTPREL_L,
243       /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
244       /// during instruction selection to optimize a BUILD_VECTOR into
245       /// operations on splats.  This is necessary to avoid losing these
246       /// optimizations due to constant folding.
247       VADD_SPLAT,
249       /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
250       /// operand identifies the operating system entry point.
251       SC,
253       /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
254       /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
255       /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
256       /// i32.
257       STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
259       /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
260       /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
261       /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
262       /// or i32.
263       LBRX,
265       /// STFIWX - The STFIWX instruction.  The first operand is an input token
266       /// chain, then an f64 value to store, then an address to store it to.
267       STFIWX,
269       /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
270       /// load which sign-extends from a 32-bit integer value into the
271       /// destination 64-bit register.
272       LFIWAX,
274       /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
275       /// load which zero-extends from a 32-bit integer value into the
276       /// destination 64-bit register.
277       LFIWZX,
279       /// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium and large code model,
280       /// produces an ADDIS8 instruction that adds the TOC base register to
281       /// sym\@toc\@ha.
282       ADDIS_TOC_HA,
284       /// G8RC = LD_TOC_L Symbol, G8RReg - For medium and large code model,
285       /// produces a LD instruction with base register G8RReg and offset
286       /// sym\@toc\@l. Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
287       LD_TOC_L,
289       /// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
290       /// an ADDI8 instruction that adds G8RReg to sym\@toc\@l.
291       /// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
292       ADDI_TOC_L
293     };
294   }
296   /// Define some predicates that are used for node matching.
297   namespace PPC {
298     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
299     /// VPKUHUM instruction.
300     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary,
301                               SelectionDAG &DAG);
303     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
304     /// VPKUWUM instruction.
305     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary,
306                               SelectionDAG &DAG);
308     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
309     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
310     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
311                             bool isUnary, SelectionDAG &DAG);
313     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
314     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
315     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
316                             bool isUnary, SelectionDAG &DAG);
318     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
319     /// amount, otherwise return -1.
320     int isVSLDOIShuffleMask(SDNode *N, bool isUnary, SelectionDAG &DAG);
322     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
323     /// specifies a splat of a single element that is suitable for input to
324     /// VSPLTB/VSPLTH/VSPLTW.
325     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
327     /// isAllNegativeZeroVector - Returns true if all elements of build_vector
328     /// are -0.0.
329     bool isAllNegativeZeroVector(SDNode *N);
331     /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
332     /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
333     unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
335     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
336     /// formed by using a vspltis[bhw] instruction of the specified element
337     /// size, return the constant being splatted.  The ByteSize field indicates
338     /// the number of bytes of each element [124] -> [bhw].
339     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
340   }
342   class PPCSubtarget;
343   class PPCTargetLowering : public TargetLowering {
344     const PPCSubtarget &Subtarget;
346   public:
347     explicit PPCTargetLowering(PPCTargetMachine &TM);
349     /// getTargetNodeName() - This method returns the name of a target specific
350     /// DAG node.
351     const char *getTargetNodeName(unsigned Opcode) const override;
353     MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; }
355     /// getSetCCResultType - Return the ISD::SETCC ValueType
356     EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
358     /// getPreIndexedAddressParts - returns true by value, base pointer and
359     /// offset pointer and addressing mode by reference if the node's address
360     /// can be legally represented as pre-indexed load / store address.
361     bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
362                                    SDValue &Offset,
363                                    ISD::MemIndexedMode &AM,
364                                    SelectionDAG &DAG) const override;
366     /// SelectAddressRegReg - Given the specified addressed, check to see if it
367     /// can be represented as an indexed [r+r] operation.  Returns false if it
368     /// can be more efficiently represented with [r+imm].
369     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
370                              SelectionDAG &DAG) const;
372     /// SelectAddressRegImm - Returns true if the address N can be represented
373     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
374     /// is not better represented as reg+reg.  If Aligned is true, only accept
375     /// displacements suitable for STD and friends, i.e. multiples of 4.
376     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
377                              SelectionDAG &DAG, bool Aligned) const;
379     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
380     /// represented as an indexed [r+r] operation.
381     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
382                                  SelectionDAG &DAG) const;
384     Sched::Preference getSchedulingPreference(SDNode *N) const override;
386     /// LowerOperation - Provide custom lowering hooks for some operations.
387     ///
388     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
390     /// ReplaceNodeResults - Replace the results of node with an illegal result
391     /// type with new values built out of custom code.
392     ///
393     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
394                             SelectionDAG &DAG) const override;
396     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
398     unsigned getRegisterByName(const char* RegName, EVT VT) const override;
400     void computeKnownBitsForTargetNode(const SDValue Op,
401                                        APInt &KnownZero,
402                                        APInt &KnownOne,
403                                        const SelectionDAG &DAG,
404                                        unsigned Depth = 0) const override;
406     MachineBasicBlock *
407       EmitInstrWithCustomInserter(MachineInstr *MI,
408                                   MachineBasicBlock *MBB) const override;
409     MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
410                                         MachineBasicBlock *MBB, bool is64Bit,
411                                         unsigned BinOpcode) const;
412     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
413                                                 MachineBasicBlock *MBB,
414                                             bool is8bit, unsigned Opcode) const;
416     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
417                                         MachineBasicBlock *MBB) const;
419     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
420                                          MachineBasicBlock *MBB) const;
422     ConstraintType
423     getConstraintType(const std::string &Constraint) const override;
425     /// Examine constraint string and operand type and determine a weight value.
426     /// The operand object must already have been set up with the operand type.
427     ConstraintWeight getSingleConstraintMatchWeight(
428       AsmOperandInfo &info, const char *constraint) const override;
430     std::pair<unsigned, const TargetRegisterClass*>
431       getRegForInlineAsmConstraint(const std::string &Constraint,
432                                    MVT VT) const override;
434     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
435     /// function arguments in the caller parameter area.  This is the actual
436     /// alignment, not its logarithm.
437     unsigned getByValTypeAlignment(Type *Ty) const override;
439     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
440     /// vector.  If it is invalid, don't add anything to Ops.
441     void LowerAsmOperandForConstraint(SDValue Op,
442                                       std::string &Constraint,
443                                       std::vector<SDValue> &Ops,
444                                       SelectionDAG &DAG) const override;
446     /// isLegalAddressingMode - Return true if the addressing mode represented
447     /// by AM is legal for this target, for a load/store of the specified type.
448     bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
450     /// isLegalICmpImmediate - Return true if the specified immediate is legal
451     /// icmp immediate, that is the target has icmp instructions which can
452     /// compare a register against the immediate without having to materialize
453     /// the immediate into a register.
454     bool isLegalICmpImmediate(int64_t Imm) const override;
456     /// isLegalAddImmediate - Return true if the specified immediate is legal
457     /// add immediate, that is the target has add instructions which can
458     /// add a register and the immediate without having to materialize
459     /// the immediate into a register.
460     bool isLegalAddImmediate(int64_t Imm) const override;
462     /// isTruncateFree - Return true if it's free to truncate a value of
463     /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
464     /// register X1 to i32 by referencing its sub-register R1.
465     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
466     bool isTruncateFree(EVT VT1, EVT VT2) const override;
468     /// \brief Returns true if it is beneficial to convert a load of a constant
469     /// to just the constant itself.
470     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
471                                            Type *Ty) const override;
473     bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
475     /// getOptimalMemOpType - Returns the target specific optimal type for load
476     /// and store operations as a result of memset, memcpy, and memmove
477     /// lowering. If DstAlign is zero that means it's safe to destination
478     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
479     /// means there isn't a need to check it against alignment requirement,
480     /// probably because the source does not need to be loaded. If 'IsMemset' is
481     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
482     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
483     /// source is constant so it does not need to be loaded.
484     /// It returns EVT::Other if the type should be determined using generic
485     /// target-independent logic.
486     EVT
487     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
488                         bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
489                         MachineFunction &MF) const override;
491     /// Is unaligned memory access allowed for the given type, and is it fast
492     /// relative to software emulation.
493     bool allowsUnalignedMemoryAccesses(EVT VT,
494                                        unsigned AddrSpace,
495                                        bool *Fast = nullptr) const override;
497     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
498     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
499     /// expanded to FMAs when this method returns true, otherwise fmuladd is
500     /// expanded to fmul + fadd.
501     bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
503     // Should we expand the build vector with shuffles?
504     bool
505     shouldExpandBuildVectorWithShuffles(EVT VT,
506                                         unsigned DefinedValues) const override;
508     /// createFastISel - This method returns a target-specific FastISel object,
509     /// or null if the target does not support "fast" instruction selection.
510     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
511                              const TargetLibraryInfo *LibInfo) const override;
513   private:
514     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
515     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
517     bool
518     IsEligibleForTailCallOptimization(SDValue Callee,
519                                       CallingConv::ID CalleeCC,
520                                       bool isVarArg,
521                                       const SmallVectorImpl<ISD::InputArg> &Ins,
522                                       SelectionDAG& DAG) const;
524     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
525                                          int SPDiff,
526                                          SDValue Chain,
527                                          SDValue &LROpOut,
528                                          SDValue &FPOpOut,
529                                          bool isDarwinABI,
530                                          SDLoc dl) const;
532     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
533     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
534     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
535     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
536     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
537     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
538     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
539     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
540     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
541     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
542     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
543                          const PPCSubtarget &Subtarget) const;
544     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
545                        const PPCSubtarget &Subtarget) const;
546     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG,
547                         const PPCSubtarget &Subtarget) const;
548     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
549                                 const PPCSubtarget &Subtarget) const;
550     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
551                                       const PPCSubtarget &Subtarget) const;
552     SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
553     SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
554     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
555     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
556     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, SDLoc dl) const;
557     SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
558     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
559     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
560     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
561     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
562     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
563     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
564     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
565     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
566     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
567     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
569     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
570                             CallingConv::ID CallConv, bool isVarArg,
571                             const SmallVectorImpl<ISD::InputArg> &Ins,
572                             SDLoc dl, SelectionDAG &DAG,
573                             SmallVectorImpl<SDValue> &InVals) const;
574     SDValue FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall,
575                        bool isVarArg,
576                        SelectionDAG &DAG,
577                        SmallVector<std::pair<unsigned, SDValue>, 8>
578                          &RegsToPass,
579                        SDValue InFlag, SDValue Chain,
580                        SDValue &Callee,
581                        int SPDiff, unsigned NumBytes,
582                        const SmallVectorImpl<ISD::InputArg> &Ins,
583                        SmallVectorImpl<SDValue> &InVals) const;
585     SDValue
586       LowerFormalArguments(SDValue Chain,
587                            CallingConv::ID CallConv, bool isVarArg,
588                            const SmallVectorImpl<ISD::InputArg> &Ins,
589                            SDLoc dl, SelectionDAG &DAG,
590                            SmallVectorImpl<SDValue> &InVals) const override;
592     SDValue
593       LowerCall(TargetLowering::CallLoweringInfo &CLI,
594                 SmallVectorImpl<SDValue> &InVals) const override;
596     bool
597       CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
598                    bool isVarArg,
599                    const SmallVectorImpl<ISD::OutputArg> &Outs,
600                    LLVMContext &Context) const override;
602     SDValue
603       LowerReturn(SDValue Chain,
604                   CallingConv::ID CallConv, bool isVarArg,
605                   const SmallVectorImpl<ISD::OutputArg> &Outs,
606                   const SmallVectorImpl<SDValue> &OutVals,
607                   SDLoc dl, SelectionDAG &DAG) const override;
609     SDValue
610       extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
611                         SDValue ArgVal, SDLoc dl) const;
613     SDValue
614       LowerFormalArguments_Darwin(SDValue Chain,
615                                   CallingConv::ID CallConv, bool isVarArg,
616                                   const SmallVectorImpl<ISD::InputArg> &Ins,
617                                   SDLoc dl, SelectionDAG &DAG,
618                                   SmallVectorImpl<SDValue> &InVals) const;
619     SDValue
620       LowerFormalArguments_64SVR4(SDValue Chain,
621                                   CallingConv::ID CallConv, bool isVarArg,
622                                   const SmallVectorImpl<ISD::InputArg> &Ins,
623                                   SDLoc dl, SelectionDAG &DAG,
624                                   SmallVectorImpl<SDValue> &InVals) const;
625     SDValue
626       LowerFormalArguments_32SVR4(SDValue Chain,
627                                   CallingConv::ID CallConv, bool isVarArg,
628                                   const SmallVectorImpl<ISD::InputArg> &Ins,
629                                   SDLoc dl, SelectionDAG &DAG,
630                                   SmallVectorImpl<SDValue> &InVals) const;
632     SDValue
633       createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
634                                  SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
635                                  SelectionDAG &DAG, SDLoc dl) const;
637     SDValue
638       LowerCall_Darwin(SDValue Chain, SDValue Callee,
639                        CallingConv::ID CallConv,
640                        bool isVarArg, bool isTailCall,
641                        const SmallVectorImpl<ISD::OutputArg> &Outs,
642                        const SmallVectorImpl<SDValue> &OutVals,
643                        const SmallVectorImpl<ISD::InputArg> &Ins,
644                        SDLoc dl, SelectionDAG &DAG,
645                        SmallVectorImpl<SDValue> &InVals) const;
646     SDValue
647       LowerCall_64SVR4(SDValue Chain, SDValue Callee,
648                        CallingConv::ID CallConv,
649                        bool isVarArg, bool isTailCall,
650                        const SmallVectorImpl<ISD::OutputArg> &Outs,
651                        const SmallVectorImpl<SDValue> &OutVals,
652                        const SmallVectorImpl<ISD::InputArg> &Ins,
653                        SDLoc dl, SelectionDAG &DAG,
654                        SmallVectorImpl<SDValue> &InVals) const;
655     SDValue
656     LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
657                      bool isVarArg, bool isTailCall,
658                      const SmallVectorImpl<ISD::OutputArg> &Outs,
659                      const SmallVectorImpl<SDValue> &OutVals,
660                      const SmallVectorImpl<ISD::InputArg> &Ins,
661                      SDLoc dl, SelectionDAG &DAG,
662                      SmallVectorImpl<SDValue> &InVals) const;
664     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
665     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
667     SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
668     SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
669     SDValue DAGCombineFastRecip(SDValue Op, DAGCombinerInfo &DCI) const;
670     SDValue DAGCombineFastRecipFSQRT(SDValue Op, DAGCombinerInfo &DCI) const;
672     CCAssignFn *useFastISelCCs(unsigned Flag) const;
673   };
675   namespace PPC {
676     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
677                              const TargetLibraryInfo *LibInfo);
678   }
680   bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
681                                   CCValAssign::LocInfo &LocInfo,
682                                   ISD::ArgFlagsTy &ArgFlags,
683                                   CCState &State);
685   bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
686                                          MVT &LocVT,
687                                          CCValAssign::LocInfo &LocInfo,
688                                          ISD::ArgFlagsTy &ArgFlags,
689                                          CCState &State);
691   bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
692                                            MVT &LocVT,
693                                            CCValAssign::LocInfo &LocInfo,
694                                            ISD::ArgFlagsTy &ArgFlags,
695                                            CCState &State);
698 #endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H