For llvm-objdump, hook up existing options to work when using -macho (the Mach-O...
[opencl/llvm.git] / tools / llvm-objdump / COFFDump.cpp
1 //===-- COFFDump.cpp - COFF-specific dumper ---------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief This file implements the COFF-specific dumper for llvm-objdump.
12 /// It outputs the Win64 EH data structures as plain text.
13 /// The encoding of the unwind codes is described in MSDN:
14 /// http://msdn.microsoft.com/en-us/library/ck9asaa9.aspx
15 ///
16 //===----------------------------------------------------------------------===//
18 #include "llvm-objdump.h"
19 #include "llvm/Object/COFF.h"
20 #include "llvm/Object/ObjectFile.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/SourceMgr.h"
23 #include "llvm/Support/Win64EH.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include <algorithm>
26 #include <cstring>
27 #include <system_error>
29 using namespace llvm;
30 using namespace object;
31 using namespace llvm::Win64EH;
33 // Returns the name of the unwind code.
34 static StringRef getUnwindCodeTypeName(uint8_t Code) {
35   switch(Code) {
36   default: llvm_unreachable("Invalid unwind code");
37   case UOP_PushNonVol: return "UOP_PushNonVol";
38   case UOP_AllocLarge: return "UOP_AllocLarge";
39   case UOP_AllocSmall: return "UOP_AllocSmall";
40   case UOP_SetFPReg: return "UOP_SetFPReg";
41   case UOP_SaveNonVol: return "UOP_SaveNonVol";
42   case UOP_SaveNonVolBig: return "UOP_SaveNonVolBig";
43   case UOP_SaveXMM128: return "UOP_SaveXMM128";
44   case UOP_SaveXMM128Big: return "UOP_SaveXMM128Big";
45   case UOP_PushMachFrame: return "UOP_PushMachFrame";
46   }
47 }
49 // Returns the name of a referenced register.
50 static StringRef getUnwindRegisterName(uint8_t Reg) {
51   switch(Reg) {
52   default: llvm_unreachable("Invalid register");
53   case 0: return "RAX";
54   case 1: return "RCX";
55   case 2: return "RDX";
56   case 3: return "RBX";
57   case 4: return "RSP";
58   case 5: return "RBP";
59   case 6: return "RSI";
60   case 7: return "RDI";
61   case 8: return "R8";
62   case 9: return "R9";
63   case 10: return "R10";
64   case 11: return "R11";
65   case 12: return "R12";
66   case 13: return "R13";
67   case 14: return "R14";
68   case 15: return "R15";
69   }
70 }
72 // Calculates the number of array slots required for the unwind code.
73 static unsigned getNumUsedSlots(const UnwindCode &UnwindCode) {
74   switch (UnwindCode.getUnwindOp()) {
75   default: llvm_unreachable("Invalid unwind code");
76   case UOP_PushNonVol:
77   case UOP_AllocSmall:
78   case UOP_SetFPReg:
79   case UOP_PushMachFrame:
80     return 1;
81   case UOP_SaveNonVol:
82   case UOP_SaveXMM128:
83     return 2;
84   case UOP_SaveNonVolBig:
85   case UOP_SaveXMM128Big:
86     return 3;
87   case UOP_AllocLarge:
88     return (UnwindCode.getOpInfo() == 0) ? 2 : 3;
89   }
90 }
92 // Prints one unwind code. Because an unwind code can occupy up to 3 slots in
93 // the unwind codes array, this function requires that the correct number of
94 // slots is provided.
95 static void printUnwindCode(ArrayRef<UnwindCode> UCs) {
96   assert(UCs.size() >= getNumUsedSlots(UCs[0]));
97   outs() <<  format("      0x%02x: ", unsigned(UCs[0].u.CodeOffset))
98          << getUnwindCodeTypeName(UCs[0].getUnwindOp());
99   switch (UCs[0].getUnwindOp()) {
100   case UOP_PushNonVol:
101     outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo());
102     break;
103   case UOP_AllocLarge:
104     if (UCs[0].getOpInfo() == 0) {
105       outs() << " " << UCs[1].FrameOffset;
106     } else {
107       outs() << " " << UCs[1].FrameOffset
108                        + (static_cast<uint32_t>(UCs[2].FrameOffset) << 16);
109     }
110     break;
111   case UOP_AllocSmall:
112     outs() << " " << ((UCs[0].getOpInfo() + 1) * 8);
113     break;
114   case UOP_SetFPReg:
115     outs() << " ";
116     break;
117   case UOP_SaveNonVol:
118     outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo())
119            << format(" [0x%04x]", 8 * UCs[1].FrameOffset);
120     break;
121   case UOP_SaveNonVolBig:
122     outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo())
123            << format(" [0x%08x]", UCs[1].FrameOffset
124                     + (static_cast<uint32_t>(UCs[2].FrameOffset) << 16));
125     break;
126   case UOP_SaveXMM128:
127     outs() << " XMM" << static_cast<uint32_t>(UCs[0].getOpInfo())
128            << format(" [0x%04x]", 16 * UCs[1].FrameOffset);
129     break;
130   case UOP_SaveXMM128Big:
131     outs() << " XMM" << UCs[0].getOpInfo()
132            << format(" [0x%08x]", UCs[1].FrameOffset
133                            + (static_cast<uint32_t>(UCs[2].FrameOffset) << 16));
134     break;
135   case UOP_PushMachFrame:
136     outs() << " " << (UCs[0].getOpInfo() ? "w/o" : "w")
137            << " error code";
138     break;
139   }
140   outs() << "\n";
143 static void printAllUnwindCodes(ArrayRef<UnwindCode> UCs) {
144   for (const UnwindCode *I = UCs.begin(), *E = UCs.end(); I < E; ) {
145     unsigned UsedSlots = getNumUsedSlots(*I);
146     if (UsedSlots > UCs.size()) {
147       outs() << "Unwind data corrupted: Encountered unwind op "
148              << getUnwindCodeTypeName((*I).getUnwindOp())
149              << " which requires " << UsedSlots
150              << " slots, but only " << UCs.size()
151              << " remaining in buffer";
152       return ;
153     }
154     printUnwindCode(ArrayRef<UnwindCode>(I, E));
155     I += UsedSlots;
156   }
159 // Given a symbol sym this functions returns the address and section of it.
160 static std::error_code
161 resolveSectionAndAddress(const COFFObjectFile *Obj, const SymbolRef &Sym,
162                          const coff_section *&ResolvedSection,
163                          uint64_t &ResolvedAddr) {
164   if (std::error_code EC = Sym.getAddress(ResolvedAddr))
165     return EC;
166   section_iterator iter(Obj->section_begin());
167   if (std::error_code EC = Sym.getSection(iter))
168     return EC;
169   ResolvedSection = Obj->getCOFFSection(*iter);
170   return object_error::success;
173 // Given a vector of relocations for a section and an offset into this section
174 // the function returns the symbol used for the relocation at the offset.
175 static std::error_code resolveSymbol(const std::vector<RelocationRef> &Rels,
176                                      uint64_t Offset, SymbolRef &Sym) {
177   for (std::vector<RelocationRef>::const_iterator I = Rels.begin(),
178                                                   E = Rels.end();
179                                                   I != E; ++I) {
180     uint64_t Ofs;
181     if (std::error_code EC = I->getOffset(Ofs))
182       return EC;
183     if (Ofs == Offset) {
184       Sym = *I->getSymbol();
185       return object_error::success;
186     }
187   }
188   return object_error::parse_failed;
191 // Given a vector of relocations for a section and an offset into this section
192 // the function resolves the symbol used for the relocation at the offset and
193 // returns the section content and the address inside the content pointed to
194 // by the symbol.
195 static std::error_code
196 getSectionContents(const COFFObjectFile *Obj,
197                    const std::vector<RelocationRef> &Rels, uint64_t Offset,
198                    ArrayRef<uint8_t> &Contents, uint64_t &Addr) {
199   SymbolRef Sym;
200   if (std::error_code EC = resolveSymbol(Rels, Offset, Sym))
201     return EC;
202   const coff_section *Section;
203   if (std::error_code EC = resolveSectionAndAddress(Obj, Sym, Section, Addr))
204     return EC;
205   if (std::error_code EC = Obj->getSectionContents(Section, Contents))
206     return EC;
207   return object_error::success;
210 // Given a vector of relocations for a section and an offset into this section
211 // the function returns the name of the symbol used for the relocation at the
212 // offset.
213 static std::error_code resolveSymbolName(const std::vector<RelocationRef> &Rels,
214                                          uint64_t Offset, StringRef &Name) {
215   SymbolRef Sym;
216   if (std::error_code EC = resolveSymbol(Rels, Offset, Sym))
217     return EC;
218   if (std::error_code EC = Sym.getName(Name))
219     return EC;
220   return object_error::success;
223 static void printCOFFSymbolAddress(llvm::raw_ostream &Out,
224                                    const std::vector<RelocationRef> &Rels,
225                                    uint64_t Offset, uint32_t Disp) {
226   StringRef Sym;
227   if (!resolveSymbolName(Rels, Offset, Sym)) {
228     Out << Sym;
229     if (Disp > 0)
230       Out << format(" + 0x%04x", Disp);
231   } else {
232     Out << format("0x%04x", Disp);
233   }
236 static void
237 printSEHTable(const COFFObjectFile *Obj, uint32_t TableVA, int Count) {
238   if (Count == 0)
239     return;
241   const pe32_header *PE32Header;
242   if (error(Obj->getPE32Header(PE32Header)))
243     return;
244   uint32_t ImageBase = PE32Header->ImageBase;
245   uintptr_t IntPtr = 0;
246   if (error(Obj->getVaPtr(TableVA, IntPtr)))
247     return;
248   const support::ulittle32_t *P = (const support::ulittle32_t *)IntPtr;
249   outs() << "SEH Table:";
250   for (int I = 0; I < Count; ++I)
251     outs() << format(" 0x%x", P[I] + ImageBase);
252   outs() << "\n\n";
255 static void printLoadConfiguration(const COFFObjectFile *Obj) {
256   // Skip if it's not executable.
257   const pe32_header *PE32Header;
258   if (error(Obj->getPE32Header(PE32Header)))
259     return;
260   if (!PE32Header)
261     return;
263   // Currently only x86 is supported
264   if (Obj->getMachine() != COFF::IMAGE_FILE_MACHINE_I386)
265     return;
267   const data_directory *DataDir;
268   if (error(Obj->getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataDir)))
269     return;
270   uintptr_t IntPtr = 0;
271   if (DataDir->RelativeVirtualAddress == 0)
272     return;
273   if (error(Obj->getRvaPtr(DataDir->RelativeVirtualAddress, IntPtr)))
274     return;
276   auto *LoadConf = reinterpret_cast<const coff_load_configuration32 *>(IntPtr);
277   outs() << "Load configuration:"
278          << "\n  Timestamp: " << LoadConf->TimeDateStamp
279          << "\n  Major Version: " << LoadConf->MajorVersion
280          << "\n  Minor Version: " << LoadConf->MinorVersion
281          << "\n  GlobalFlags Clear: " << LoadConf->GlobalFlagsClear
282          << "\n  GlobalFlags Set: " << LoadConf->GlobalFlagsSet
283          << "\n  Critical Section Default Timeout: " << LoadConf->CriticalSectionDefaultTimeout
284          << "\n  Decommit Free Block Threshold: " << LoadConf->DeCommitFreeBlockThreshold
285          << "\n  Decommit Total Free Threshold: " << LoadConf->DeCommitTotalFreeThreshold
286          << "\n  Lock Prefix Table: " << LoadConf->LockPrefixTable
287          << "\n  Maximum Allocation Size: " << LoadConf->MaximumAllocationSize
288          << "\n  Virtual Memory Threshold: " << LoadConf->VirtualMemoryThreshold
289          << "\n  Process Affinity Mask: " << LoadConf->ProcessAffinityMask
290          << "\n  Process Heap Flags: " << LoadConf->ProcessHeapFlags
291          << "\n  CSD Version: " << LoadConf->CSDVersion
292          << "\n  Security Cookie: " << LoadConf->SecurityCookie
293          << "\n  SEH Table: " << LoadConf->SEHandlerTable
294          << "\n  SEH Count: " << LoadConf->SEHandlerCount
295          << "\n\n";
296   printSEHTable(Obj, LoadConf->SEHandlerTable, LoadConf->SEHandlerCount);
297   outs() << "\n";
300 // Prints import tables. The import table is a table containing the list of
301 // DLL name and symbol names which will be linked by the loader.
302 static void printImportTables(const COFFObjectFile *Obj) {
303   import_directory_iterator I = Obj->import_directory_begin();
304   import_directory_iterator E = Obj->import_directory_end();
305   if (I == E)
306     return;
307   outs() << "The Import Tables:\n";
308   for (; I != E; I = ++I) {
309     const import_directory_table_entry *Dir;
310     StringRef Name;
311     if (I->getImportTableEntry(Dir)) return;
312     if (I->getName(Name)) return;
314     outs() << format("  lookup %08x time %08x fwd %08x name %08x addr %08x\n\n",
315                      static_cast<uint32_t>(Dir->ImportLookupTableRVA),
316                      static_cast<uint32_t>(Dir->TimeDateStamp),
317                      static_cast<uint32_t>(Dir->ForwarderChain),
318                      static_cast<uint32_t>(Dir->NameRVA),
319                      static_cast<uint32_t>(Dir->ImportAddressTableRVA));
320     outs() << "    DLL Name: " << Name << "\n";
321     outs() << "    Hint/Ord  Name\n";
322     const import_lookup_table_entry32 *entry;
323     if (I->getImportLookupEntry(entry))
324       return;
325     for (; entry->Data; ++entry) {
326       if (entry->isOrdinal()) {
327         outs() << format("      % 6d\n", entry->getOrdinal());
328         continue;
329       }
330       uint16_t Hint;
331       StringRef Name;
332       if (Obj->getHintName(entry->getHintNameRVA(), Hint, Name))
333         return;
334       outs() << format("      % 6d  ", Hint) << Name << "\n";
335     }
336     outs() << "\n";
337   }
340 // Prints export tables. The export table is a table containing the list of
341 // exported symbol from the DLL.
342 static void printExportTable(const COFFObjectFile *Obj) {
343   outs() << "Export Table:\n";
344   export_directory_iterator I = Obj->export_directory_begin();
345   export_directory_iterator E = Obj->export_directory_end();
346   if (I == E)
347     return;
348   StringRef DllName;
349   uint32_t OrdinalBase;
350   if (I->getDllName(DllName))
351     return;
352   if (I->getOrdinalBase(OrdinalBase))
353     return;
354   outs() << " DLL name: " << DllName << "\n";
355   outs() << " Ordinal base: " << OrdinalBase << "\n";
356   outs() << " Ordinal      RVA  Name\n";
357   for (; I != E; I = ++I) {
358     uint32_t Ordinal;
359     if (I->getOrdinal(Ordinal))
360       return;
361     uint32_t RVA;
362     if (I->getExportRVA(RVA))
363       return;
364     outs() << format("    % 4d %# 8x", Ordinal, RVA);
366     StringRef Name;
367     if (I->getSymbolName(Name))
368       continue;
369     if (!Name.empty())
370       outs() << "  " << Name;
371     outs() << "\n";
372   }
375 // Given the COFF object file, this function returns the relocations for .pdata
376 // and the pointer to "runtime function" structs.
377 static bool getPDataSection(const COFFObjectFile *Obj,
378                             std::vector<RelocationRef> &Rels,
379                             const RuntimeFunction *&RFStart, int &NumRFs) {
380   for (const SectionRef &Section : Obj->sections()) {
381     StringRef Name;
382     if (error(Section.getName(Name)))
383       continue;
384     if (Name != ".pdata")
385       continue;
387     const coff_section *Pdata = Obj->getCOFFSection(Section);
388     for (const RelocationRef &Reloc : Section.relocations())
389       Rels.push_back(Reloc);
391     // Sort relocations by address.
392     std::sort(Rels.begin(), Rels.end(), RelocAddressLess);
394     ArrayRef<uint8_t> Contents;
395     if (error(Obj->getSectionContents(Pdata, Contents)))
396       continue;
397     if (Contents.empty())
398       continue;
400     RFStart = reinterpret_cast<const RuntimeFunction *>(Contents.data());
401     NumRFs = Contents.size() / sizeof(RuntimeFunction);
402     return true;
403   }
404   return false;
407 static void printWin64EHUnwindInfo(const Win64EH::UnwindInfo *UI) {
408   // The casts to int are required in order to output the value as number.
409   // Without the casts the value would be interpreted as char data (which
410   // results in garbage output).
411   outs() << "    Version: " << static_cast<int>(UI->getVersion()) << "\n";
412   outs() << "    Flags: " << static_cast<int>(UI->getFlags());
413   if (UI->getFlags()) {
414     if (UI->getFlags() & UNW_ExceptionHandler)
415       outs() << " UNW_ExceptionHandler";
416     if (UI->getFlags() & UNW_TerminateHandler)
417       outs() << " UNW_TerminateHandler";
418     if (UI->getFlags() & UNW_ChainInfo)
419       outs() << " UNW_ChainInfo";
420   }
421   outs() << "\n";
422   outs() << "    Size of prolog: " << static_cast<int>(UI->PrologSize) << "\n";
423   outs() << "    Number of Codes: " << static_cast<int>(UI->NumCodes) << "\n";
424   // Maybe this should move to output of UOP_SetFPReg?
425   if (UI->getFrameRegister()) {
426     outs() << "    Frame register: "
427            << getUnwindRegisterName(UI->getFrameRegister()) << "\n";
428     outs() << "    Frame offset: " << 16 * UI->getFrameOffset() << "\n";
429   } else {
430     outs() << "    No frame pointer used\n";
431   }
432   if (UI->getFlags() & (UNW_ExceptionHandler | UNW_TerminateHandler)) {
433     // FIXME: Output exception handler data
434   } else if (UI->getFlags() & UNW_ChainInfo) {
435     // FIXME: Output chained unwind info
436   }
438   if (UI->NumCodes)
439     outs() << "    Unwind Codes:\n";
441   printAllUnwindCodes(ArrayRef<UnwindCode>(&UI->UnwindCodes[0], UI->NumCodes));
443   outs() << "\n";
444   outs().flush();
447 /// Prints out the given RuntimeFunction struct for x64, assuming that Obj is
448 /// pointing to an executable file.
449 static void printRuntimeFunction(const COFFObjectFile *Obj,
450                                  const RuntimeFunction &RF) {
451   if (!RF.StartAddress)
452     return;
453   outs() << "Function Table:\n"
454          << format("  Start Address: 0x%04x\n",
455                    static_cast<uint32_t>(RF.StartAddress))
456          << format("  End Address: 0x%04x\n",
457                    static_cast<uint32_t>(RF.EndAddress))
458          << format("  Unwind Info Address: 0x%04x\n",
459                    static_cast<uint32_t>(RF.UnwindInfoOffset));
460   uintptr_t addr;
461   if (Obj->getRvaPtr(RF.UnwindInfoOffset, addr))
462     return;
463   printWin64EHUnwindInfo(reinterpret_cast<const Win64EH::UnwindInfo *>(addr));
466 /// Prints out the given RuntimeFunction struct for x64, assuming that Obj is
467 /// pointing to an object file. Unlike executable, fields in RuntimeFunction
468 /// struct are filled with zeros, but instead there are relocations pointing to
469 /// them so that the linker will fill targets' RVAs to the fields at link
470 /// time. This function interprets the relocations to find the data to be used
471 /// in the resulting executable.
472 static void printRuntimeFunctionRels(const COFFObjectFile *Obj,
473                                      const RuntimeFunction &RF,
474                                      uint64_t SectionOffset,
475                                      const std::vector<RelocationRef> &Rels) {
476   outs() << "Function Table:\n";
477   outs() << "  Start Address: ";
478   printCOFFSymbolAddress(outs(), Rels,
479                          SectionOffset +
480                              /*offsetof(RuntimeFunction, StartAddress)*/ 0,
481                          RF.StartAddress);
482   outs() << "\n";
484   outs() << "  End Address: ";
485   printCOFFSymbolAddress(outs(), Rels,
486                          SectionOffset +
487                              /*offsetof(RuntimeFunction, EndAddress)*/ 4,
488                          RF.EndAddress);
489   outs() << "\n";
491   outs() << "  Unwind Info Address: ";
492   printCOFFSymbolAddress(outs(), Rels,
493                          SectionOffset +
494                              /*offsetof(RuntimeFunction, UnwindInfoOffset)*/ 8,
495                          RF.UnwindInfoOffset);
496   outs() << "\n";
498   ArrayRef<uint8_t> XContents;
499   uint64_t UnwindInfoOffset = 0;
500   if (error(getSectionContents(
501           Obj, Rels, SectionOffset +
502                          /*offsetof(RuntimeFunction, UnwindInfoOffset)*/ 8,
503           XContents, UnwindInfoOffset)))
504     return;
505   if (XContents.empty())
506     return;
508   UnwindInfoOffset += RF.UnwindInfoOffset;
509   if (UnwindInfoOffset > XContents.size())
510     return;
512   auto *UI = reinterpret_cast<const Win64EH::UnwindInfo *>(XContents.data() +
513                                                            UnwindInfoOffset);
514   printWin64EHUnwindInfo(UI);
517 void llvm::printCOFFUnwindInfo(const COFFObjectFile *Obj) {
518   if (Obj->getMachine() != COFF::IMAGE_FILE_MACHINE_AMD64) {
519     errs() << "Unsupported image machine type "
520               "(currently only AMD64 is supported).\n";
521     return;
522   }
524   std::vector<RelocationRef> Rels;
525   const RuntimeFunction *RFStart;
526   int NumRFs;
527   if (!getPDataSection(Obj, Rels, RFStart, NumRFs))
528     return;
529   ArrayRef<RuntimeFunction> RFs(RFStart, NumRFs);
531   bool IsExecutable = Rels.empty();
532   if (IsExecutable) {
533     for (const RuntimeFunction &RF : RFs)
534       printRuntimeFunction(Obj, RF);
535     return;
536   }
538   for (const RuntimeFunction &RF : RFs) {
539     uint64_t SectionOffset =
540         std::distance(RFs.begin(), &RF) * sizeof(RuntimeFunction);
541     printRuntimeFunctionRels(Obj, RF, SectionOffset, Rels);
542   }
545 void llvm::printCOFFFileHeader(const object::ObjectFile *Obj) {
546   const COFFObjectFile *file = dyn_cast<const COFFObjectFile>(Obj);
547   printLoadConfiguration(file);
548   printImportTables(file);
549   printExportTable(file);