//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "lcg" #include "llvm/Analysis/LazyCallGraph.h" #include "llvm/ADT/STLExtras.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PassManager.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; static void findCallees( SmallVectorImpl &Worklist, SmallPtrSetImpl &Visited, SmallVectorImpl> &Callees, SmallPtrSetImpl &CalleeSet) { while (!Worklist.empty()) { Constant *C = Worklist.pop_back_val(); if (Function *F = dyn_cast(C)) { // Note that we consider *any* function with a definition to be a viable // edge. Even if the function's definition is subject to replacement by // some other module (say, a weak definition) there may still be // optimizations which essentially speculate based on the definition and // a way to check that the specific definition is in fact the one being // used. For example, this could be done by moving the weak definition to // a strong (internal) definition and making the weak definition be an // alias. Then a test of the address of the weak function against the new // strong definition's address would be an effective way to determine the // safety of optimizing a direct call edge. if (!F->isDeclaration() && CalleeSet.insert(F)) { DEBUG(dbgs() << " Added callable function: " << F->getName() << "\n"); Callees.push_back(F); } continue; } for (Value *Op : C->operand_values()) if (Visited.insert(cast(Op))) Worklist.push_back(cast(Op)); } } LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) : G(&G), F(F), DFSNumber(0), LowLink(0) { DEBUG(dbgs() << " Adding functions called by '" << F.getName() << "' to the graph.\n"); SmallVector Worklist; SmallPtrSet Visited; // Find all the potential callees in this function. First walk the // instructions and add every operand which is a constant to the worklist. for (BasicBlock &BB : F) for (Instruction &I : BB) for (Value *Op : I.operand_values()) if (Constant *C = dyn_cast(Op)) if (Visited.insert(C)) Worklist.push_back(C); // We've collected all the constant (and thus potentially function or // function containing) operands to all of the instructions in the function. // Process them (recursively) collecting every function found. findCallees(Worklist, Visited, Callees, CalleeSet); } LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) { DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() << "\n"); for (Function &F : M) if (!F.isDeclaration() && !F.hasLocalLinkage()) if (EntryNodeSet.insert(&F)) { DEBUG(dbgs() << " Adding '" << F.getName() << "' to entry set of the graph.\n"); EntryNodes.push_back(&F); } // Now add entry nodes for functions reachable via initializers to globals. SmallVector Worklist; SmallPtrSet Visited; for (GlobalVariable &GV : M.globals()) if (GV.hasInitializer()) if (Visited.insert(GV.getInitializer())) Worklist.push_back(GV.getInitializer()); DEBUG(dbgs() << " Adding functions referenced by global initializers to the " "entry set.\n"); findCallees(Worklist, Visited, EntryNodes, EntryNodeSet); for (auto &Entry : EntryNodes) if (Function *F = Entry.dyn_cast()) SCCEntryNodes.insert(F); else SCCEntryNodes.insert(&Entry.get()->getFunction()); } LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), EntryNodes(std::move(G.EntryNodes)), EntryNodeSet(std::move(G.EntryNodeSet)), SCCBPA(std::move(G.SCCBPA)), SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)), DFSStack(std::move(G.DFSStack)), SCCEntryNodes(std::move(G.SCCEntryNodes)), NextDFSNumber(G.NextDFSNumber) { updateGraphPtrs(); } LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { BPA = std::move(G.BPA); NodeMap = std::move(G.NodeMap); EntryNodes = std::move(G.EntryNodes); EntryNodeSet = std::move(G.EntryNodeSet); SCCBPA = std::move(G.SCCBPA); SCCMap = std::move(G.SCCMap); LeafSCCs = std::move(G.LeafSCCs); DFSStack = std::move(G.DFSStack); SCCEntryNodes = std::move(G.SCCEntryNodes); NextDFSNumber = G.NextDFSNumber; updateGraphPtrs(); return *this; } LazyCallGraph::Node *LazyCallGraph::insertInto(Function &F, Node *&MappedN) { return new (MappedN = BPA.Allocate()) Node(*this, F); } void LazyCallGraph::updateGraphPtrs() { // Process all nodes updating the graph pointers. SmallVector Worklist; for (auto &Entry : EntryNodes) if (Node *EntryN = Entry.dyn_cast()) Worklist.push_back(EntryN); while (!Worklist.empty()) { Node *N = Worklist.pop_back_val(); N->G = this; for (auto &Callee : N->Callees) if (Node *CalleeN = Callee.dyn_cast()) Worklist.push_back(CalleeN); } } LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() { // When the stack is empty, there are no more SCCs to walk in this graph. if (DFSStack.empty()) { // If we've handled all candidate entry nodes to the SCC forest, we're done. if (SCCEntryNodes.empty()) return nullptr; Node *N = get(*SCCEntryNodes.pop_back_val()); DFSStack.push_back(std::make_pair(N, N->begin())); } Node *N = DFSStack.back().first; if (N->DFSNumber == 0) { // This node hasn't been visited before, assign it a DFS number and remove // it from the entry set. N->LowLink = N->DFSNumber = NextDFSNumber++; SCCEntryNodes.remove(&N->getFunction()); } for (auto I = DFSStack.back().second, E = N->end(); I != E; ++I) { Node *ChildN = *I; if (ChildN->DFSNumber == 0) { // Mark that we should start at this child when next this node is the // top of the stack. We don't start at the next child to ensure this // child's lowlink is reflected. // FIXME: I don't actually think this is required, and we could start // at the next child. DFSStack.back().second = I; // Recurse onto this node via a tail call. DFSStack.push_back(std::make_pair(ChildN, ChildN->begin())); return LazyCallGraph::getNextSCCInPostOrder(); } // Track the lowest link of the childen, if any are still in the stack. if (ChildN->LowLink < N->LowLink && !SCCMap.count(&ChildN->getFunction())) N->LowLink = ChildN->LowLink; } // The tail of the stack is the new SCC. Allocate the SCC and pop the stack // into it. SCC *NewSCC = new (SCCBPA.Allocate()) SCC(); // Because we don't follow the strict Tarjan recursive formulation, walk // from the top of the stack down, propagating the lowest link and stopping // when the DFS number is the lowest link. int LowestLink = N->LowLink; do { Node *SCCN = DFSStack.pop_back_val().first; SCCMap.insert(std::make_pair(&SCCN->getFunction(), NewSCC)); NewSCC->Nodes.push_back(SCCN); LowestLink = std::min(LowestLink, SCCN->LowLink); bool Inserted = NewSCC->NodeSet.insert(&SCCN->getFunction()); (void)Inserted; assert(Inserted && "Cannot have duplicates in the DFSStack!"); } while (!DFSStack.empty() && LowestLink <= DFSStack.back().first->DFSNumber); assert(LowestLink == NewSCC->Nodes.back()->DFSNumber && "Cannot stop with a DFS number greater than the lowest link!"); // A final pass over all edges in the SCC (this remains linear as we only // do this once when we build the SCC) to connect it to the parent sets of // its children. bool IsLeafSCC = true; for (Node *SCCN : NewSCC->Nodes) for (Node *SCCChildN : *SCCN) { if (NewSCC->NodeSet.count(&SCCChildN->getFunction())) continue; SCC *ChildSCC = SCCMap.lookup(&SCCChildN->getFunction()); assert(ChildSCC && "Must have all child SCCs processed when building a new SCC!"); ChildSCC->ParentSCCs.insert(NewSCC); IsLeafSCC = false; } // For the SCCs where we fine no child SCCs, add them to the leaf list. if (IsLeafSCC) LeafSCCs.push_back(NewSCC); return NewSCC; } char LazyCallGraphAnalysis::PassID; LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N, SmallPtrSetImpl &Printed) { // Recurse depth first through the nodes. for (LazyCallGraph::Node *ChildN : N) if (Printed.insert(ChildN)) printNodes(OS, *ChildN, Printed); OS << " Call edges in function: " << N.getFunction().getName() << "\n"; for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I) OS << " -> " << I->getFunction().getName() << "\n"; OS << "\n"; } static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) { ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end()); OS << " SCC with " << SCCSize << " functions:\n"; for (LazyCallGraph::Node *N : SCC) OS << " " << N->getFunction().getName() << "\n"; OS << "\n"; } PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M, ModuleAnalysisManager *AM) { LazyCallGraph &G = AM->getResult(M); OS << "Printing the call graph for module: " << M->getModuleIdentifier() << "\n\n"; SmallPtrSet Printed; for (LazyCallGraph::Node *N : G) if (Printed.insert(N)) printNodes(OS, *N, Printed); for (LazyCallGraph::SCC *SCC : G.postorder_sccs()) printSCC(OS, *SCC); return PreservedAnalyses::all(); }