//===------------------------ CalcSpillWeights.cpp ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; #define DEBUG_TYPE "calcspillweights" void llvm::calculateSpillWeightsAndHints(LiveIntervals &LIS, MachineFunction &MF, const MachineLoopInfo &MLI, const MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo::NormalizingFn norm) { DEBUG(dbgs() << "********** Compute Spill Weights **********\n" << "********** Function: " << MF.getName() << '\n'); MachineRegisterInfo &MRI = MF.getRegInfo(); VirtRegAuxInfo VRAI(MF, LIS, MLI, MBFI, norm); for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (MRI.reg_nodbg_empty(Reg)) continue; VRAI.calculateSpillWeightAndHint(LIS.getInterval(Reg)); } } // Return the preferred allocation register for reg, given a COPY instruction. static unsigned copyHint(const MachineInstr *mi, unsigned reg, const TargetRegisterInfo &tri, const MachineRegisterInfo &mri) { unsigned sub, hreg, hsub; if (mi->getOperand(0).getReg() == reg) { sub = mi->getOperand(0).getSubReg(); hreg = mi->getOperand(1).getReg(); hsub = mi->getOperand(1).getSubReg(); } else { sub = mi->getOperand(1).getSubReg(); hreg = mi->getOperand(0).getReg(); hsub = mi->getOperand(0).getSubReg(); } if (!hreg) return 0; if (TargetRegisterInfo::isVirtualRegister(hreg)) return sub == hsub ? hreg : 0; const TargetRegisterClass *rc = mri.getRegClass(reg); // Only allow physreg hints in rc. if (sub == 0) return rc->contains(hreg) ? hreg : 0; // reg:sub should match the physreg hreg. return tri.getMatchingSuperReg(hreg, sub, rc); } // Check if all values in LI are rematerializable static bool isRematerializable(const LiveInterval &LI, const LiveIntervals &LIS, const TargetInstrInfo &TII) { for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); I != E; ++I) { const VNInfo *VNI = *I; if (VNI->isUnused()) continue; if (VNI->isPHIDef()) return false; MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); assert(MI && "Dead valno in interval"); if (!TII.isTriviallyReMaterializable(MI, LIS.getAliasAnalysis())) return false; } return true; } void VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &li) { MachineRegisterInfo &mri = MF.getRegInfo(); const TargetRegisterInfo &tri = *MF.getTarget().getRegisterInfo(); MachineBasicBlock *mbb = nullptr; MachineLoop *loop = nullptr; bool isExiting = false; float totalWeight = 0; SmallPtrSet visited; // Find the best physreg hint and the best virtreg hint. float bestPhys = 0, bestVirt = 0; unsigned hintPhys = 0, hintVirt = 0; // Don't recompute a target specific hint. bool noHint = mri.getRegAllocationHint(li.reg).first != 0; // Don't recompute spill weight for an unspillable register. bool Spillable = li.isSpillable(); for (MachineRegisterInfo::reg_instr_iterator I = mri.reg_instr_begin(li.reg), E = mri.reg_instr_end(); I != E; ) { MachineInstr *mi = &*(I++); if (mi->isIdentityCopy() || mi->isImplicitDef() || mi->isDebugValue()) continue; if (!visited.insert(mi)) continue; float weight = 1.0f; if (Spillable) { // Get loop info for mi. if (mi->getParent() != mbb) { mbb = mi->getParent(); loop = Loops.getLoopFor(mbb); isExiting = loop ? loop->isLoopExiting(mbb) : false; } // Calculate instr weight. bool reads, writes; std::tie(reads, writes) = mi->readsWritesVirtualRegister(li.reg); weight = LiveIntervals::getSpillWeight( writes, reads, &MBFI, mi); // Give extra weight to what looks like a loop induction variable update. if (writes && isExiting && LIS.isLiveOutOfMBB(li, mbb)) weight *= 3; totalWeight += weight; } // Get allocation hints from copies. if (noHint || !mi->isCopy()) continue; unsigned hint = copyHint(mi, li.reg, tri, mri); if (!hint) continue; // Force hweight onto the stack so that x86 doesn't add hidden precision, // making the comparison incorrectly pass (i.e., 1 > 1 == true??). // // FIXME: we probably shouldn't use floats at all. volatile float hweight = Hint[hint] += weight; if (TargetRegisterInfo::isPhysicalRegister(hint)) { if (hweight > bestPhys && mri.isAllocatable(hint)) bestPhys = hweight, hintPhys = hint; } else { if (hweight > bestVirt) bestVirt = hweight, hintVirt = hint; } } Hint.clear(); // Always prefer the physreg hint. if (unsigned hint = hintPhys ? hintPhys : hintVirt) { mri.setRegAllocationHint(li.reg, 0, hint); // Weakly boost the spill weight of hinted registers. totalWeight *= 1.01F; } // If the live interval was already unspillable, leave it that way. if (!Spillable) return; // Mark li as unspillable if all live ranges are tiny. if (li.isZeroLength(LIS.getSlotIndexes())) { li.markNotSpillable(); return; } // If all of the definitions of the interval are re-materializable, // it is a preferred candidate for spilling. // FIXME: this gets much more complicated once we support non-trivial // re-materialization. if (isRematerializable(li, LIS, *MF.getTarget().getInstrInfo())) totalWeight *= 0.5F; li.weight = normalize(totalWeight, li.getSize()); }