//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveInterval analysis pass which is used // by the Linear Scan Register allocator. This pass linearizes the // basic blocks of the function in DFS order and uses the // LiveVariables pass to conservatively compute live intervals for // each virtual and physical register. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/Value.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "LiveRangeCalc.h" #include "VirtRegMap.h" #include #include #include using namespace llvm; // Switch to the new experimental algorithm for computing live intervals. static cl::opt NewLiveIntervals("new-live-intervals", cl::Hidden, cl::desc("Use new algorithm forcomputing live intervals")); char LiveIntervals::ID = 0; char &llvm::LiveIntervalsID = LiveIntervals::ID; INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_DEPENDENCY(LiveVariables) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_END(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addPreservedID(MachineLoopInfoID); AU.addRequiredTransitiveID(MachineDominatorsID); AU.addPreservedID(MachineDominatorsID); AU.addPreserved(); AU.addRequiredTransitive(); MachineFunctionPass::getAnalysisUsage(AU); } LiveIntervals::LiveIntervals() : MachineFunctionPass(ID), DomTree(0), LRCalc(0) { initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); } LiveIntervals::~LiveIntervals() { delete LRCalc; } void LiveIntervals::releaseMemory() { // Free the live intervals themselves. for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)]; VirtRegIntervals.clear(); RegMaskSlots.clear(); RegMaskBits.clear(); RegMaskBlocks.clear(); for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i) delete RegUnitIntervals[i]; RegUnitIntervals.clear(); // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. VNInfoAllocator.Reset(); } /// runOnMachineFunction - Register allocate the whole function /// bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { MF = &fn; MRI = &MF->getRegInfo(); TM = &fn.getTarget(); TRI = TM->getRegisterInfo(); TII = TM->getInstrInfo(); AA = &getAnalysis(); LV = &getAnalysis(); Indexes = &getAnalysis(); DomTree = &getAnalysis(); if (!LRCalc) LRCalc = new LiveRangeCalc(); AllocatableRegs = TRI->getAllocatableSet(fn); ReservedRegs = TRI->getReservedRegs(fn); // Allocate space for all virtual registers. VirtRegIntervals.resize(MRI->getNumVirtRegs()); if (NewLiveIntervals) { // This is the new way of computing live intervals. // It is independent of LiveVariables, and it can run at any time. computeVirtRegs(); computeRegMasks(); } else { // This is the old way of computing live intervals. // It depends on LiveVariables. computeIntervals(); } computeLiveInRegUnits(); DEBUG(dump()); return true; } /// print - Implement the dump method. void LiveIntervals::print(raw_ostream &OS, const Module* ) const { OS << "********** INTERVALS **********\n"; // Dump the regunits. for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i) if (LiveInterval *LI = RegUnitIntervals[i]) OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n'; // Dump the virtregs. for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (hasInterval(Reg)) OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n'; } printInstrs(OS); } void LiveIntervals::printInstrs(raw_ostream &OS) const { OS << "********** MACHINEINSTRS **********\n"; MF->print(OS, Indexes); } #ifndef NDEBUG void LiveIntervals::dumpInstrs() const { printInstrs(dbgs()); } #endif static bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) { unsigned Reg = MI.getOperand(MOIdx).getReg(); for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; if (MO.getReg() == Reg && MO.isDef()) { assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() && MI.getOperand(MOIdx).getSubReg() && (MO.getSubReg() || MO.isImplicit())); return true; } } return false; } /// isPartialRedef - Return true if the specified def at the specific index is /// partially re-defining the specified live interval. A common case of this is /// a definition of the sub-register. bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO, LiveInterval &interval) { if (!MO.getSubReg() || MO.isEarlyClobber()) return false; SlotIndex RedefIndex = MIIdx.getRegSlot(); const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex.getRegSlot(true)); MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def); if (DefMI != 0) { return DefMI->findRegisterDefOperandIdx(interval.reg) != -1; } return false; } void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, MachineBasicBlock::iterator mi, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx, LiveInterval &interval) { DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, TRI)); // Virtual registers may be defined multiple times (due to phi // elimination and 2-addr elimination). Much of what we do only has to be // done once for the vreg. We use an empty interval to detect the first // time we see a vreg. LiveVariables::VarInfo& vi = LV->getVarInfo(interval.reg); if (interval.empty()) { // Get the Idx of the defining instructions. SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); // Make sure the first definition is not a partial redefinition. assert(!MO.readsReg() && "First def cannot also read virtual register " "missing flag?"); VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator); assert(ValNo->id == 0 && "First value in interval is not 0?"); // Loop over all of the blocks that the vreg is defined in. There are // two cases we have to handle here. The most common case is a vreg // whose lifetime is contained within a basic block. In this case there // will be a single kill, in MBB, which comes after the definition. if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { // FIXME: what about dead vars? SlotIndex killIdx; if (vi.Kills[0] != mi) killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot(); else killIdx = defIndex.getDeadSlot(); // If the kill happens after the definition, we have an intra-block // live range. if (killIdx > defIndex) { assert(vi.AliveBlocks.empty() && "Shouldn't be alive across any blocks!"); LiveRange LR(defIndex, killIdx, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR << "\n"); return; } } // The other case we handle is when a virtual register lives to the end // of the defining block, potentially live across some blocks, then is // live into some number of blocks, but gets killed. Start by adding a // range that goes from this definition to the end of the defining block. LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo); DEBUG(dbgs() << " +" << NewLR); interval.addRange(NewLR); bool PHIJoin = LV->isPHIJoin(interval.reg); if (PHIJoin) { // A phi join register is killed at the end of the MBB and revived as a // new valno in the killing blocks. assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks"); DEBUG(dbgs() << " phi-join"); } else { // Iterate over all of the blocks that the variable is completely // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the // live interval. for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(), E = vi.AliveBlocks.end(); I != E; ++I) { MachineBasicBlock *aliveBlock = MF->getBlockNumbered(*I); LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR); } } // Finally, this virtual register is live from the start of any killing // block to the 'use' slot of the killing instruction. for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { MachineInstr *Kill = vi.Kills[i]; SlotIndex Start = getMBBStartIdx(Kill->getParent()); SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot(); // Create interval with one of a NEW value number. Note that this value // number isn't actually defined by an instruction, weird huh? :) if (PHIJoin) { assert(getInstructionFromIndex(Start) == 0 && "PHI def index points at actual instruction."); ValNo = interval.getNextValue(Start, VNInfoAllocator); } LiveRange LR(Start, killIdx, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR); } } else { if (MultipleDefsBySameMI(*mi, MOIdx)) // Multiple defs of the same virtual register by the same instruction. // e.g. %reg1031:5, %reg1031:6 = VLD1q16 %reg1024, ... // This is likely due to elimination of REG_SEQUENCE instructions. Return // here since there is nothing to do. return; // If this is the second time we see a virtual register definition, it // must be due to phi elimination or two addr elimination. If this is // the result of two address elimination, then the vreg is one of the // def-and-use register operand. // It may also be partial redef like this: // 80 %reg1041:6 = VSHRNv4i16 %reg1034, 12, pred:14, pred:%reg0 // 120 %reg1041:5 = VSHRNv4i16 %reg1039, 12, pred:14, pred:%reg0 bool PartReDef = isPartialRedef(MIIdx, MO, interval); if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) { // If this is a two-address definition, then we have already processed // the live range. The only problem is that we didn't realize there // are actually two values in the live interval. Because of this we // need to take the LiveRegion that defines this register and split it // into two values. SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex.getRegSlot(true)); VNInfo *OldValNo = OldLR->valno; SlotIndex DefIndex = OldValNo->def.getRegSlot(); // Delete the previous value, which should be short and continuous, // because the 2-addr copy must be in the same MBB as the redef. interval.removeRange(DefIndex, RedefIndex); // The new value number (#1) is defined by the instruction we claimed // defined value #0. VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator); // Value#0 is now defined by the 2-addr instruction. OldValNo->def = RedefIndex; // Add the new live interval which replaces the range for the input copy. LiveRange LR(DefIndex, RedefIndex, ValNo); DEBUG(dbgs() << " replace range with " << LR); interval.addRange(LR); // If this redefinition is dead, we need to add a dummy unit live // range covering the def slot. if (MO.isDead()) interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(), OldValNo)); DEBUG(dbgs() << " RESULT: " << interval); } else if (LV->isPHIJoin(interval.reg)) { // In the case of PHI elimination, each variable definition is only // live until the end of the block. We've already taken care of the // rest of the live range. SlotIndex defIndex = MIIdx.getRegSlot(); if (MO.isEarlyClobber()) defIndex = MIIdx.getRegSlot(true); VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator); SlotIndex killIndex = getMBBEndIdx(mbb); LiveRange LR(defIndex, killIndex, ValNo); interval.addRange(LR); DEBUG(dbgs() << " phi-join +" << LR); } else { llvm_unreachable("Multiply defined register"); } } DEBUG(dbgs() << '\n'); } void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx) { if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx, getOrCreateInterval(MO.getReg())); } /// computeIntervals - computes the live intervals for virtual /// registers. for some ordering of the machine instructions [1,N] a /// live interval is an interval [i, j) where 1 <= i <= j < N for /// which a variable is live void LiveIntervals::computeIntervals() { DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n" << "********** Function: " << MF->getName() << '\n'); RegMaskBlocks.resize(MF->getNumBlockIDs()); SmallVector UndefUses; for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); MBBI != E; ++MBBI) { MachineBasicBlock *MBB = MBBI; RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size(); if (MBB->empty()) continue; // Track the index of the current machine instr. SlotIndex MIIndex = getMBBStartIdx(MBB); DEBUG(dbgs() << "BB#" << MBB->getNumber() << ":\t\t# derived from " << MBB->getName() << "\n"); // Skip over empty initial indices. if (getInstructionFromIndex(MIIndex) == 0) MIIndex = Indexes->getNextNonNullIndex(MIIndex); for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end(); MI != miEnd; ++MI) { DEBUG(dbgs() << MIIndex << "\t" << *MI); if (MI->isDebugValue()) continue; assert(Indexes->getInstructionFromIndex(MIIndex) == MI && "Lost SlotIndex synchronization"); // Handle defs. for (int i = MI->getNumOperands() - 1; i >= 0; --i) { MachineOperand &MO = MI->getOperand(i); // Collect register masks. if (MO.isRegMask()) { RegMaskSlots.push_back(MIIndex.getRegSlot()); RegMaskBits.push_back(MO.getRegMask()); continue; } if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; // handle register defs - build intervals if (MO.isDef()) handleRegisterDef(MBB, MI, MIIndex, MO, i); else if (MO.isUndef()) UndefUses.push_back(MO.getReg()); } // Move to the next instr slot. MIIndex = Indexes->getNextNonNullIndex(MIIndex); } // Compute the number of register mask instructions in this block. std::pair &RMB = RegMaskBlocks[MBB->getNumber()]; RMB.second = RegMaskSlots.size() - RMB.first; } // Create empty intervals for registers defined by implicit_def's (except // for those implicit_def that define values which are liveout of their // blocks. for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) { unsigned UndefReg = UndefUses[i]; (void)getOrCreateInterval(UndefReg); } } LiveInterval* LiveIntervals::createInterval(unsigned reg) { float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F; return new LiveInterval(reg, Weight); } /// computeVirtRegInterval - Compute the live interval of a virtual register, /// based on defs and uses. void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) { assert(LRCalc && "LRCalc not initialized."); assert(LI->empty() && "Should only compute empty intervals."); LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); LRCalc->createDeadDefs(LI); LRCalc->extendToUses(LI); } void LiveIntervals::computeVirtRegs() { for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (MRI->reg_nodbg_empty(Reg)) continue; LiveInterval *LI = createInterval(Reg); VirtRegIntervals[Reg] = LI; computeVirtRegInterval(LI); } } void LiveIntervals::computeRegMasks() { RegMaskBlocks.resize(MF->getNumBlockIDs()); // Find all instructions with regmask operands. for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); MBBI != E; ++MBBI) { MachineBasicBlock *MBB = MBBI; std::pair &RMB = RegMaskBlocks[MBB->getNumber()]; RMB.first = RegMaskSlots.size(); for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end(); MI != ME; ++MI) for (MIOperands MO(MI); MO.isValid(); ++MO) { if (!MO->isRegMask()) continue; RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot()); RegMaskBits.push_back(MO->getRegMask()); } // Compute the number of register mask instructions in this block. RMB.second = RegMaskSlots.size() - RMB.first; } } //===----------------------------------------------------------------------===// // Register Unit Liveness //===----------------------------------------------------------------------===// // // Fixed interference typically comes from ABI boundaries: Function arguments // and return values are passed in fixed registers, and so are exception // pointers entering landing pads. Certain instructions require values to be // present in specific registers. That is also represented through fixed // interference. // /// computeRegUnitInterval - Compute the live interval of a register unit, based /// on the uses and defs of aliasing registers. The interval should be empty, /// or contain only dead phi-defs from ABI blocks. void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) { unsigned Unit = LI->reg; assert(LRCalc && "LRCalc not initialized."); LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); // The physregs aliasing Unit are the roots and their super-registers. // Create all values as dead defs before extending to uses. Note that roots // may share super-registers. That's OK because createDeadDefs() is // idempotent. It is very rare for a register unit to have multiple roots, so // uniquing super-registers is probably not worthwhile. for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) { unsigned Root = *Roots; if (!MRI->reg_empty(Root)) LRCalc->createDeadDefs(LI, Root); for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) { if (!MRI->reg_empty(*Supers)) LRCalc->createDeadDefs(LI, *Supers); } } // Now extend LI to reach all uses. // Ignore uses of reserved registers. We only track defs of those. for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) { unsigned Root = *Roots; if (!isReserved(Root) && !MRI->reg_empty(Root)) LRCalc->extendToUses(LI, Root); for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) { unsigned Reg = *Supers; if (!isReserved(Reg) && !MRI->reg_empty(Reg)) LRCalc->extendToUses(LI, Reg); } } } /// computeLiveInRegUnits - Precompute the live ranges of any register units /// that are live-in to an ABI block somewhere. Register values can appear /// without a corresponding def when entering the entry block or a landing pad. /// void LiveIntervals::computeLiveInRegUnits() { RegUnitIntervals.resize(TRI->getNumRegUnits()); DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); // Keep track of the intervals allocated. SmallVector NewIntvs; // Check all basic blocks for live-ins. for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); MFI != MFE; ++MFI) { const MachineBasicBlock *MBB = MFI; // We only care about ABI blocks: Entry + landing pads. if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty()) continue; // Create phi-defs at Begin for all live-in registers. SlotIndex Begin = Indexes->getMBBStartIdx(MBB); DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber()); for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(), LIE = MBB->livein_end(); LII != LIE; ++LII) { for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) { unsigned Unit = *Units; LiveInterval *Intv = RegUnitIntervals[Unit]; if (!Intv) { Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF); NewIntvs.push_back(Intv); } VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator()); (void)VNI; DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id); } } DEBUG(dbgs() << '\n'); } DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n"); // Compute the 'normal' part of the intervals. for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i) computeRegUnitInterval(NewIntvs[i]); } /// shrinkToUses - After removing some uses of a register, shrink its live /// range to just the remaining uses. This method does not compute reaching /// defs for new uses, and it doesn't remove dead defs. bool LiveIntervals::shrinkToUses(LiveInterval *li, SmallVectorImpl *dead) { DEBUG(dbgs() << "Shrink: " << *li << '\n'); assert(TargetRegisterInfo::isVirtualRegister(li->reg) && "Can only shrink virtual registers"); // Find all the values used, including PHI kills. SmallVector, 16> WorkList; // Blocks that have already been added to WorkList as live-out. SmallPtrSet LiveOut; // Visit all instructions reading li->reg. for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg); MachineInstr *UseMI = I.skipInstruction();) { if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg)) continue; SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); LiveRangeQuery LRQ(*li, Idx); VNInfo *VNI = LRQ.valueIn(); if (!VNI) { // This shouldn't happen: readsVirtualRegister returns true, but there is // no live value. It is likely caused by a target getting flags // wrong. DEBUG(dbgs() << Idx << '\t' << *UseMI << "Warning: Instr claims to read non-existent value in " << *li << '\n'); continue; } // Special case: An early-clobber tied operand reads and writes the // register one slot early. if (VNInfo *DefVNI = LRQ.valueDefined()) Idx = DefVNI->def; WorkList.push_back(std::make_pair(Idx, VNI)); } // Create a new live interval with only minimal live segments per def. LiveInterval NewLI(li->reg, 0); for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused()) continue; NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI)); } // Keep track of the PHIs that are in use. SmallPtrSet UsedPHIs; // Extend intervals to reach all uses in WorkList. while (!WorkList.empty()) { SlotIndex Idx = WorkList.back().first; VNInfo *VNI = WorkList.back().second; WorkList.pop_back(); const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot()); SlotIndex BlockStart = getMBBStartIdx(MBB); // Extend the live range for VNI to be live at Idx. if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) { (void)ExtVNI; assert(ExtVNI == VNI && "Unexpected existing value number"); // Is this a PHIDef we haven't seen before? if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI)) continue; // The PHI is live, make sure the predecessors are live-out. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { if (!LiveOut.insert(*PI)) continue; SlotIndex Stop = getMBBEndIdx(*PI); // A predecessor is not required to have a live-out value for a PHI. if (VNInfo *PVNI = li->getVNInfoBefore(Stop)) WorkList.push_back(std::make_pair(Stop, PVNI)); } continue; } // VNI is live-in to MBB. DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); NewLI.addRange(LiveRange(BlockStart, Idx, VNI)); // Make sure VNI is live-out from the predecessors. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { if (!LiveOut.insert(*PI)) continue; SlotIndex Stop = getMBBEndIdx(*PI); assert(li->getVNInfoBefore(Stop) == VNI && "Wrong value out of predecessor"); WorkList.push_back(std::make_pair(Stop, VNI)); } } // Handle dead values. bool CanSeparate = false; for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused()) continue; LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def); assert(LII != NewLI.end() && "Missing live range for PHI"); if (LII->end != VNI->def.getDeadSlot()) continue; if (VNI->isPHIDef()) { // This is a dead PHI. Remove it. VNI->markUnused(); NewLI.removeRange(*LII); DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n"); CanSeparate = true; } else { // This is a dead def. Make sure the instruction knows. MachineInstr *MI = getInstructionFromIndex(VNI->def); assert(MI && "No instruction defining live value"); MI->addRegisterDead(li->reg, TRI); if (dead && MI->allDefsAreDead()) { DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI); dead->push_back(MI); } } } // Move the trimmed ranges back. li->ranges.swap(NewLI.ranges); DEBUG(dbgs() << "Shrunk: " << *li << '\n'); return CanSeparate; } //===----------------------------------------------------------------------===// // Register allocator hooks. // void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { // Keep track of regunit ranges. SmallVector, 8> RU; for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (MRI->reg_nodbg_empty(Reg)) continue; LiveInterval *LI = &getInterval(Reg); if (LI->empty()) continue; // Find the regunit intervals for the assigned register. They may overlap // the virtual register live range, cancelling any kills. RU.clear(); for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid(); ++Units) { LiveInterval *RUInt = &getRegUnit(*Units); if (RUInt->empty()) continue; RU.push_back(std::make_pair(RUInt, RUInt->find(LI->begin()->end))); } // Every instruction that kills Reg corresponds to a live range end point. for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE; ++RI) { // A block index indicates an MBB edge. if (RI->end.isBlock()) continue; MachineInstr *MI = getInstructionFromIndex(RI->end); if (!MI) continue; // Check if any of the reguints are live beyond the end of RI. That could // happen when a physreg is defined as a copy of a virtreg: // // %EAX = COPY %vreg5 // FOO %vreg5 <--- MI, cancel kill because %EAX is live. // BAR %EAX // // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX. bool CancelKill = false; for (unsigned u = 0, e = RU.size(); u != e; ++u) { LiveInterval *RInt = RU[u].first; LiveInterval::iterator &I = RU[u].second; if (I == RInt->end()) continue; I = RInt->advanceTo(I, RI->end); if (I == RInt->end() || I->start >= RI->end) continue; // I is overlapping RI. CancelKill = true; break; } if (CancelKill) MI->clearRegisterKills(Reg, NULL); else MI->addRegisterKilled(Reg, NULL); } } } MachineBasicBlock* LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { // A local live range must be fully contained inside the block, meaning it is // defined and killed at instructions, not at block boundaries. It is not // live in or or out of any block. // // It is technically possible to have a PHI-defined live range identical to a // single block, but we are going to return false in that case. SlotIndex Start = LI.beginIndex(); if (Start.isBlock()) return NULL; SlotIndex Stop = LI.endIndex(); if (Stop.isBlock()) return NULL; // getMBBFromIndex doesn't need to search the MBB table when both indexes // belong to proper instructions. MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); return MBB1 == MBB2 ? MBB1 : NULL; } bool LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); I != E; ++I) { const VNInfo *PHI = *I; if (PHI->isUnused() || !PHI->isPHIDef()) continue; const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); // Conservatively return true instead of scanning huge predecessor lists. if (PHIMBB->pred_size() > 100) return true; for (MachineBasicBlock::const_pred_iterator PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI) if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI))) return true; } return false; } float LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) { // Limit the loop depth ridiculousness. if (loopDepth > 200) loopDepth = 200; // The loop depth is used to roughly estimate the number of times the // instruction is executed. Something like 10^d is simple, but will quickly // overflow a float. This expression behaves like 10^d for small d, but is // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of // headroom before overflow. // By the way, powf() might be unavailable here. For consistency, // We may take pow(double,double). float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth); return (isDef + isUse) * lc; } LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg, MachineInstr* startInst) { LiveInterval& Interval = getOrCreateInterval(reg); VNInfo* VN = Interval.getNextValue( SlotIndex(getInstructionIndex(startInst).getRegSlot()), getVNInfoAllocator()); LiveRange LR( SlotIndex(getInstructionIndex(startInst).getRegSlot()), getMBBEndIdx(startInst->getParent()), VN); Interval.addRange(LR); return LR; } //===----------------------------------------------------------------------===// // Register mask functions //===----------------------------------------------------------------------===// bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, BitVector &UsableRegs) { if (LI.empty()) return false; LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end(); // Use a smaller arrays for local live ranges. ArrayRef Slots; ArrayRef Bits; if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { Slots = getRegMaskSlotsInBlock(MBB->getNumber()); Bits = getRegMaskBitsInBlock(MBB->getNumber()); } else { Slots = getRegMaskSlots(); Bits = getRegMaskBits(); } // We are going to enumerate all the register mask slots contained in LI. // Start with a binary search of RegMaskSlots to find a starting point. ArrayRef::iterator SlotI = std::lower_bound(Slots.begin(), Slots.end(), LiveI->start); ArrayRef::iterator SlotE = Slots.end(); // No slots in range, LI begins after the last call. if (SlotI == SlotE) return false; bool Found = false; for (;;) { assert(*SlotI >= LiveI->start); // Loop over all slots overlapping this segment. while (*SlotI < LiveI->end) { // *SlotI overlaps LI. Collect mask bits. if (!Found) { // This is the first overlap. Initialize UsableRegs to all ones. UsableRegs.clear(); UsableRegs.resize(TRI->getNumRegs(), true); Found = true; } // Remove usable registers clobbered by this mask. UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]); if (++SlotI == SlotE) return Found; } // *SlotI is beyond the current LI segment. LiveI = LI.advanceTo(LiveI, *SlotI); if (LiveI == LiveE) return Found; // Advance SlotI until it overlaps. while (*SlotI < LiveI->start) if (++SlotI == SlotE) return Found; } } //===----------------------------------------------------------------------===// // IntervalUpdate class. //===----------------------------------------------------------------------===// // HMEditor is a toolkit used by handleMove to trim or extend live intervals. class LiveIntervals::HMEditor { private: LiveIntervals& LIS; const MachineRegisterInfo& MRI; const TargetRegisterInfo& TRI; SlotIndex NewIdx; typedef std::pair IntRangePair; typedef DenseSet RangeSet; struct RegRanges { LiveRange* Use; LiveRange* EC; LiveRange* Dead; LiveRange* Def; RegRanges() : Use(0), EC(0), Dead(0), Def(0) {} }; typedef DenseMap BundleRanges; public: HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, const TargetRegisterInfo& TRI, SlotIndex NewIdx) : LIS(LIS), MRI(MRI), TRI(TRI), NewIdx(NewIdx) {} // Update intervals for all operands of MI from OldIdx to NewIdx. // This assumes that MI used to be at OldIdx, and now resides at // NewIdx. void moveAllRangesFrom(MachineInstr* MI, SlotIndex OldIdx) { assert(NewIdx != OldIdx && "No-op move? That's a bit strange."); // Collect the operands. RangeSet Entering, Internal, Exiting; bool hasRegMaskOp = false; collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx); // To keep the LiveRanges valid within an interval, move the ranges closest // to the destination first. This prevents ranges from overlapping, to that // APIs like removeRange still work. if (NewIdx < OldIdx) { moveAllEnteringFrom(OldIdx, Entering); moveAllInternalFrom(OldIdx, Internal); moveAllExitingFrom(OldIdx, Exiting); } else { moveAllExitingFrom(OldIdx, Exiting); moveAllInternalFrom(OldIdx, Internal); moveAllEnteringFrom(OldIdx, Entering); } if (hasRegMaskOp) updateRegMaskSlots(OldIdx); #ifndef NDEBUG LIValidator validator; validator = std::for_each(Entering.begin(), Entering.end(), validator); validator = std::for_each(Internal.begin(), Internal.end(), validator); validator = std::for_each(Exiting.begin(), Exiting.end(), validator); assert(validator.rangesOk() && "moveAllOperandsFrom broke liveness."); #endif } // Update intervals for all operands of MI to refer to BundleStart's // SlotIndex. void moveAllRangesInto(MachineInstr* MI, MachineInstr* BundleStart) { if (MI == BundleStart) return; // Bundling instr with itself - nothing to do. SlotIndex OldIdx = LIS.getSlotIndexes()->getInstructionIndex(MI); assert(LIS.getSlotIndexes()->getInstructionFromIndex(OldIdx) == MI && "SlotIndex <-> Instruction mapping broken for MI"); // Collect all ranges already in the bundle. MachineBasicBlock::instr_iterator BII(BundleStart); RangeSet Entering, Internal, Exiting; bool hasRegMaskOp = false; collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx); assert(!hasRegMaskOp && "Can't have RegMask operand in bundle."); for (++BII; &*BII == MI || BII->isInsideBundle(); ++BII) { if (&*BII == MI) continue; collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx); assert(!hasRegMaskOp && "Can't have RegMask operand in bundle."); } BundleRanges BR = createBundleRanges(Entering, Internal, Exiting); Entering.clear(); Internal.clear(); Exiting.clear(); collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx); assert(!hasRegMaskOp && "Can't have RegMask operand in bundle."); DEBUG(dbgs() << "Entering: " << Entering.size() << "\n"); DEBUG(dbgs() << "Internal: " << Internal.size() << "\n"); DEBUG(dbgs() << "Exiting: " << Exiting.size() << "\n"); moveAllEnteringFromInto(OldIdx, Entering, BR); moveAllInternalFromInto(OldIdx, Internal, BR); moveAllExitingFromInto(OldIdx, Exiting, BR); #ifndef NDEBUG LIValidator validator; validator = std::for_each(Entering.begin(), Entering.end(), validator); validator = std::for_each(Internal.begin(), Internal.end(), validator); validator = std::for_each(Exiting.begin(), Exiting.end(), validator); assert(validator.rangesOk() && "moveAllOperandsInto broke liveness."); #endif } private: #ifndef NDEBUG class LIValidator { private: DenseSet Checked, Bogus; public: void operator()(const IntRangePair& P) { const LiveInterval* LI = P.first; if (Checked.count(LI)) return; Checked.insert(LI); if (LI->empty()) return; SlotIndex LastEnd = LI->begin()->start; for (LiveInterval::const_iterator LRI = LI->begin(), LRE = LI->end(); LRI != LRE; ++LRI) { const LiveRange& LR = *LRI; if (LastEnd > LR.start || LR.start >= LR.end) Bogus.insert(LI); LastEnd = LR.end; } } bool rangesOk() const { return Bogus.empty(); } }; #endif // Collect IntRangePairs for all operands of MI that may need fixing. // Treat's MI's index as OldIdx (regardless of what it is in SlotIndexes' // maps). void collectRanges(MachineInstr* MI, RangeSet& Entering, RangeSet& Internal, RangeSet& Exiting, bool& hasRegMaskOp, SlotIndex OldIdx) { hasRegMaskOp = false; for (MachineInstr::mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { const MachineOperand& MO = *MOI; if (MO.isRegMask()) { hasRegMaskOp = true; continue; } if (!MO.isReg() || MO.getReg() == 0) continue; unsigned Reg = MO.getReg(); // TODO: Currently we're skipping uses that are reserved or have no // interval, but we're not updating their kills. This should be // fixed. if (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg)) continue; // Collect ranges for register units. These live ranges are computed on // demand, so just skip any that haven't been computed yet. if (TargetRegisterInfo::isPhysicalRegister(Reg)) { for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) if (LiveInterval *LI = LIS.getCachedRegUnit(*Units)) collectRanges(MO, LI, Entering, Internal, Exiting, OldIdx); } else { // Collect ranges for individual virtual registers. collectRanges(MO, &LIS.getInterval(Reg), Entering, Internal, Exiting, OldIdx); } } } void collectRanges(const MachineOperand &MO, LiveInterval *LI, RangeSet &Entering, RangeSet &Internal, RangeSet &Exiting, SlotIndex OldIdx) { if (MO.readsReg()) { LiveRange* LR = LI->getLiveRangeContaining(OldIdx); if (LR != 0) Entering.insert(std::make_pair(LI, LR)); } if (MO.isDef()) { LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot()); assert(LR != 0 && "No live range for def?"); if (LR->end > OldIdx.getDeadSlot()) Exiting.insert(std::make_pair(LI, LR)); else Internal.insert(std::make_pair(LI, LR)); } } BundleRanges createBundleRanges(RangeSet& Entering, RangeSet& Internal, RangeSet& Exiting) { BundleRanges BR; for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end(); EI != EE; ++EI) { LiveInterval* LI = EI->first; LiveRange* LR = EI->second; BR[LI->reg].Use = LR; } for (RangeSet::iterator II = Internal.begin(), IE = Internal.end(); II != IE; ++II) { LiveInterval* LI = II->first; LiveRange* LR = II->second; if (LR->end.isDead()) { BR[LI->reg].Dead = LR; } else { BR[LI->reg].EC = LR; } } for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end(); EI != EE; ++EI) { LiveInterval* LI = EI->first; LiveRange* LR = EI->second; BR[LI->reg].Def = LR; } return BR; } void moveKillFlags(unsigned reg, SlotIndex OldIdx, SlotIndex newKillIdx) { MachineInstr* OldKillMI = LIS.getInstructionFromIndex(OldIdx); if (!OldKillMI->killsRegister(reg)) return; // Bail out if we don't have kill flags on the old register. MachineInstr* NewKillMI = LIS.getInstructionFromIndex(newKillIdx); assert(OldKillMI->killsRegister(reg) && "Old 'kill' instr isn't a kill."); assert(!NewKillMI->killsRegister(reg) && "New kill instr is already a kill."); OldKillMI->clearRegisterKills(reg, &TRI); NewKillMI->addRegisterKilled(reg, &TRI); } void updateRegMaskSlots(SlotIndex OldIdx) { SmallVectorImpl::iterator RI = std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(), OldIdx); assert(*RI == OldIdx && "No RegMask at OldIdx."); *RI = NewIdx; assert(*prior(RI) < *RI && *RI < *next(RI) && "RegSlots out of order. Did you move one call across another?"); } // Return the last use of reg between NewIdx and OldIdx. SlotIndex findLastUseBefore(unsigned Reg, SlotIndex OldIdx) { SlotIndex LastUse = NewIdx; for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg), UE = MRI.use_nodbg_end(); UI != UE; UI.skipInstruction()) { const MachineInstr* MI = &*UI; SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); if (InstSlot > LastUse && InstSlot < OldIdx) LastUse = InstSlot; } return LastUse; } void moveEnteringUpFrom(SlotIndex OldIdx, IntRangePair& P) { LiveInterval* LI = P.first; LiveRange* LR = P.second; bool LiveThrough = LR->end > OldIdx.getRegSlot(); if (LiveThrough) return; SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx); if (LastUse != NewIdx) moveKillFlags(LI->reg, NewIdx, LastUse); LR->end = LastUse.getRegSlot(LR->end.isEarlyClobber()); } void moveEnteringDownFrom(SlotIndex OldIdx, IntRangePair& P) { LiveInterval* LI = P.first; LiveRange* LR = P.second; // Extend the LiveRange if NewIdx is past the end. if (NewIdx > LR->end) { // Move kill flags if OldIdx was not originally the end // (otherwise LR->end points to an invalid slot). if (LR->end.getRegSlot() != OldIdx.getRegSlot()) { assert(LR->end > OldIdx && "LiveRange does not cover original slot"); moveKillFlags(LI->reg, LR->end, NewIdx); } LR->end = NewIdx.getRegSlot(LR->end.isEarlyClobber()); } } void moveAllEnteringFrom(SlotIndex OldIdx, RangeSet& Entering) { bool GoingUp = NewIdx < OldIdx; if (GoingUp) { for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end(); EI != EE; ++EI) moveEnteringUpFrom(OldIdx, *EI); } else { for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end(); EI != EE; ++EI) moveEnteringDownFrom(OldIdx, *EI); } } void moveInternalFrom(SlotIndex OldIdx, IntRangePair& P) { LiveInterval* LI = P.first; LiveRange* LR = P.second; assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() && LR->end <= OldIdx.getDeadSlot() && "Range should be internal to OldIdx."); LiveRange Tmp(*LR); Tmp.start = NewIdx.getRegSlot(LR->start.isEarlyClobber()); Tmp.valno->def = Tmp.start; Tmp.end = LR->end.isDead() ? NewIdx.getDeadSlot() : NewIdx.getRegSlot(); LI->removeRange(*LR); LI->addRange(Tmp); } void moveAllInternalFrom(SlotIndex OldIdx, RangeSet& Internal) { for (RangeSet::iterator II = Internal.begin(), IE = Internal.end(); II != IE; ++II) moveInternalFrom(OldIdx, *II); } void moveExitingFrom(SlotIndex OldIdx, IntRangePair& P) { LiveRange* LR = P.second; assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() && "Range should start in OldIdx."); assert(LR->end > OldIdx.getDeadSlot() && "Range should exit OldIdx."); SlotIndex NewStart = NewIdx.getRegSlot(LR->start.isEarlyClobber()); LR->start = NewStart; LR->valno->def = NewStart; } void moveAllExitingFrom(SlotIndex OldIdx, RangeSet& Exiting) { for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end(); EI != EE; ++EI) moveExitingFrom(OldIdx, *EI); } void moveEnteringUpFromInto(SlotIndex OldIdx, IntRangePair& P, BundleRanges& BR) { LiveInterval* LI = P.first; LiveRange* LR = P.second; bool LiveThrough = LR->end > OldIdx.getRegSlot(); if (LiveThrough) { assert((LR->start < NewIdx || BR[LI->reg].Def == LR) && "Def in bundle should be def range."); assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) && "If bundle has use for this reg it should be LR."); BR[LI->reg].Use = LR; return; } SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx); moveKillFlags(LI->reg, OldIdx, LastUse); if (LR->start < NewIdx) { // Becoming a new entering range. assert(BR[LI->reg].Dead == 0 && BR[LI->reg].Def == 0 && "Bundle shouldn't be re-defining reg mid-range."); assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) && "Bundle shouldn't have different use range for same reg."); LR->end = LastUse.getRegSlot(); BR[LI->reg].Use = LR; } else { // Becoming a new Dead-def. assert(LR->start == NewIdx.getRegSlot(LR->start.isEarlyClobber()) && "Live range starting at unexpected slot."); assert(BR[LI->reg].Def == LR && "Reg should have def range."); assert(BR[LI->reg].Dead == 0 && "Can't have def and dead def of same reg in a bundle."); LR->end = LastUse.getDeadSlot(); BR[LI->reg].Dead = BR[LI->reg].Def; BR[LI->reg].Def = 0; } } void moveEnteringDownFromInto(SlotIndex OldIdx, IntRangePair& P, BundleRanges& BR) { LiveInterval* LI = P.first; LiveRange* LR = P.second; if (NewIdx > LR->end) { // Range extended to bundle. Add to bundle uses. // Note: Currently adds kill flags to bundle start. assert(BR[LI->reg].Use == 0 && "Bundle already has use range for reg."); moveKillFlags(LI->reg, LR->end, NewIdx); LR->end = NewIdx.getRegSlot(); BR[LI->reg].Use = LR; } else { assert(BR[LI->reg].Use != 0 && "Bundle should already have a use range for reg."); } } void moveAllEnteringFromInto(SlotIndex OldIdx, RangeSet& Entering, BundleRanges& BR) { bool GoingUp = NewIdx < OldIdx; if (GoingUp) { for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end(); EI != EE; ++EI) moveEnteringUpFromInto(OldIdx, *EI, BR); } else { for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end(); EI != EE; ++EI) moveEnteringDownFromInto(OldIdx, *EI, BR); } } void moveInternalFromInto(SlotIndex OldIdx, IntRangePair& P, BundleRanges& BR) { // TODO: Sane rules for moving ranges into bundles. } void moveAllInternalFromInto(SlotIndex OldIdx, RangeSet& Internal, BundleRanges& BR) { for (RangeSet::iterator II = Internal.begin(), IE = Internal.end(); II != IE; ++II) moveInternalFromInto(OldIdx, *II, BR); } void moveExitingFromInto(SlotIndex OldIdx, IntRangePair& P, BundleRanges& BR) { LiveInterval* LI = P.first; LiveRange* LR = P.second; assert(LR->start.isRegister() && "Don't know how to merge exiting ECs into bundles yet."); if (LR->end > NewIdx.getDeadSlot()) { // This range is becoming an exiting range on the bundle. // If there was an old dead-def of this reg, delete it. if (BR[LI->reg].Dead != 0) { LI->removeRange(*BR[LI->reg].Dead); BR[LI->reg].Dead = 0; } assert(BR[LI->reg].Def == 0 && "Can't have two defs for the same variable exiting a bundle."); LR->start = NewIdx.getRegSlot(); LR->valno->def = LR->start; BR[LI->reg].Def = LR; } else { // This range is becoming internal to the bundle. assert(LR->end == NewIdx.getRegSlot() && "Can't bundle def whose kill is before the bundle"); if (BR[LI->reg].Dead || BR[LI->reg].Def) { // Already have a def for this. Just delete range. LI->removeRange(*LR); } else { // Make range dead, record. LR->end = NewIdx.getDeadSlot(); BR[LI->reg].Dead = LR; assert(BR[LI->reg].Use == LR && "Range becoming dead should currently be use."); } // In both cases the range is no longer a use on the bundle. BR[LI->reg].Use = 0; } } void moveAllExitingFromInto(SlotIndex OldIdx, RangeSet& Exiting, BundleRanges& BR) { for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end(); EI != EE; ++EI) moveExitingFromInto(OldIdx, *EI, BR); } }; void LiveIntervals::handleMove(MachineInstr* MI) { SlotIndex OldIndex = Indexes->getInstructionIndex(MI); Indexes->removeMachineInstrFromMaps(MI); SlotIndex NewIndex = MI->isInsideBundle() ? Indexes->getInstructionIndex(MI) : Indexes->insertMachineInstrInMaps(MI); assert(getMBBStartIdx(MI->getParent()) <= OldIndex && OldIndex < getMBBEndIdx(MI->getParent()) && "Cannot handle moves across basic block boundaries."); assert(!MI->isBundled() && "Can't handle bundled instructions yet."); HMEditor HME(*this, *MRI, *TRI, NewIndex); HME.moveAllRangesFrom(MI, OldIndex); } void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart) { SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart); HMEditor HME(*this, *MRI, *TRI, NewIndex); HME.moveAllRangesInto(MI, BundleStart); }