//===-- LiveRegMatrix.cpp - Track register interference -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the LiveRegMatrix analysis pass. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveRegMatrix.h" #include "RegisterCoalescer.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; #define DEBUG_TYPE "regalloc" STATISTIC(NumAssigned , "Number of registers assigned"); STATISTIC(NumUnassigned , "Number of registers unassigned"); char LiveRegMatrix::ID = 0; INITIALIZE_PASS_BEGIN(LiveRegMatrix, "liveregmatrix", "Live Register Matrix", false, false) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_DEPENDENCY(VirtRegMap) INITIALIZE_PASS_END(LiveRegMatrix, "liveregmatrix", "Live Register Matrix", false, false) LiveRegMatrix::LiveRegMatrix() : MachineFunctionPass(ID), UserTag(0), RegMaskTag(0), RegMaskVirtReg(0) {} void LiveRegMatrix::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredTransitive(); AU.addRequiredTransitive(); MachineFunctionPass::getAnalysisUsage(AU); } bool LiveRegMatrix::runOnMachineFunction(MachineFunction &MF) { TRI = MF.getSubtarget().getRegisterInfo(); MRI = &MF.getRegInfo(); LIS = &getAnalysis(); VRM = &getAnalysis(); unsigned NumRegUnits = TRI->getNumRegUnits(); if (NumRegUnits != Matrix.size()) Queries.reset(new LiveIntervalUnion::Query[NumRegUnits]); Matrix.init(LIUAlloc, NumRegUnits); // Make sure no stale queries get reused. invalidateVirtRegs(); return false; } void LiveRegMatrix::releaseMemory() { for (unsigned i = 0, e = Matrix.size(); i != e; ++i) { Matrix[i].clear(); // No need to clear Queries here, since LiveIntervalUnion::Query doesn't // have anything important to clear and LiveRegMatrix's runOnFunction() // does a std::unique_ptr::reset anyways. } } template bool foreachUnit(const TargetRegisterInfo *TRI, LiveInterval &VRegInterval, unsigned PhysReg, Callable Func) { if (VRegInterval.hasSubRanges()) { for (MCRegUnitMaskIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { unsigned Unit = (*Units).first; unsigned Mask = (*Units).second; for (LiveInterval::SubRange &S : VRegInterval.subranges()) { if (S.LaneMask & Mask) { if (Func(Unit, S)) return true; break; } } } } else { for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { if (Func(*Units, VRegInterval)) return true; } } return false; } void LiveRegMatrix::assign(LiveInterval &VirtReg, unsigned PhysReg) { DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI) << " to " << PrintReg(PhysReg, TRI) << ':'); assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment"); VRM->assignVirt2Phys(VirtReg.reg, PhysReg); MRI->setPhysRegUsed(PhysReg); foreachUnit(TRI, VirtReg, PhysReg, [&](unsigned Unit, const LiveRange &Range) { DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << ' ' << Range); Matrix[Unit].unify(VirtReg, Range); return false; }); ++NumAssigned; DEBUG(dbgs() << '\n'); } void LiveRegMatrix::unassign(LiveInterval &VirtReg) { unsigned PhysReg = VRM->getPhys(VirtReg.reg); DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI) << " from " << PrintReg(PhysReg, TRI) << ':'); VRM->clearVirt(VirtReg.reg); foreachUnit(TRI, VirtReg, PhysReg, [&](unsigned Unit, const LiveRange &Range) { DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI)); Matrix[Unit].extract(VirtReg, Range); return false; }); ++NumUnassigned; DEBUG(dbgs() << '\n'); } bool LiveRegMatrix::checkRegMaskInterference(LiveInterval &VirtReg, unsigned PhysReg) { // Check if the cached information is valid. // The same BitVector can be reused for all PhysRegs. // We could cache multiple VirtRegs if it becomes necessary. if (RegMaskVirtReg != VirtReg.reg || RegMaskTag != UserTag) { RegMaskVirtReg = VirtReg.reg; RegMaskTag = UserTag; RegMaskUsable.clear(); LIS->checkRegMaskInterference(VirtReg, RegMaskUsable); } // The BitVector is indexed by PhysReg, not register unit. // Regmask interference is more fine grained than regunits. // For example, a Win64 call can clobber %ymm8 yet preserve %xmm8. return !RegMaskUsable.empty() && (!PhysReg || !RegMaskUsable.test(PhysReg)); } bool LiveRegMatrix::checkRegUnitInterference(LiveInterval &VirtReg, unsigned PhysReg) { if (VirtReg.empty()) return false; CoalescerPair CP(VirtReg.reg, PhysReg, *TRI); bool Result = foreachUnit(TRI, VirtReg, PhysReg, [&](unsigned Unit, const LiveRange &Range) { const LiveRange &UnitRange = LIS->getRegUnit(Unit); return Range.overlaps(UnitRange, CP, *LIS->getSlotIndexes()); }); return Result; } LiveIntervalUnion::Query &LiveRegMatrix::query(LiveInterval &VirtReg, unsigned RegUnit) { LiveIntervalUnion::Query &Q = Queries[RegUnit]; Q.init(UserTag, &VirtReg, &Matrix[RegUnit]); return Q; } LiveRegMatrix::InterferenceKind LiveRegMatrix::checkInterference(LiveInterval &VirtReg, unsigned PhysReg) { if (VirtReg.empty()) return IK_Free; // Regmask interference is the fastest check. if (checkRegMaskInterference(VirtReg, PhysReg)) return IK_RegMask; // Check for fixed interference. if (checkRegUnitInterference(VirtReg, PhysReg)) return IK_RegUnit; // Check the matrix for virtual register interference. for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) if (query(VirtReg, *Units).checkInterference()) return IK_VirtReg; return IK_Free; }