//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements routines for translating from LLVM IR into SelectionDAG IR. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "isel" #include "SelectionDAGBuilder.h" #include "SDNodeDbgValue.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/GCMetadata.h" #include "llvm/CodeGen/GCStrategy.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/DebugInfo.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetFrameLowering.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetIntrinsicInfo.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetSelectionDAGInfo.h" #include using namespace llvm; /// LimitFloatPrecision - Generate low-precision inline sequences for /// some float libcalls (6, 8 or 12 bits). static unsigned LimitFloatPrecision; static cl::opt LimitFPPrecision("limit-float-precision", cl::desc("Generate low-precision inline sequences " "for some float libcalls"), cl::location(LimitFloatPrecision), cl::init(0)); // Limit the width of DAG chains. This is important in general to prevent // prevent DAG-based analysis from blowing up. For example, alias analysis and // load clustering may not complete in reasonable time. It is difficult to // recognize and avoid this situation within each individual analysis, and // future analyses are likely to have the same behavior. Limiting DAG width is // the safe approach, and will be especially important with global DAGs. // // MaxParallelChains default is arbitrarily high to avoid affecting // optimization, but could be lowered to improve compile time. Any ld-ld-st-st // sequence over this should have been converted to llvm.memcpy by the // frontend. It easy to induce this behavior with .ll code such as: // %buffer = alloca [4096 x i8] // %data = load [4096 x i8]* %argPtr // store [4096 x i8] %data, [4096 x i8]* %buffer static const unsigned MaxParallelChains = 64; static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V); /// getCopyFromParts - Create a value that contains the specified legal parts /// combined into the value they represent. If the parts combine to a type /// larger then ValueVT then AssertOp can be used to specify whether the extra /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT /// (ISD::AssertSext). static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, ISD::NodeType AssertOp = ISD::DELETED_NODE) { if (ValueVT.isVector()) return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V); assert(NumParts > 0 && "No parts to assemble!"); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue Val = Parts[0]; if (NumParts > 1) { // Assemble the value from multiple parts. if (ValueVT.isInteger()) { unsigned PartBits = PartVT.getSizeInBits(); unsigned ValueBits = ValueVT.getSizeInBits(); // Assemble the power of 2 part. unsigned RoundParts = NumParts & (NumParts - 1) ? 1 << Log2_32(NumParts) : NumParts; unsigned RoundBits = PartBits * RoundParts; EVT RoundVT = RoundBits == ValueBits ? ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); SDValue Lo, Hi; EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); if (RoundParts > 2) { Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V); Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, PartVT, HalfVT, V); } else { Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); } if (TLI.isBigEndian()) std::swap(Lo, Hi); Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); if (RoundParts < NumParts) { // Assemble the trailing non-power-of-2 part. unsigned OddParts = NumParts - RoundParts; EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, OddVT, V); // Combine the round and odd parts. Lo = Val; if (TLI.isBigEndian()) std::swap(Lo, Hi); EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, DAG.getConstant(Lo.getValueType().getSizeInBits(), TLI.getPointerTy())); Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); } } else if (PartVT.isFloatingPoint()) { // FP split into multiple FP parts (for ppcf128) assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && "Unexpected split"); SDValue Lo, Hi; Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); if (TLI.isBigEndian()) std::swap(Lo, Hi); Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); } else { // FP split into integer parts (soft fp) assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && !PartVT.isVector() && "Unexpected split"); EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); } } // There is now one part, held in Val. Correct it to match ValueVT. EVT PartEVT = Val.getValueType(); if (PartEVT == ValueVT) return Val; if (PartEVT.isInteger() && ValueVT.isInteger()) { if (ValueVT.bitsLT(PartEVT)) { // For a truncate, see if we have any information to // indicate whether the truncated bits will always be // zero or sign-extension. if (AssertOp != ISD::DELETED_NODE) Val = DAG.getNode(AssertOp, DL, PartEVT, Val, DAG.getValueType(ValueVT)); return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); } return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); } if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { // FP_ROUND's are always exact here. if (ValueVT.bitsLT(Val.getValueType())) return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, DAG.getTargetConstant(1, TLI.getPointerTy())); return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); } if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); llvm_unreachable("Unknown mismatch!"); } /// getCopyFromPartsVector - Create a value that contains the specified legal /// parts combined into the value they represent. If the parts combine to a /// type larger then ValueVT then AssertOp can be used to specify whether the /// extra bits are known to be zero (ISD::AssertZext) or sign extended from /// ValueVT (ISD::AssertSext). static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V) { assert(ValueVT.isVector() && "Not a vector value"); assert(NumParts > 0 && "No parts to assemble!"); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue Val = Parts[0]; // Handle a multi-element vector. if (NumParts > 1) { EVT IntermediateVT; MVT RegisterVT; unsigned NumIntermediates; unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, RegisterVT); assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); NumParts = NumRegs; // Silence a compiler warning. assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); assert(RegisterVT == Parts[0].getSimpleValueType() && "Part type doesn't match part!"); // Assemble the parts into intermediate operands. SmallVector Ops(NumIntermediates); if (NumIntermediates == NumParts) { // If the register was not expanded, truncate or copy the value, // as appropriate. for (unsigned i = 0; i != NumParts; ++i) Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, V); } else if (NumParts > 0) { // If the intermediate type was expanded, build the intermediate // operands from the parts. assert(NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!"); unsigned Factor = NumParts / NumIntermediates; for (unsigned i = 0; i != NumIntermediates; ++i) Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, IntermediateVT, V); } // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the // intermediate operands. Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, ValueVT, &Ops[0], NumIntermediates); } // There is now one part, held in Val. Correct it to match ValueVT. EVT PartEVT = Val.getValueType(); if (PartEVT == ValueVT) return Val; if (PartEVT.isVector()) { // If the element type of the source/dest vectors are the same, but the // parts vector has more elements than the value vector, then we have a // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the // elements we want. if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && "Cannot narrow, it would be a lossy transformation"); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); } // Vector/Vector bitcast. if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && "Cannot handle this kind of promotion"); // Promoted vector extract bool Smaller = ValueVT.bitsLE(PartEVT); return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), DL, ValueVT, Val); } // Trivial bitcast if the types are the same size and the destination // vector type is legal. if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && TLI.isTypeLegal(ValueVT)) return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); // Handle cases such as i8 -> <1 x i1> if (ValueVT.getVectorNumElements() != 1) { LLVMContext &Ctx = *DAG.getContext(); Twine ErrMsg("non-trivial scalar-to-vector conversion"); if (const Instruction *I = dyn_cast_or_null(V)) { if (const CallInst *CI = dyn_cast(I)) if (isa(CI->getCalledValue())) ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; Ctx.emitError(I, ErrMsg); } else { Ctx.emitError(ErrMsg); } return DAG.getUNDEF(ValueVT); } if (ValueVT.getVectorNumElements() == 1 && ValueVT.getVectorElementType() != PartEVT) { bool Smaller = ValueVT.bitsLE(PartEVT); Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), DL, ValueVT.getScalarType(), Val); } return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); } static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V); /// getCopyToParts - Create a series of nodes that contain the specified value /// split into legal parts. If the parts contain more bits than Val, then, for /// integers, ExtendKind can be used to specify how to generate the extra bits. static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { EVT ValueVT = Val.getValueType(); // Handle the vector case separately. if (ValueVT.isVector()) return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned PartBits = PartVT.getSizeInBits(); unsigned OrigNumParts = NumParts; assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); if (NumParts == 0) return; assert(!ValueVT.isVector() && "Vector case handled elsewhere"); EVT PartEVT = PartVT; if (PartEVT == ValueVT) { assert(NumParts == 1 && "No-op copy with multiple parts!"); Parts[0] = Val; return; } if (NumParts * PartBits > ValueVT.getSizeInBits()) { // If the parts cover more bits than the value has, promote the value. if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { assert(NumParts == 1 && "Do not know what to promote to!"); Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); } else { assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && "Unknown mismatch!"); ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); if (PartVT == MVT::x86mmx) Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); } } else if (PartBits == ValueVT.getSizeInBits()) { // Different types of the same size. assert(NumParts == 1 && PartEVT != ValueVT); Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { // If the parts cover less bits than value has, truncate the value. assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && "Unknown mismatch!"); ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); if (PartVT == MVT::x86mmx) Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); } // The value may have changed - recompute ValueVT. ValueVT = Val.getValueType(); assert(NumParts * PartBits == ValueVT.getSizeInBits() && "Failed to tile the value with PartVT!"); if (NumParts == 1) { if (PartEVT != ValueVT) { LLVMContext &Ctx = *DAG.getContext(); Twine ErrMsg("scalar-to-vector conversion failed"); if (const Instruction *I = dyn_cast_or_null(V)) { if (const CallInst *CI = dyn_cast(I)) if (isa(CI->getCalledValue())) ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; Ctx.emitError(I, ErrMsg); } else { Ctx.emitError(ErrMsg); } } Parts[0] = Val; return; } // Expand the value into multiple parts. if (NumParts & (NumParts - 1)) { // The number of parts is not a power of 2. Split off and copy the tail. assert(PartVT.isInteger() && ValueVT.isInteger() && "Do not know what to expand to!"); unsigned RoundParts = 1 << Log2_32(NumParts); unsigned RoundBits = RoundParts * PartBits; unsigned OddParts = NumParts - RoundParts; SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, DAG.getIntPtrConstant(RoundBits)); getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); if (TLI.isBigEndian()) // The odd parts were reversed by getCopyToParts - unreverse them. std::reverse(Parts + RoundParts, Parts + NumParts); NumParts = RoundParts; ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); } // The number of parts is a power of 2. Repeatedly bisect the value using // EXTRACT_ELEMENT. Parts[0] = DAG.getNode(ISD::BITCAST, DL, EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()), Val); for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { for (unsigned i = 0; i < NumParts; i += StepSize) { unsigned ThisBits = StepSize * PartBits / 2; EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); SDValue &Part0 = Parts[i]; SDValue &Part1 = Parts[i+StepSize/2]; Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, ThisVT, Part0, DAG.getIntPtrConstant(1)); Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, ThisVT, Part0, DAG.getIntPtrConstant(0)); if (ThisBits == PartBits && ThisVT != PartVT) { Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); } } } if (TLI.isBigEndian()) std::reverse(Parts, Parts + OrigNumParts); } /// getCopyToPartsVector - Create a series of nodes that contain the specified /// value split into legal parts. static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V) { EVT ValueVT = Val.getValueType(); assert(ValueVT.isVector() && "Not a vector"); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (NumParts == 1) { EVT PartEVT = PartVT; if (PartEVT == ValueVT) { // Nothing to do. } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { // Bitconvert vector->vector case. Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); } else if (PartVT.isVector() && PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { EVT ElementVT = PartVT.getVectorElementType(); // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in // undef elements. SmallVector Ops; for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, DAG.getConstant(i, TLI.getVectorIdxTy()))); for (unsigned i = ValueVT.getVectorNumElements(), e = PartVT.getVectorNumElements(); i != e; ++i) Ops.push_back(DAG.getUNDEF(ElementVT)); Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); // FIXME: Use CONCAT for 2x -> 4x. //SDValue UndefElts = DAG.getUNDEF(VectorTy); //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); } else if (PartVT.isVector() && PartEVT.getVectorElementType().bitsGE( ValueVT.getVectorElementType()) && PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { // Promoted vector extract bool Smaller = PartEVT.bitsLE(ValueVT); Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), DL, PartVT, Val); } else{ // Vector -> scalar conversion. assert(ValueVT.getVectorNumElements() == 1 && "Only trivial vector-to-scalar conversions should get here!"); Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); bool Smaller = ValueVT.bitsLE(PartVT); Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), DL, PartVT, Val); } Parts[0] = Val; return; } // Handle a multi-element vector. EVT IntermediateVT; MVT RegisterVT; unsigned NumIntermediates; unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, RegisterVT); unsigned NumElements = ValueVT.getVectorNumElements(); assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); NumParts = NumRegs; // Silence a compiler warning. assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); // Split the vector into intermediate operands. SmallVector Ops(NumIntermediates); for (unsigned i = 0; i != NumIntermediates; ++i) { if (IntermediateVT.isVector()) Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, DAG.getConstant(i * (NumElements / NumIntermediates), TLI.getVectorIdxTy())); else Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, DAG.getConstant(i, TLI.getVectorIdxTy())); } // Split the intermediate operands into legal parts. if (NumParts == NumIntermediates) { // If the register was not expanded, promote or copy the value, // as appropriate. for (unsigned i = 0; i != NumParts; ++i) getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); } else if (NumParts > 0) { // If the intermediate type was expanded, split each the value into // legal parts. assert(NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!"); unsigned Factor = NumParts / NumIntermediates; for (unsigned i = 0; i != NumIntermediates; ++i) getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); } } namespace { /// RegsForValue - This struct represents the registers (physical or virtual) /// that a particular set of values is assigned, and the type information /// about the value. The most common situation is to represent one value at a /// time, but struct or array values are handled element-wise as multiple /// values. The splitting of aggregates is performed recursively, so that we /// never have aggregate-typed registers. The values at this point do not /// necessarily have legal types, so each value may require one or more /// registers of some legal type. /// struct RegsForValue { /// ValueVTs - The value types of the values, which may not be legal, and /// may need be promoted or synthesized from one or more registers. /// SmallVector ValueVTs; /// RegVTs - The value types of the registers. This is the same size as /// ValueVTs and it records, for each value, what the type of the assigned /// register or registers are. (Individual values are never synthesized /// from more than one type of register.) /// /// With virtual registers, the contents of RegVTs is redundant with TLI's /// getRegisterType member function, however when with physical registers /// it is necessary to have a separate record of the types. /// SmallVector RegVTs; /// Regs - This list holds the registers assigned to the values. /// Each legal or promoted value requires one register, and each /// expanded value requires multiple registers. /// SmallVector Regs; RegsForValue() {} RegsForValue(const SmallVector ®s, MVT regvt, EVT valuevt) : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} RegsForValue(LLVMContext &Context, const TargetLowering &tli, unsigned Reg, Type *Ty) { ComputeValueVTs(tli, Ty, ValueVTs); for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { EVT ValueVT = ValueVTs[Value]; unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); MVT RegisterVT = tli.getRegisterType(Context, ValueVT); for (unsigned i = 0; i != NumRegs; ++i) Regs.push_back(Reg + i); RegVTs.push_back(RegisterVT); Reg += NumRegs; } } /// areValueTypesLegal - Return true if types of all the values are legal. bool areValueTypesLegal(const TargetLowering &TLI) { for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { MVT RegisterVT = RegVTs[Value]; if (!TLI.isTypeLegal(RegisterVT)) return false; } return true; } /// append - Add the specified values to this one. void append(const RegsForValue &RHS) { ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); Regs.append(RHS.Regs.begin(), RHS.Regs.end()); } /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from /// this value and returns the result as a ValueVTs value. This uses /// Chain/Flag as the input and updates them for the output Chain/Flag. /// If the Flag pointer is NULL, no flag is used. SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, SDLoc dl, SDValue &Chain, SDValue *Flag, const Value *V = 0) const; /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the /// specified value into the registers specified by this object. This uses /// Chain/Flag as the input and updates them for the output Chain/Flag. /// If the Flag pointer is NULL, no flag is used. void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, SDValue *Flag, const Value *V) const; /// AddInlineAsmOperands - Add this value to the specified inlineasm node /// operand list. This adds the code marker, matching input operand index /// (if applicable), and includes the number of values added into it. void AddInlineAsmOperands(unsigned Kind, bool HasMatching, unsigned MatchingIdx, SelectionDAG &DAG, std::vector &Ops) const; }; } /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from /// this value and returns the result as a ValueVT value. This uses /// Chain/Flag as the input and updates them for the output Chain/Flag. /// If the Flag pointer is NULL, no flag is used. SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, SDLoc dl, SDValue &Chain, SDValue *Flag, const Value *V) const { // A Value with type {} or [0 x %t] needs no registers. if (ValueVTs.empty()) return SDValue(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // Assemble the legal parts into the final values. SmallVector Values(ValueVTs.size()); SmallVector Parts; for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { // Copy the legal parts from the registers. EVT ValueVT = ValueVTs[Value]; unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); MVT RegisterVT = RegVTs[Value]; Parts.resize(NumRegs); for (unsigned i = 0; i != NumRegs; ++i) { SDValue P; if (Flag == 0) { P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); } else { P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); *Flag = P.getValue(2); } Chain = P.getValue(1); Parts[i] = P; // If the source register was virtual and if we know something about it, // add an assert node. if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || !RegisterVT.isInteger() || RegisterVT.isVector()) continue; const FunctionLoweringInfo::LiveOutInfo *LOI = FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); if (!LOI) continue; unsigned RegSize = RegisterVT.getSizeInBits(); unsigned NumSignBits = LOI->NumSignBits; unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); if (NumZeroBits == RegSize) { // The current value is a zero. // Explicitly express that as it would be easier for // optimizations to kick in. Parts[i] = DAG.getConstant(0, RegisterVT); continue; } // FIXME: We capture more information than the dag can represent. For // now, just use the tightest assertzext/assertsext possible. bool isSExt = true; EVT FromVT(MVT::Other); if (NumSignBits == RegSize) isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 else if (NumZeroBits >= RegSize-1) isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 else if (NumSignBits > RegSize-8) isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 else if (NumZeroBits >= RegSize-8) isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 else if (NumSignBits > RegSize-16) isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 else if (NumZeroBits >= RegSize-16) isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 else if (NumSignBits > RegSize-32) isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 else if (NumZeroBits >= RegSize-32) isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 else continue; // Add an assertion node. assert(FromVT != MVT::Other); Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, RegisterVT, P, DAG.getValueType(FromVT)); } Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, RegisterVT, ValueVT, V); Part += NumRegs; Parts.clear(); } return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(&ValueVTs[0], ValueVTs.size()), &Values[0], ValueVTs.size()); } /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the /// specified value into the registers specified by this object. This uses /// Chain/Flag as the input and updates them for the output Chain/Flag. /// If the Flag pointer is NULL, no flag is used. void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, SDValue *Flag, const Value *V) const { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // Get the list of the values's legal parts. unsigned NumRegs = Regs.size(); SmallVector Parts(NumRegs); for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { EVT ValueVT = ValueVTs[Value]; unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); MVT RegisterVT = RegVTs[Value]; ISD::NodeType ExtendKind = TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], NumParts, RegisterVT, V, ExtendKind); Part += NumParts; } // Copy the parts into the registers. SmallVector Chains(NumRegs); for (unsigned i = 0; i != NumRegs; ++i) { SDValue Part; if (Flag == 0) { Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); } else { Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); *Flag = Part.getValue(1); } Chains[i] = Part.getValue(0); } if (NumRegs == 1 || Flag) // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is // flagged to it. That is the CopyToReg nodes and the user are considered // a single scheduling unit. If we create a TokenFactor and return it as // chain, then the TokenFactor is both a predecessor (operand) of the // user as well as a successor (the TF operands are flagged to the user). // c1, f1 = CopyToReg // c2, f2 = CopyToReg // c3 = TokenFactor c1, c2 // ... // = op c3, ..., f2 Chain = Chains[NumRegs-1]; else Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); } /// AddInlineAsmOperands - Add this value to the specified inlineasm node /// operand list. This adds the code marker and includes the number of /// values added into it. void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, unsigned MatchingIdx, SelectionDAG &DAG, std::vector &Ops) const { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); if (HasMatching) Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); else if (!Regs.empty() && TargetRegisterInfo::isVirtualRegister(Regs.front())) { // Put the register class of the virtual registers in the flag word. That // way, later passes can recompute register class constraints for inline // assembly as well as normal instructions. // Don't do this for tied operands that can use the regclass information // from the def. const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); } SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); Ops.push_back(Res); for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); MVT RegisterVT = RegVTs[Value]; for (unsigned i = 0; i != NumRegs; ++i) { assert(Reg < Regs.size() && "Mismatch in # registers expected"); Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); } } } void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, const TargetLibraryInfo *li) { AA = &aa; GFI = gfi; LibInfo = li; TD = DAG.getTarget().getDataLayout(); Context = DAG.getContext(); LPadToCallSiteMap.clear(); } /// clear - Clear out the current SelectionDAG and the associated /// state and prepare this SelectionDAGBuilder object to be used /// for a new block. This doesn't clear out information about /// additional blocks that are needed to complete switch lowering /// or PHI node updating; that information is cleared out as it is /// consumed. void SelectionDAGBuilder::clear() { NodeMap.clear(); UnusedArgNodeMap.clear(); PendingLoads.clear(); PendingExports.clear(); CurInst = NULL; HasTailCall = false; } /// clearDanglingDebugInfo - Clear the dangling debug information /// map. This function is separated from the clear so that debug /// information that is dangling in a basic block can be properly /// resolved in a different basic block. This allows the /// SelectionDAG to resolve dangling debug information attached /// to PHI nodes. void SelectionDAGBuilder::clearDanglingDebugInfo() { DanglingDebugInfoMap.clear(); } /// getRoot - Return the current virtual root of the Selection DAG, /// flushing any PendingLoad items. This must be done before emitting /// a store or any other node that may need to be ordered after any /// prior load instructions. /// SDValue SelectionDAGBuilder::getRoot() { if (PendingLoads.empty()) return DAG.getRoot(); if (PendingLoads.size() == 1) { SDValue Root = PendingLoads[0]; DAG.setRoot(Root); PendingLoads.clear(); return Root; } // Otherwise, we have to make a token factor node. SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, &PendingLoads[0], PendingLoads.size()); PendingLoads.clear(); DAG.setRoot(Root); return Root; } /// getControlRoot - Similar to getRoot, but instead of flushing all the /// PendingLoad items, flush all the PendingExports items. It is necessary /// to do this before emitting a terminator instruction. /// SDValue SelectionDAGBuilder::getControlRoot() { SDValue Root = DAG.getRoot(); if (PendingExports.empty()) return Root; // Turn all of the CopyToReg chains into one factored node. if (Root.getOpcode() != ISD::EntryToken) { unsigned i = 0, e = PendingExports.size(); for (; i != e; ++i) { assert(PendingExports[i].getNode()->getNumOperands() > 1); if (PendingExports[i].getNode()->getOperand(0) == Root) break; // Don't add the root if we already indirectly depend on it. } if (i == e) PendingExports.push_back(Root); } Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, &PendingExports[0], PendingExports.size()); PendingExports.clear(); DAG.setRoot(Root); return Root; } void SelectionDAGBuilder::visit(const Instruction &I) { // Set up outgoing PHI node register values before emitting the terminator. if (isa(&I)) HandlePHINodesInSuccessorBlocks(I.getParent()); ++SDNodeOrder; CurInst = &I; visit(I.getOpcode(), I); if (!isa(&I) && !HasTailCall) CopyToExportRegsIfNeeded(&I); CurInst = NULL; } void SelectionDAGBuilder::visitPHI(const PHINode &) { llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); } void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { // Note: this doesn't use InstVisitor, because it has to work with // ConstantExpr's in addition to instructions. switch (Opcode) { default: llvm_unreachable("Unknown instruction type encountered!"); // Build the switch statement using the Instruction.def file. #define HANDLE_INST(NUM, OPCODE, CLASS) \ case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; #include "llvm/IR/Instruction.def" } } // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, // generate the debug data structures now that we've seen its definition. void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, SDValue Val) { DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; if (DDI.getDI()) { const DbgValueInst *DI = DDI.getDI(); DebugLoc dl = DDI.getdl(); unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); MDNode *Variable = DI->getVariable(); uint64_t Offset = DI->getOffset(); SDDbgValue *SDV; if (Val.getNode()) { if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { SDV = DAG.getDbgValue(Variable, Val.getNode(), Val.getResNo(), Offset, dl, DbgSDNodeOrder); DAG.AddDbgValue(SDV, Val.getNode(), false); } } else DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); DanglingDebugInfoMap[V] = DanglingDebugInfo(); } } /// getValue - Return an SDValue for the given Value. SDValue SelectionDAGBuilder::getValue(const Value *V) { // If we already have an SDValue for this value, use it. It's important // to do this first, so that we don't create a CopyFromReg if we already // have a regular SDValue. SDValue &N = NodeMap[V]; if (N.getNode()) return N; // If there's a virtual register allocated and initialized for this // value, use it. DenseMap::iterator It = FuncInfo.ValueMap.find(V); if (It != FuncInfo.ValueMap.end()) { unsigned InReg = It->second; RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), InReg, V->getType()); SDValue Chain = DAG.getEntryNode(); N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); resolveDanglingDebugInfo(V, N); return N; } // Otherwise create a new SDValue and remember it. SDValue Val = getValueImpl(V); NodeMap[V] = Val; resolveDanglingDebugInfo(V, Val); return Val; } /// getNonRegisterValue - Return an SDValue for the given Value, but /// don't look in FuncInfo.ValueMap for a virtual register. SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { // If we already have an SDValue for this value, use it. SDValue &N = NodeMap[V]; if (N.getNode()) return N; // Otherwise create a new SDValue and remember it. SDValue Val = getValueImpl(V); NodeMap[V] = Val; resolveDanglingDebugInfo(V, Val); return Val; } /// getValueImpl - Helper function for getValue and getNonRegisterValue. /// Create an SDValue for the given value. SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { const TargetLowering *TLI = TM.getTargetLowering(); if (const Constant *C = dyn_cast(V)) { EVT VT = TLI->getValueType(V->getType(), true); if (const ConstantInt *CI = dyn_cast(C)) return DAG.getConstant(*CI, VT); if (const GlobalValue *GV = dyn_cast(C)) return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); if (isa(C)) return DAG.getConstant(0, TLI->getPointerTy()); if (const ConstantFP *CFP = dyn_cast(C)) return DAG.getConstantFP(*CFP, VT); if (isa(C) && !V->getType()->isAggregateType()) return DAG.getUNDEF(VT); if (const ConstantExpr *CE = dyn_cast(C)) { visit(CE->getOpcode(), *CE); SDValue N1 = NodeMap[V]; assert(N1.getNode() && "visit didn't populate the NodeMap!"); return N1; } if (isa(C) || isa(C)) { SmallVector Constants; for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); OI != OE; ++OI) { SDNode *Val = getValue(*OI).getNode(); // If the operand is an empty aggregate, there are no values. if (!Val) continue; // Add each leaf value from the operand to the Constants list // to form a flattened list of all the values. for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) Constants.push_back(SDValue(Val, i)); } return DAG.getMergeValues(&Constants[0], Constants.size(), getCurSDLoc()); } if (const ConstantDataSequential *CDS = dyn_cast(C)) { SmallVector Ops; for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); // Add each leaf value from the operand to the Constants list // to form a flattened list of all the values. for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) Ops.push_back(SDValue(Val, i)); } if (isa(CDS->getType())) return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, &Ops[0], Ops.size()); } if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { assert((isa(C) || isa(C)) && "Unknown struct or array constant!"); SmallVector ValueVTs; ComputeValueVTs(*TLI, C->getType(), ValueVTs); unsigned NumElts = ValueVTs.size(); if (NumElts == 0) return SDValue(); // empty struct SmallVector Constants(NumElts); for (unsigned i = 0; i != NumElts; ++i) { EVT EltVT = ValueVTs[i]; if (isa(C)) Constants[i] = DAG.getUNDEF(EltVT); else if (EltVT.isFloatingPoint()) Constants[i] = DAG.getConstantFP(0, EltVT); else Constants[i] = DAG.getConstant(0, EltVT); } return DAG.getMergeValues(&Constants[0], NumElts, getCurSDLoc()); } if (const BlockAddress *BA = dyn_cast(C)) return DAG.getBlockAddress(BA, VT); VectorType *VecTy = cast(V->getType()); unsigned NumElements = VecTy->getNumElements(); // Now that we know the number and type of the elements, get that number of // elements into the Ops array based on what kind of constant it is. SmallVector Ops; if (const ConstantVector *CV = dyn_cast(C)) { for (unsigned i = 0; i != NumElements; ++i) Ops.push_back(getValue(CV->getOperand(i))); } else { assert(isa(C) && "Unknown vector constant!"); EVT EltVT = TLI->getValueType(VecTy->getElementType()); SDValue Op; if (EltVT.isFloatingPoint()) Op = DAG.getConstantFP(0, EltVT); else Op = DAG.getConstant(0, EltVT); Ops.assign(NumElements, Op); } // Create a BUILD_VECTOR node. return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, &Ops[0], Ops.size()); } // If this is a static alloca, generate it as the frameindex instead of // computation. if (const AllocaInst *AI = dyn_cast(V)) { DenseMap::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); } // If this is an instruction which fast-isel has deferred, select it now. if (const Instruction *Inst = dyn_cast(V)) { unsigned InReg = FuncInfo.InitializeRegForValue(Inst); RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); SDValue Chain = DAG.getEntryNode(); return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); } llvm_unreachable("Can't get register for value!"); } void SelectionDAGBuilder::visitRet(const ReturnInst &I) { const TargetLowering *TLI = TM.getTargetLowering(); SDValue Chain = getControlRoot(); SmallVector Outs; SmallVector OutVals; if (!FuncInfo.CanLowerReturn) { unsigned DemoteReg = FuncInfo.DemoteRegister; const Function *F = I.getParent()->getParent(); // Emit a store of the return value through the virtual register. // Leave Outs empty so that LowerReturn won't try to load return // registers the usual way. SmallVector PtrValueVTs; ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), PtrValueVTs); SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); SDValue RetOp = getValue(I.getOperand(0)); SmallVector ValueVTs; SmallVector Offsets; ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); unsigned NumValues = ValueVTs.size(); SmallVector Chains(NumValues); for (unsigned i = 0; i != NumValues; ++i) { SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), RetPtr.getValueType(), RetPtr, DAG.getIntPtrConstant(Offsets[i])); Chains[i] = DAG.getStore(Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), // FIXME: better loc info would be nice. Add, MachinePointerInfo(), false, false, 0); } Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, &Chains[0], NumValues); } else if (I.getNumOperands() != 0) { SmallVector ValueVTs; ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); unsigned NumValues = ValueVTs.size(); if (NumValues) { SDValue RetOp = getValue(I.getOperand(0)); for (unsigned j = 0, f = NumValues; j != f; ++j) { EVT VT = ValueVTs[j]; ISD::NodeType ExtendKind = ISD::ANY_EXTEND; const Function *F = I.getParent()->getParent(); if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) ExtendKind = ISD::SIGN_EXTEND; else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) ExtendKind = ISD::ZERO_EXTEND; if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); SmallVector Parts(NumParts); getCopyToParts(DAG, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + j), &Parts[0], NumParts, PartVT, &I, ExtendKind); // 'inreg' on function refers to return value ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg)) Flags.setInReg(); // Propagate extension type if any if (ExtendKind == ISD::SIGN_EXTEND) Flags.setSExt(); else if (ExtendKind == ISD::ZERO_EXTEND) Flags.setZExt(); for (unsigned i = 0; i < NumParts; ++i) { Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), VT, /*isfixed=*/true, 0, 0)); OutVals.push_back(Parts[i]); } } } } bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); CallingConv::ID CallConv = DAG.getMachineFunction().getFunction()->getCallingConv(); Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); // Verify that the target's LowerReturn behaved as expected. assert(Chain.getNode() && Chain.getValueType() == MVT::Other && "LowerReturn didn't return a valid chain!"); // Update the DAG with the new chain value resulting from return lowering. DAG.setRoot(Chain); } /// CopyToExportRegsIfNeeded - If the given value has virtual registers /// created for it, emit nodes to copy the value into the virtual /// registers. void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { // Skip empty types if (V->getType()->isEmptyTy()) return; DenseMap::iterator VMI = FuncInfo.ValueMap.find(V); if (VMI != FuncInfo.ValueMap.end()) { assert(!V->use_empty() && "Unused value assigned virtual registers!"); CopyValueToVirtualRegister(V, VMI->second); } } /// ExportFromCurrentBlock - If this condition isn't known to be exported from /// the current basic block, add it to ValueMap now so that we'll get a /// CopyTo/FromReg. void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { // No need to export constants. if (!isa(V) && !isa(V)) return; // Already exported? if (FuncInfo.isExportedInst(V)) return; unsigned Reg = FuncInfo.InitializeRegForValue(V); CopyValueToVirtualRegister(V, Reg); } bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB) { // The operands of the setcc have to be in this block. We don't know // how to export them from some other block. if (const Instruction *VI = dyn_cast(V)) { // Can export from current BB. if (VI->getParent() == FromBB) return true; // Is already exported, noop. return FuncInfo.isExportedInst(V); } // If this is an argument, we can export it if the BB is the entry block or // if it is already exported. if (isa(V)) { if (FromBB == &FromBB->getParent()->getEntryBlock()) return true; // Otherwise, can only export this if it is already exported. return FuncInfo.isExportedInst(V); } // Otherwise, constants can always be exported. return true; } /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const { BranchProbabilityInfo *BPI = FuncInfo.BPI; if (!BPI) return 0; const BasicBlock *SrcBB = Src->getBasicBlock(); const BasicBlock *DstBB = Dst->getBasicBlock(); return BPI->getEdgeWeight(SrcBB, DstBB); } void SelectionDAGBuilder:: addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, uint32_t Weight /* = 0 */) { if (!Weight) Weight = getEdgeWeight(Src, Dst); Src->addSuccessor(Dst, Weight); } static bool InBlock(const Value *V, const BasicBlock *BB) { if (const Instruction *I = dyn_cast(V)) return I->getParent() == BB; return true; } /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. /// This function emits a branch and is used at the leaves of an OR or an /// AND operator tree. /// void SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB) { const BasicBlock *BB = CurBB->getBasicBlock(); // If the leaf of the tree is a comparison, merge the condition into // the caseblock. if (const CmpInst *BOp = dyn_cast(Cond)) { // The operands of the cmp have to be in this block. We don't know // how to export them from some other block. If this is the first block // of the sequence, no exporting is needed. if (CurBB == SwitchBB || (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { ISD::CondCode Condition; if (const ICmpInst *IC = dyn_cast(Cond)) { Condition = getICmpCondCode(IC->getPredicate()); } else if (const FCmpInst *FC = dyn_cast(Cond)) { Condition = getFCmpCondCode(FC->getPredicate()); if (TM.Options.NoNaNsFPMath) Condition = getFCmpCodeWithoutNaN(Condition); } else { Condition = ISD::SETEQ; // silence warning. llvm_unreachable("Unknown compare instruction"); } CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), NULL, TBB, FBB, CurBB); SwitchCases.push_back(CB); return; } } // Create a CaseBlock record representing this branch. CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), NULL, TBB, FBB, CurBB); SwitchCases.push_back(CB); } /// FindMergedConditions - If Cond is an expression like void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, unsigned Opc) { // If this node is not part of the or/and tree, emit it as a branch. const Instruction *BOp = dyn_cast(Cond); if (!BOp || !(isa(BOp) || isa(BOp)) || (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || BOp->getParent() != CurBB->getBasicBlock() || !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); return; } // Create TmpBB after CurBB. MachineFunction::iterator BBI = CurBB; MachineFunction &MF = DAG.getMachineFunction(); MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); CurBB->getParent()->insert(++BBI, TmpBB); if (Opc == Instruction::Or) { // Codegen X | Y as: // jmp_if_X TBB // jmp TmpBB // TmpBB: // jmp_if_Y TBB // jmp FBB // // Emit the LHS condition. FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); // Emit the RHS condition into TmpBB. FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); } else { assert(Opc == Instruction::And && "Unknown merge op!"); // Codegen X & Y as: // jmp_if_X TmpBB // jmp FBB // TmpBB: // jmp_if_Y TBB // jmp FBB // // This requires creation of TmpBB after CurBB. // Emit the LHS condition. FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); // Emit the RHS condition into TmpBB. FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); } } /// If the set of cases should be emitted as a series of branches, return true. /// If we should emit this as a bunch of and/or'd together conditions, return /// false. bool SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector &Cases) { if (Cases.size() != 2) return true; // If this is two comparisons of the same values or'd or and'd together, they // will get folded into a single comparison, so don't emit two blocks. if ((Cases[0].CmpLHS == Cases[1].CmpLHS && Cases[0].CmpRHS == Cases[1].CmpRHS) || (Cases[0].CmpRHS == Cases[1].CmpLHS && Cases[0].CmpLHS == Cases[1].CmpRHS)) { return false; } // Handle: (X != null) | (Y != null) --> (X|Y) != 0 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 if (Cases[0].CmpRHS == Cases[1].CmpRHS && Cases[0].CC == Cases[1].CC && isa(Cases[0].CmpRHS) && cast(Cases[0].CmpRHS)->isNullValue()) { if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) return false; if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) return false; } return true; } void SelectionDAGBuilder::visitBr(const BranchInst &I) { MachineBasicBlock *BrMBB = FuncInfo.MBB; // Update machine-CFG edges. MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; // Figure out which block is immediately after the current one. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = BrMBB; if (++BBI != FuncInfo.MF->end()) NextBlock = BBI; if (I.isUnconditional()) { // Update machine-CFG edges. BrMBB->addSuccessor(Succ0MBB); // If this is not a fall-through branch, emit the branch. if (Succ0MBB != NextBlock) DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), DAG.getBasicBlock(Succ0MBB))); return; } // If this condition is one of the special cases we handle, do special stuff // now. const Value *CondVal = I.getCondition(); MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; // If this is a series of conditions that are or'd or and'd together, emit // this as a sequence of branches instead of setcc's with and/or operations. // As long as jumps are not expensive, this should improve performance. // For example, instead of something like: // cmp A, B // C = seteq // cmp D, E // F = setle // or C, F // jnz foo // Emit: // cmp A, B // je foo // cmp D, E // jle foo // if (const BinaryOperator *BOp = dyn_cast(CondVal)) { if (!TM.getTargetLowering()->isJumpExpensive() && BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || BOp->getOpcode() == Instruction::Or)) { FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, BOp->getOpcode()); // If the compares in later blocks need to use values not currently // exported from this block, export them now. This block should always // be the first entry. assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); // Allow some cases to be rejected. if (ShouldEmitAsBranches(SwitchCases)) { for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { ExportFromCurrentBlock(SwitchCases[i].CmpLHS); ExportFromCurrentBlock(SwitchCases[i].CmpRHS); } // Emit the branch for this block. visitSwitchCase(SwitchCases[0], BrMBB); SwitchCases.erase(SwitchCases.begin()); return; } // Okay, we decided not to do this, remove any inserted MBB's and clear // SwitchCases. for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) FuncInfo.MF->erase(SwitchCases[i].ThisBB); SwitchCases.clear(); } } // Create a CaseBlock record representing this branch. CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), NULL, Succ0MBB, Succ1MBB, BrMBB); // Use visitSwitchCase to actually insert the fast branch sequence for this // cond branch. visitSwitchCase(CB, BrMBB); } /// visitSwitchCase - Emits the necessary code to represent a single node in /// the binary search tree resulting from lowering a switch instruction. void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, MachineBasicBlock *SwitchBB) { SDValue Cond; SDValue CondLHS = getValue(CB.CmpLHS); SDLoc dl = getCurSDLoc(); // Build the setcc now. if (CB.CmpMHS == NULL) { // Fold "(X == true)" to X and "(X == false)" to !X to // handle common cases produced by branch lowering. if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && CB.CC == ISD::SETEQ) Cond = CondLHS; else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && CB.CC == ISD::SETEQ) { SDValue True = DAG.getConstant(1, CondLHS.getValueType()); Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); } else Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); } else { assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); const APInt& Low = cast(CB.CmpLHS)->getValue(); const APInt& High = cast(CB.CmpRHS)->getValue(); SDValue CmpOp = getValue(CB.CmpMHS); EVT VT = CmpOp.getValueType(); if (cast(CB.CmpLHS)->isMinValue(true)) { Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE); } else { SDValue SUB = DAG.getNode(ISD::SUB, dl, VT, CmpOp, DAG.getConstant(Low, VT)); Cond = DAG.getSetCC(dl, MVT::i1, SUB, DAG.getConstant(High-Low, VT), ISD::SETULE); } } // Update successor info addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); // TrueBB and FalseBB are always different unless the incoming IR is // degenerate. This only happens when running llc on weird IR. if (CB.TrueBB != CB.FalseBB) addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); // Set NextBlock to be the MBB immediately after the current one, if any. // This is used to avoid emitting unnecessary branches to the next block. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = SwitchBB; if (++BBI != FuncInfo.MF->end()) NextBlock = BBI; // If the lhs block is the next block, invert the condition so that we can // fall through to the lhs instead of the rhs block. if (CB.TrueBB == NextBlock) { std::swap(CB.TrueBB, CB.FalseBB); SDValue True = DAG.getConstant(1, Cond.getValueType()); Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); } SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(), Cond, DAG.getBasicBlock(CB.TrueBB)); // Insert the false branch. Do this even if it's a fall through branch, // this makes it easier to do DAG optimizations which require inverting // the branch condition. BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, DAG.getBasicBlock(CB.FalseBB)); DAG.setRoot(BrCond); } /// visitJumpTable - Emit JumpTable node in the current MBB void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { // Emit the code for the jump table assert(JT.Reg != -1U && "Should lower JT Header first!"); EVT PTy = TM.getTargetLowering()->getPointerTy(); SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), JT.Reg, PTy); SDValue Table = DAG.getJumpTable(JT.JTI, PTy); SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), MVT::Other, Index.getValue(1), Table, Index); DAG.setRoot(BrJumpTable); } /// visitJumpTableHeader - This function emits necessary code to produce index /// in the JumpTable from switch case. void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH, MachineBasicBlock *SwitchBB) { // Subtract the lowest switch case value from the value being switched on and // conditional branch to default mbb if the result is greater than the // difference between smallest and largest cases. SDValue SwitchOp = getValue(JTH.SValue); EVT VT = SwitchOp.getValueType(); SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, DAG.getConstant(JTH.First, VT)); // The SDNode we just created, which holds the value being switched on minus // the smallest case value, needs to be copied to a virtual register so it // can be used as an index into the jump table in a subsequent basic block. // This value may be smaller or larger than the target's pointer type, and // therefore require extension or truncating. const TargetLowering *TLI = TM.getTargetLowering(); SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), JumpTableReg, SwitchOp); JT.Reg = JumpTableReg; // Emit the range check for the jump table, and branch to the default block // for the switch statement if the value being switched on exceeds the largest // case in the switch. SDValue CMP = DAG.getSetCC(getCurSDLoc(), TLI->getSetCCResultType(*DAG.getContext(), Sub.getValueType()), Sub, DAG.getConstant(JTH.Last - JTH.First,VT), ISD::SETUGT); // Set NextBlock to be the MBB immediately after the current one, if any. // This is used to avoid emitting unnecessary branches to the next block. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = SwitchBB; if (++BBI != FuncInfo.MF->end()) NextBlock = BBI; SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), MVT::Other, CopyTo, CMP, DAG.getBasicBlock(JT.Default)); if (JT.MBB != NextBlock) BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, DAG.getBasicBlock(JT.MBB)); DAG.setRoot(BrCond); } /// Codegen a new tail for a stack protector check ParentMBB which has had its /// tail spliced into a stack protector check success bb. /// /// For a high level explanation of how this fits into the stack protector /// generation see the comment on the declaration of class /// StackProtectorDescriptor. void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, MachineBasicBlock *ParentBB) { // First create the loads to the guard/stack slot for the comparison. const TargetLowering *TLI = TM.getTargetLowering(); EVT PtrTy = TLI->getPointerTy(); MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); int FI = MFI->getStackProtectorIndex(); const Value *IRGuard = SPD.getGuard(); SDValue GuardPtr = getValue(IRGuard); SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), GuardPtr, MachinePointerInfo(IRGuard, 0), true, false, false, Align); SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), StackSlotPtr, MachinePointerInfo::getFixedStack(FI), true, false, false, Align); // Perform the comparison via a subtract/getsetcc. EVT VT = Guard.getValueType(); SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); SDValue Cmp = DAG.getSetCC(getCurSDLoc(), TLI->getSetCCResultType(*DAG.getContext(), Sub.getValueType()), Sub, DAG.getConstant(0, VT), ISD::SETNE); // If the sub is not 0, then we know the guard/stackslot do not equal, so // branch to failure MBB. SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), MVT::Other, StackSlot.getOperand(0), Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); // Otherwise branch to success MBB. SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, DAG.getBasicBlock(SPD.getSuccessMBB())); DAG.setRoot(Br); } /// Codegen the failure basic block for a stack protector check. /// /// A failure stack protector machine basic block consists simply of a call to /// __stack_chk_fail(). /// /// For a high level explanation of how this fits into the stack protector /// generation see the comment on the declaration of class /// StackProtectorDescriptor. void SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { const TargetLowering *TLI = TM.getTargetLowering(); SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 0, 0, false, getCurSDLoc(), false, false).second; DAG.setRoot(Chain); } /// visitBitTestHeader - This function emits necessary code to produce value /// suitable for "bit tests" void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB) { // Subtract the minimum value SDValue SwitchOp = getValue(B.SValue); EVT VT = SwitchOp.getValueType(); SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, DAG.getConstant(B.First, VT)); // Check range const TargetLowering *TLI = TM.getTargetLowering(); SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), TLI->getSetCCResultType(*DAG.getContext(), Sub.getValueType()), Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); // Determine the type of the test operands. bool UsePtrType = false; if (!TLI->isTypeLegal(VT)) UsePtrType = true; else { for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { // Switch table case range are encoded into series of masks. // Just use pointer type, it's guaranteed to fit. UsePtrType = true; break; } } if (UsePtrType) { VT = TLI->getPointerTy(); Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); } B.RegVT = VT.getSimpleVT(); B.Reg = FuncInfo.CreateReg(B.RegVT); SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), B.Reg, Sub); // Set NextBlock to be the MBB immediately after the current one, if any. // This is used to avoid emitting unnecessary branches to the next block. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = SwitchBB; if (++BBI != FuncInfo.MF->end()) NextBlock = BBI; MachineBasicBlock* MBB = B.Cases[0].ThisBB; addSuccessorWithWeight(SwitchBB, B.Default); addSuccessorWithWeight(SwitchBB, MBB); SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), MVT::Other, CopyTo, RangeCmp, DAG.getBasicBlock(B.Default)); if (MBB != NextBlock) BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, DAG.getBasicBlock(MBB)); DAG.setRoot(BrRange); } /// visitBitTestCase - this function produces one "bit test" void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, MachineBasicBlock* NextMBB, uint32_t BranchWeightToNext, unsigned Reg, BitTestCase &B, MachineBasicBlock *SwitchBB) { MVT VT = BB.RegVT; SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), Reg, VT); SDValue Cmp; unsigned PopCount = CountPopulation_64(B.Mask); const TargetLowering *TLI = TM.getTargetLowering(); if (PopCount == 1) { // Testing for a single bit; just compare the shift count with what it // would need to be to shift a 1 bit in that position. Cmp = DAG.getSetCC(getCurSDLoc(), TLI->getSetCCResultType(*DAG.getContext(), VT), ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); } else if (PopCount == BB.Range) { // There is only one zero bit in the range, test for it directly. Cmp = DAG.getSetCC(getCurSDLoc(), TLI->getSetCCResultType(*DAG.getContext(), VT), ShiftOp, DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE); } else { // Make desired shift SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, DAG.getConstant(1, VT), ShiftOp); // Emit bit tests and jumps SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), VT, SwitchVal, DAG.getConstant(B.Mask, VT)); Cmp = DAG.getSetCC(getCurSDLoc(), TLI->getSetCCResultType(*DAG.getContext(), VT), AndOp, DAG.getConstant(0, VT), ISD::SETNE); } // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), MVT::Other, getControlRoot(), Cmp, DAG.getBasicBlock(B.TargetBB)); // Set NextBlock to be the MBB immediately after the current one, if any. // This is used to avoid emitting unnecessary branches to the next block. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = SwitchBB; if (++BBI != FuncInfo.MF->end()) NextBlock = BBI; if (NextMBB != NextBlock) BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, DAG.getBasicBlock(NextMBB)); DAG.setRoot(BrAnd); } void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { MachineBasicBlock *InvokeMBB = FuncInfo.MBB; // Retrieve successors. MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; const Value *Callee(I.getCalledValue()); const Function *Fn = dyn_cast(Callee); if (isa(Callee)) visitInlineAsm(&I); else if (Fn && Fn->isIntrinsic()) { assert(Fn->getIntrinsicID() == Intrinsic::donothing); // Ignore invokes to @llvm.donothing: jump directly to the next BB. } else LowerCallTo(&I, getValue(Callee), false, LandingPad); // If the value of the invoke is used outside of its defining block, make it // available as a virtual register. CopyToExportRegsIfNeeded(&I); // Update successor info addSuccessorWithWeight(InvokeMBB, Return); addSuccessorWithWeight(InvokeMBB, LandingPad); // Drop into normal successor. DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), DAG.getBasicBlock(Return))); } void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); } void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { assert(FuncInfo.MBB->isLandingPad() && "Call to landingpad not in landing pad!"); MachineBasicBlock *MBB = FuncInfo.MBB; MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); AddLandingPadInfo(LP, MMI, MBB); // If there aren't registers to copy the values into (e.g., during SjLj // exceptions), then don't bother to create these DAG nodes. const TargetLowering *TLI = TM.getTargetLowering(); if (TLI->getExceptionPointerRegister() == 0 && TLI->getExceptionSelectorRegister() == 0) return; SmallVector ValueVTs; ComputeValueVTs(*TLI, LP.getType(), ValueVTs); assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); // Get the two live-in registers as SDValues. The physregs have already been // copied into virtual registers. SDValue Ops[2]; Ops[0] = DAG.getZExtOrTrunc( DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), getCurSDLoc(), ValueVTs[0]); Ops[1] = DAG.getZExtOrTrunc( DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), getCurSDLoc(), ValueVTs[1]); // Merge into one. SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), DAG.getVTList(&ValueVTs[0], ValueVTs.size()), &Ops[0], 2); setValue(&LP, Res); } /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for /// small case ranges). bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, CaseRecVector& WorkList, const Value* SV, MachineBasicBlock *Default, MachineBasicBlock *SwitchBB) { // Size is the number of Cases represented by this range. size_t Size = CR.Range.second - CR.Range.first; if (Size > 3) return false; // Get the MachineFunction which holds the current MBB. This is used when // inserting any additional MBBs necessary to represent the switch. MachineFunction *CurMF = FuncInfo.MF; // Figure out which block is immediately after the current one. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CR.CaseBB; if (++BBI != FuncInfo.MF->end()) NextBlock = BBI; BranchProbabilityInfo *BPI = FuncInfo.BPI; // If any two of the cases has the same destination, and if one value // is the same as the other, but has one bit unset that the other has set, // use bit manipulation to do two compares at once. For example: // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" // TODO: This could be extended to merge any 2 cases in switches with 3 cases. // TODO: Handle cases where CR.CaseBB != SwitchBB. if (Size == 2 && CR.CaseBB == SwitchBB) { Case &Small = *CR.Range.first; Case &Big = *(CR.Range.second-1); if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { const APInt& SmallValue = cast(Small.Low)->getValue(); const APInt& BigValue = cast(Big.Low)->getValue(); // Check that there is only one bit different. if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && (SmallValue | BigValue) == BigValue) { // Isolate the common bit. APInt CommonBit = BigValue & ~SmallValue; assert((SmallValue | CommonBit) == BigValue && CommonBit.countPopulation() == 1 && "Not a common bit?"); SDValue CondLHS = getValue(SV); EVT VT = CondLHS.getValueType(); SDLoc DL = getCurSDLoc(); SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, DAG.getConstant(CommonBit, VT)); SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or, DAG.getConstant(BigValue, VT), ISD::SETEQ); // Update successor info. // Both Small and Big will jump to Small.BB, so we sum up the weights. addSuccessorWithWeight(SwitchBB, Small.BB, Small.ExtraWeight + Big.ExtraWeight); addSuccessorWithWeight(SwitchBB, Default, // The default destination is the first successor in IR. BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); // Insert the true branch. SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, DAG.getBasicBlock(Small.BB)); // Insert the false branch. BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, DAG.getBasicBlock(Default)); DAG.setRoot(BrCond); return true; } } } // Order cases by weight so the most likely case will be checked first. uint32_t UnhandledWeights = 0; if (BPI) { for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { uint32_t IWeight = I->ExtraWeight; UnhandledWeights += IWeight; for (CaseItr J = CR.Range.first; J < I; ++J) { uint32_t JWeight = J->ExtraWeight; if (IWeight > JWeight) std::swap(*I, *J); } } } // Rearrange the case blocks so that the last one falls through if possible. Case &BackCase = *(CR.Range.second-1); if (Size > 1 && NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { // The last case block won't fall through into 'NextBlock' if we emit the // branches in this order. See if rearranging a case value would help. // We start at the bottom as it's the case with the least weight. for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) if (I->BB == NextBlock) { std::swap(*I, BackCase); break; } } // Create a CaseBlock record representing a conditional branch to // the Case's target mbb if the value being switched on SV is equal // to C. MachineBasicBlock *CurBlock = CR.CaseBB; for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { MachineBasicBlock *FallThrough; if (I != E-1) { FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); CurMF->insert(BBI, FallThrough); // Put SV in a virtual register to make it available from the new blocks. ExportFromCurrentBlock(SV); } else { // If the last case doesn't match, go to the default block. FallThrough = Default; } const Value *RHS, *LHS, *MHS; ISD::CondCode CC; if (I->High == I->Low) { // This is just small small case range :) containing exactly 1 case CC = ISD::SETEQ; LHS = SV; RHS = I->High; MHS = NULL; } else { CC = ISD::SETLE; LHS = I->Low; MHS = SV; RHS = I->High; } // The false weight should be sum of all un-handled cases. UnhandledWeights -= I->ExtraWeight; CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, /* me */ CurBlock, /* trueweight */ I->ExtraWeight, /* falseweight */ UnhandledWeights); // If emitting the first comparison, just call visitSwitchCase to emit the // code into the current block. Otherwise, push the CaseBlock onto the // vector to be later processed by SDISel, and insert the node's MBB // before the next MBB. if (CurBlock == SwitchBB) visitSwitchCase(CB, SwitchBB); else SwitchCases.push_back(CB); CurBlock = FallThrough; } return true; } static inline bool areJTsAllowed(const TargetLowering &TLI) { return TLI.supportJumpTables() && (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); } static APInt ComputeRange(const APInt &First, const APInt &Last) { uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); return (LastExt - FirstExt + 1ULL); } /// handleJTSwitchCase - Emit jumptable for current switch case range bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, CaseRecVector &WorkList, const Value *SV, MachineBasicBlock *Default, MachineBasicBlock *SwitchBB) { Case& FrontCase = *CR.Range.first; Case& BackCase = *(CR.Range.second-1); const APInt &First = cast(FrontCase.Low)->getValue(); const APInt &Last = cast(BackCase.High)->getValue(); APInt TSize(First.getBitWidth(), 0); for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) TSize += I->size(); const TargetLowering *TLI = TM.getTargetLowering(); if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) return false; APInt Range = ComputeRange(First, Last); // The density is TSize / Range. Require at least 40%. // It should not be possible for IntTSize to saturate for sane code, but make // sure we handle Range saturation correctly. uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); if (IntTSize * 10 < IntRange * 4) return false; DEBUG(dbgs() << "Lowering jump table\n" << "First entry: " << First << ". Last entry: " << Last << '\n' << "Range: " << Range << ". Size: " << TSize << ".\n\n"); // Get the MachineFunction which holds the current MBB. This is used when // inserting any additional MBBs necessary to represent the switch. MachineFunction *CurMF = FuncInfo.MF; // Figure out which block is immediately after the current one. MachineFunction::iterator BBI = CR.CaseBB; ++BBI; const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); // Create a new basic block to hold the code for loading the address // of the jump table, and jumping to it. Update successor information; // we will either branch to the default case for the switch, or the jump // table. MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); CurMF->insert(BBI, JumpTableBB); addSuccessorWithWeight(CR.CaseBB, Default); addSuccessorWithWeight(CR.CaseBB, JumpTableBB); // Build a vector of destination BBs, corresponding to each target // of the jump table. If the value of the jump table slot corresponds to // a case statement, push the case's BB onto the vector, otherwise, push // the default BB. std::vector DestBBs; APInt TEI = First; for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { const APInt &Low = cast(I->Low)->getValue(); const APInt &High = cast(I->High)->getValue(); if (Low.sle(TEI) && TEI.sle(High)) { DestBBs.push_back(I->BB); if (TEI==High) ++I; } else { DestBBs.push_back(Default); } } // Calculate weight for each unique destination in CR. DenseMap DestWeights; if (FuncInfo.BPI) for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { DenseMap::iterator Itr = DestWeights.find(I->BB); if (Itr != DestWeights.end()) Itr->second += I->ExtraWeight; else DestWeights[I->BB] = I->ExtraWeight; } // Update successor info. Add one edge to each unique successor. BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); for (std::vector::iterator I = DestBBs.begin(), E = DestBBs.end(); I != E; ++I) { if (!SuccsHandled[(*I)->getNumber()]) { SuccsHandled[(*I)->getNumber()] = true; DenseMap::iterator Itr = DestWeights.find(*I); addSuccessorWithWeight(JumpTableBB, *I, Itr != DestWeights.end() ? Itr->second : 0); } } // Create a jump table index for this jump table. unsigned JTEncoding = TLI->getJumpTableEncoding(); unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) ->createJumpTableIndex(DestBBs); // Set the jump table information so that we can codegen it as a second // MachineBasicBlock JumpTable JT(-1U, JTI, JumpTableBB, Default); JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); if (CR.CaseBB == SwitchBB) visitJumpTableHeader(JT, JTH, SwitchBB); JTCases.push_back(JumpTableBlock(JTH, JT)); return true; } /// handleBTSplitSwitchCase - emit comparison and split binary search tree into /// 2 subtrees. bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, CaseRecVector& WorkList, const Value* SV, MachineBasicBlock* Default, MachineBasicBlock* SwitchBB) { // Get the MachineFunction which holds the current MBB. This is used when // inserting any additional MBBs necessary to represent the switch. MachineFunction *CurMF = FuncInfo.MF; // Figure out which block is immediately after the current one. MachineFunction::iterator BBI = CR.CaseBB; ++BBI; Case& FrontCase = *CR.Range.first; Case& BackCase = *(CR.Range.second-1); const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); // Size is the number of Cases represented by this range. unsigned Size = CR.Range.second - CR.Range.first; const APInt &First = cast(FrontCase.Low)->getValue(); const APInt &Last = cast(BackCase.High)->getValue(); double FMetric = 0; CaseItr Pivot = CR.Range.first + Size/2; // Select optimal pivot, maximizing sum density of LHS and RHS. This will // (heuristically) allow us to emit JumpTable's later. APInt TSize(First.getBitWidth(), 0); for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) TSize += I->size(); APInt LSize = FrontCase.size(); APInt RSize = TSize-LSize; DEBUG(dbgs() << "Selecting best pivot: \n" << "First: " << First << ", Last: " << Last <<'\n' << "LSize: " << LSize << ", RSize: " << RSize << '\n'); for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; J!=E; ++I, ++J) { const APInt &LEnd = cast(I->High)->getValue(); const APInt &RBegin = cast(J->Low)->getValue(); APInt Range = ComputeRange(LEnd, RBegin); assert((Range - 2ULL).isNonNegative() && "Invalid case distance"); // Use volatile double here to avoid excess precision issues on some hosts, // e.g. that use 80-bit X87 registers. volatile double LDensity = (double)LSize.roundToDouble() / (LEnd - First + 1ULL).roundToDouble(); volatile double RDensity = (double)RSize.roundToDouble() / (Last - RBegin + 1ULL).roundToDouble(); double Metric = Range.logBase2()*(LDensity+RDensity); // Should always split in some non-trivial place DEBUG(dbgs() <<"=>Step\n" << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' << "LDensity: " << LDensity << ", RDensity: " << RDensity << '\n' << "Metric: " << Metric << '\n'); if (FMetric < Metric) { Pivot = J; FMetric = Metric; DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); } LSize += J->size(); RSize -= J->size(); } const TargetLowering *TLI = TM.getTargetLowering(); if (areJTsAllowed(*TLI)) { // If our case is dense we *really* should handle it earlier! assert((FMetric > 0) && "Should handle dense range earlier!"); } else { Pivot = CR.Range.first + Size/2; } CaseRange LHSR(CR.Range.first, Pivot); CaseRange RHSR(Pivot, CR.Range.second); const Constant *C = Pivot->Low; MachineBasicBlock *FalseBB = 0, *TrueBB = 0; // We know that we branch to the LHS if the Value being switched on is // less than the Pivot value, C. We use this to optimize our binary // tree a bit, by recognizing that if SV is greater than or equal to the // LHS's Case Value, and that Case Value is exactly one less than the // Pivot's Value, then we can branch directly to the LHS's Target, // rather than creating a leaf node for it. if ((LHSR.second - LHSR.first) == 1 && LHSR.first->High == CR.GE && cast(C)->getValue() == (cast(CR.GE)->getValue() + 1LL)) { TrueBB = LHSR.first->BB; } else { TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); CurMF->insert(BBI, TrueBB); WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); // Put SV in a virtual register to make it available from the new blocks. ExportFromCurrentBlock(SV); } // Similar to the optimization above, if the Value being switched on is // known to be less than the Constant CR.LT, and the current Case Value // is CR.LT - 1, then we can branch directly to the target block for // the current Case Value, rather than emitting a RHS leaf node for it. if ((RHSR.second - RHSR.first) == 1 && CR.LT && cast(RHSR.first->Low)->getValue() == (cast(CR.LT)->getValue() - 1LL)) { FalseBB = RHSR.first->BB; } else { FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); CurMF->insert(BBI, FalseBB); WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); // Put SV in a virtual register to make it available from the new blocks. ExportFromCurrentBlock(SV); } // Create a CaseBlock record representing a conditional branch to // the LHS node if the value being switched on SV is less than C. // Otherwise, branch to LHS. CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); if (CR.CaseBB == SwitchBB) visitSwitchCase(CB, SwitchBB); else SwitchCases.push_back(CB); return true; } /// handleBitTestsSwitchCase - if current case range has few destination and /// range span less, than machine word bitwidth, encode case range into series /// of masks and emit bit tests with these masks. bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, CaseRecVector& WorkList, const Value* SV, MachineBasicBlock* Default, MachineBasicBlock* SwitchBB) { const TargetLowering *TLI = TM.getTargetLowering(); EVT PTy = TLI->getPointerTy(); unsigned IntPtrBits = PTy.getSizeInBits(); Case& FrontCase = *CR.Range.first; Case& BackCase = *(CR.Range.second-1); // Get the MachineFunction which holds the current MBB. This is used when // inserting any additional MBBs necessary to represent the switch. MachineFunction *CurMF = FuncInfo.MF; // If target does not have legal shift left, do not emit bit tests at all. if (!TLI->isOperationLegal(ISD::SHL, PTy)) return false; size_t numCmps = 0; for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { // Single case counts one, case range - two. numCmps += (I->Low == I->High ? 1 : 2); } // Count unique destinations SmallSet Dests; for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { Dests.insert(I->BB); if (Dests.size() > 3) // Don't bother the code below, if there are too much unique destinations return false; } DEBUG(dbgs() << "Total number of unique destinations: " << Dests.size() << '\n' << "Total number of comparisons: " << numCmps << '\n'); // Compute span of values. const APInt& minValue = cast(FrontCase.Low)->getValue(); const APInt& maxValue = cast(BackCase.High)->getValue(); APInt cmpRange = maxValue - minValue; DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' << "Low bound: " << minValue << '\n' << "High bound: " << maxValue << '\n'); if (cmpRange.uge(IntPtrBits) || (!(Dests.size() == 1 && numCmps >= 3) && !(Dests.size() == 2 && numCmps >= 5) && !(Dests.size() >= 3 && numCmps >= 6))) return false; DEBUG(dbgs() << "Emitting bit tests\n"); APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); // Optimize the case where all the case values fit in a // word without having to subtract minValue. In this case, // we can optimize away the subtraction. if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { cmpRange = maxValue; } else { lowBound = minValue; } CaseBitsVector CasesBits; unsigned i, count = 0; for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { MachineBasicBlock* Dest = I->BB; for (i = 0; i < count; ++i) if (Dest == CasesBits[i].BB) break; if (i == count) { assert((count < 3) && "Too much destinations to test!"); CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); count++; } const APInt& lowValue = cast(I->Low)->getValue(); const APInt& highValue = cast(I->High)->getValue(); uint64_t lo = (lowValue - lowBound).getZExtValue(); uint64_t hi = (highValue - lowBound).getZExtValue(); CasesBits[i].ExtraWeight += I->ExtraWeight; for (uint64_t j = lo; j <= hi; j++) { CasesBits[i].Mask |= 1ULL << j; CasesBits[i].Bits++; } } std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); BitTestInfo BTC; // Figure out which block is immediately after the current one. MachineFunction::iterator BBI = CR.CaseBB; ++BBI; const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); DEBUG(dbgs() << "Cases:\n"); for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits << ", BB: " << CasesBits[i].BB << '\n'); MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); CurMF->insert(BBI, CaseBB); BTC.push_back(BitTestCase(CasesBits[i].Mask, CaseBB, CasesBits[i].BB, CasesBits[i].ExtraWeight)); // Put SV in a virtual register to make it available from the new blocks. ExportFromCurrentBlock(SV); } BitTestBlock BTB(lowBound, cmpRange, SV, -1U, MVT::Other, (CR.CaseBB == SwitchBB), CR.CaseBB, Default, BTC); if (CR.CaseBB == SwitchBB) visitBitTestHeader(BTB, SwitchBB); BitTestCases.push_back(BTB); return true; } /// Clusterify - Transform simple list of Cases into list of CaseRange's size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, const SwitchInst& SI) { size_t numCmps = 0; BranchProbabilityInfo *BPI = FuncInfo.BPI; // Start with "simple" cases for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) { const BasicBlock *SuccBB = i.getCaseSuccessor(); MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), SMBB, ExtraWeight)); } std::sort(Cases.begin(), Cases.end(), CaseCmp()); // Merge case into clusters if (Cases.size() >= 2) // Must recompute end() each iteration because it may be // invalidated by erase if we hold on to it for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); J != Cases.end(); ) { const APInt& nextValue = cast(J->Low)->getValue(); const APInt& currentValue = cast(I->High)->getValue(); MachineBasicBlock* nextBB = J->BB; MachineBasicBlock* currentBB = I->BB; // If the two neighboring cases go to the same destination, merge them // into a single case. if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { I->High = J->High; I->ExtraWeight += J->ExtraWeight; J = Cases.erase(J); } else { I = J++; } } for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { if (I->Low != I->High) // A range counts double, since it requires two compares. ++numCmps; } return numCmps; } void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last) { // Update JTCases. for (unsigned i = 0, e = JTCases.size(); i != e; ++i) if (JTCases[i].first.HeaderBB == First) JTCases[i].first.HeaderBB = Last; // Update BitTestCases. for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) if (BitTestCases[i].Parent == First) BitTestCases[i].Parent = Last; } void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { MachineBasicBlock *SwitchMBB = FuncInfo.MBB; // Figure out which block is immediately after the current one. MachineBasicBlock *NextBlock = 0; MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; // If there is only the default destination, branch to it if it is not the // next basic block. Otherwise, just fall through. if (!SI.getNumCases()) { // Update machine-CFG edges. // If this is not a fall-through branch, emit the branch. SwitchMBB->addSuccessor(Default); if (Default != NextBlock) DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), DAG.getBasicBlock(Default))); return; } // If there are any non-default case statements, create a vector of Cases // representing each one, and sort the vector so that we can efficiently // create a binary search tree from them. CaseVector Cases; size_t numCmps = Clusterify(Cases, SI); DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() << ". Total compares: " << numCmps << '\n'); (void)numCmps; // Get the Value to be switched on and default basic blocks, which will be // inserted into CaseBlock records, representing basic blocks in the binary // search tree. const Value *SV = SI.getCondition(); // Push the initial CaseRec onto the worklist CaseRecVector WorkList; WorkList.push_back(CaseRec(SwitchMBB,0,0, CaseRange(Cases.begin(),Cases.end()))); while (!WorkList.empty()) { // Grab a record representing a case range to process off the worklist CaseRec CR = WorkList.back(); WorkList.pop_back(); if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) continue; // If the range has few cases (two or less) emit a series of specific // tests. if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) continue; // If the switch has more than N blocks, and is at least 40% dense, and the // target supports indirect branches, then emit a jump table rather than // lowering the switch to a binary tree of conditional branches. // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) continue; // Emit binary tree. We need to pick a pivot, and push left and right ranges // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); } } void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; // Update machine-CFG edges with unique successors. SmallSet Done; for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { BasicBlock *BB = I.getSuccessor(i); bool Inserted = Done.insert(BB); if (!Inserted) continue; MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; addSuccessorWithWeight(IndirectBrMBB, Succ); } DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), MVT::Other, getControlRoot(), getValue(I.getAddress()))); } void SelectionDAGBuilder::visitFSub(const User &I) { // -0.0 - X --> fneg Type *Ty = I.getType(); if (isa(I.getOperand(0)) && I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { SDValue Op2 = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), Op2.getValueType(), Op2)); return; } visitBinary(I, ISD::FSUB); } void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { SDValue Op1 = getValue(I.getOperand(0)); SDValue Op2 = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), Op1, Op2)); } void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { SDValue Op1 = getValue(I.getOperand(0)); SDValue Op2 = getValue(I.getOperand(1)); EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); // Coerce the shift amount to the right type if we can. if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { unsigned ShiftSize = ShiftTy.getSizeInBits(); unsigned Op2Size = Op2.getValueType().getSizeInBits(); SDLoc DL = getCurSDLoc(); // If the operand is smaller than the shift count type, promote it. if (ShiftSize > Op2Size) Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); // If the operand is larger than the shift count type but the shift // count type has enough bits to represent any shift value, truncate // it now. This is a common case and it exposes the truncate to // optimization early. else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); // Otherwise we'll need to temporarily settle for some other convenient // type. Type legalization will make adjustments once the shiftee is split. else Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); } setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2)); } void SelectionDAGBuilder::visitSDiv(const User &I) { SDValue Op1 = getValue(I.getOperand(0)); SDValue Op2 = getValue(I.getOperand(1)); // Turn exact SDivs into multiplications. // FIXME: This should be in DAGCombiner, but it doesn't have access to the // exact bit. if (isa(&I) && cast(&I)->isExact() && !isa(Op1) && isa(Op2) && !cast(Op2)->isNullValue()) setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); else setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, Op2)); } void SelectionDAGBuilder::visitICmp(const User &I) { ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; if (const ICmpInst *IC = dyn_cast(&I)) predicate = IC->getPredicate(); else if (const ConstantExpr *IC = dyn_cast(&I)) predicate = ICmpInst::Predicate(IC->getPredicate()); SDValue Op1 = getValue(I.getOperand(0)); SDValue Op2 = getValue(I.getOperand(1)); ISD::CondCode Opcode = getICmpCondCode(predicate); EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); } void SelectionDAGBuilder::visitFCmp(const User &I) { FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; if (const FCmpInst *FC = dyn_cast(&I)) predicate = FC->getPredicate(); else if (const ConstantExpr *FC = dyn_cast(&I)) predicate = FCmpInst::Predicate(FC->getPredicate()); SDValue Op1 = getValue(I.getOperand(0)); SDValue Op2 = getValue(I.getOperand(1)); ISD::CondCode Condition = getFCmpCondCode(predicate); if (TM.Options.NoNaNsFPMath) Condition = getFCmpCodeWithoutNaN(Condition); EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); } void SelectionDAGBuilder::visitSelect(const User &I) { SmallVector ValueVTs; ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); unsigned NumValues = ValueVTs.size(); if (NumValues == 0) return; SmallVector Values(NumValues); SDValue Cond = getValue(I.getOperand(0)); SDValue TrueVal = getValue(I.getOperand(1)); SDValue FalseVal = getValue(I.getOperand(2)); ISD::NodeType OpCode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; for (unsigned i = 0; i != NumValues; ++i) Values[i] = DAG.getNode(OpCode, getCurSDLoc(), TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), Cond, SDValue(TrueVal.getNode(), TrueVal.getResNo() + i), SDValue(FalseVal.getNode(), FalseVal.getResNo() + i)); setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), DAG.getVTList(&ValueVTs[0], NumValues), &Values[0], NumValues)); } void SelectionDAGBuilder::visitTrunc(const User &I) { // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). SDValue N = getValue(I.getOperand(0)); EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitZExt(const User &I) { // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). // ZExt also can't be a cast to bool for same reason. So, nothing much to do SDValue N = getValue(I.getOperand(0)); EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitSExt(const User &I) { // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). // SExt also can't be a cast to bool for same reason. So, nothing much to do SDValue N = getValue(I.getOperand(0)); EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitFPTrunc(const User &I) { // FPTrunc is never a no-op cast, no need to check SDValue N = getValue(I.getOperand(0)); const TargetLowering *TLI = TM.getTargetLowering(); EVT DestVT = TLI->getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, DAG.getTargetConstant(0, TLI->getPointerTy()))); } void SelectionDAGBuilder::visitFPExt(const User &I) { // FPExt is never a no-op cast, no need to check SDValue N = getValue(I.getOperand(0)); EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitFPToUI(const User &I) { // FPToUI is never a no-op cast, no need to check SDValue N = getValue(I.getOperand(0)); EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitFPToSI(const User &I) { // FPToSI is never a no-op cast, no need to check SDValue N = getValue(I.getOperand(0)); EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitUIToFP(const User &I) { // UIToFP is never a no-op cast, no need to check SDValue N = getValue(I.getOperand(0)); EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitSIToFP(const User &I) { // SIToFP is never a no-op cast, no need to check SDValue N = getValue(I.getOperand(0)); EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitPtrToInt(const User &I) { // What to do depends on the size of the integer and the size of the pointer. // We can either truncate, zero extend, or no-op, accordingly. SDValue N = getValue(I.getOperand(0)); EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); } void SelectionDAGBuilder::visitIntToPtr(const User &I) { // What to do depends on the size of the integer and the size of the pointer. // We can either truncate, zero extend, or no-op, accordingly. SDValue N = getValue(I.getOperand(0)); EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); } void SelectionDAGBuilder::visitBitCast(const User &I) { SDValue N = getValue(I.getOperand(0)); EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); // BitCast assures us that source and destination are the same size so this is // either a BITCAST or a no-op. if (DestVT != N.getValueType()) setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), DestVT, N)); // convert types. else setValue(&I, N); // noop cast. } void SelectionDAGBuilder::visitInsertElement(const User &I) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue InVec = getValue(I.getOperand(0)); SDValue InVal = getValue(I.getOperand(1)); SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), TLI.getVectorIdxTy()); setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), TM.getTargetLowering()->getValueType(I.getType()), InVec, InVal, InIdx)); } void SelectionDAGBuilder::visitExtractElement(const User &I) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue InVec = getValue(I.getOperand(0)); SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), TLI.getVectorIdxTy()); setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), TM.getTargetLowering()->getValueType(I.getType()), InVec, InIdx)); } // Utility for visitShuffleVector - Return true if every element in Mask, // beginning from position Pos and ending in Pos+Size, falls within the // specified sequential range [L, L+Pos). or is undef. static bool isSequentialInRange(const SmallVectorImpl &Mask, unsigned Pos, unsigned Size, int Low) { for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) if (Mask[i] >= 0 && Mask[i] != Low) return false; return true; } void SelectionDAGBuilder::visitShuffleVector(const User &I) { SDValue Src1 = getValue(I.getOperand(0)); SDValue Src2 = getValue(I.getOperand(1)); SmallVector Mask; ShuffleVectorInst::getShuffleMask(cast(I.getOperand(2)), Mask); unsigned MaskNumElts = Mask.size(); const TargetLowering *TLI = TM.getTargetLowering(); EVT VT = TLI->getValueType(I.getType()); EVT SrcVT = Src1.getValueType(); unsigned SrcNumElts = SrcVT.getVectorNumElements(); if (SrcNumElts == MaskNumElts) { setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, &Mask[0])); return; } // Normalize the shuffle vector since mask and vector length don't match. if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { // Mask is longer than the source vectors and is a multiple of the source // vectors. We can use concatenate vector to make the mask and vectors // lengths match. if (SrcNumElts*2 == MaskNumElts) { // First check for Src1 in low and Src2 in high if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { // The shuffle is concatenating two vectors together. setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), VT, Src1, Src2)); return; } // Then check for Src2 in low and Src1 in high if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { // The shuffle is concatenating two vectors together. setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), VT, Src2, Src1)); return; } } // Pad both vectors with undefs to make them the same length as the mask. unsigned NumConcat = MaskNumElts / SrcNumElts; bool Src1U = Src1.getOpcode() == ISD::UNDEF; bool Src2U = Src2.getOpcode() == ISD::UNDEF; SDValue UndefVal = DAG.getUNDEF(SrcVT); SmallVector MOps1(NumConcat, UndefVal); SmallVector MOps2(NumConcat, UndefVal); MOps1[0] = Src1; MOps2[0] = Src2; Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), VT, &MOps1[0], NumConcat); Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), VT, &MOps2[0], NumConcat); // Readjust mask for new input vector length. SmallVector MappedOps; for (unsigned i = 0; i != MaskNumElts; ++i) { int Idx = Mask[i]; if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts - MaskNumElts; MappedOps.push_back(Idx); } setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, &MappedOps[0])); return; } if (SrcNumElts > MaskNumElts) { // Analyze the access pattern of the vector to see if we can extract // two subvectors and do the shuffle. The analysis is done by calculating // the range of elements the mask access on both vectors. int MinRange[2] = { static_cast(SrcNumElts), static_cast(SrcNumElts)}; int MaxRange[2] = {-1, -1}; for (unsigned i = 0; i != MaskNumElts; ++i) { int Idx = Mask[i]; unsigned Input = 0; if (Idx < 0) continue; if (Idx >= (int)SrcNumElts) { Input = 1; Idx -= SrcNumElts; } if (Idx > MaxRange[Input]) MaxRange[Input] = Idx; if (Idx < MinRange[Input]) MinRange[Input] = Idx; } // Check if the access is smaller than the vector size and can we find // a reasonable extract index. int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not // Extract. int StartIdx[2]; // StartIdx to extract from for (unsigned Input = 0; Input < 2; ++Input) { if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { RangeUse[Input] = 0; // Unused StartIdx[Input] = 0; continue; } // Find a good start index that is a multiple of the mask length. Then // see if the rest of the elements are in range. StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && StartIdx[Input] + MaskNumElts <= SrcNumElts) RangeUse[Input] = 1; // Extract from a multiple of the mask length. } if (RangeUse[0] == 0 && RangeUse[1] == 0) { setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. return; } if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { // Extract appropriate subvector and generate a vector shuffle for (unsigned Input = 0; Input < 2; ++Input) { SDValue &Src = Input == 0 ? Src1 : Src2; if (RangeUse[Input] == 0) Src = DAG.getUNDEF(VT); else Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, DAG.getConstant(StartIdx[Input], TLI->getVectorIdxTy())); } // Calculate new mask. SmallVector MappedOps; for (unsigned i = 0; i != MaskNumElts; ++i) { int Idx = Mask[i]; if (Idx >= 0) { if (Idx < (int)SrcNumElts) Idx -= StartIdx[0]; else Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; } MappedOps.push_back(Idx); } setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, &MappedOps[0])); return; } } // We can't use either concat vectors or extract subvectors so fall back to // replacing the shuffle with extract and build vector. // to insert and build vector. EVT EltVT = VT.getVectorElementType(); EVT IdxVT = TLI->getVectorIdxTy(); SmallVector Ops; for (unsigned i = 0; i != MaskNumElts; ++i) { int Idx = Mask[i]; SDValue Res; if (Idx < 0) { Res = DAG.getUNDEF(EltVT); } else { SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), EltVT, Src, DAG.getConstant(Idx, IdxVT)); } Ops.push_back(Res); } setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, &Ops[0], Ops.size())); } void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { const Value *Op0 = I.getOperand(0); const Value *Op1 = I.getOperand(1); Type *AggTy = I.getType(); Type *ValTy = Op1->getType(); bool IntoUndef = isa(Op0); bool FromUndef = isa(Op1); unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); const TargetLowering *TLI = TM.getTargetLowering(); SmallVector AggValueVTs; ComputeValueVTs(*TLI, AggTy, AggValueVTs); SmallVector ValValueVTs; ComputeValueVTs(*TLI, ValTy, ValValueVTs); unsigned NumAggValues = AggValueVTs.size(); unsigned NumValValues = ValValueVTs.size(); SmallVector Values(NumAggValues); SDValue Agg = getValue(Op0); unsigned i = 0; // Copy the beginning value(s) from the original aggregate. for (; i != LinearIndex; ++i) Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : SDValue(Agg.getNode(), Agg.getResNo() + i); // Copy values from the inserted value(s). if (NumValValues) { SDValue Val = getValue(Op1); for (; i != LinearIndex + NumValValues; ++i) Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); } // Copy remaining value(s) from the original aggregate. for (; i != NumAggValues; ++i) Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : SDValue(Agg.getNode(), Agg.getResNo() + i); setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), DAG.getVTList(&AggValueVTs[0], NumAggValues), &Values[0], NumAggValues)); } void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { const Value *Op0 = I.getOperand(0); Type *AggTy = Op0->getType(); Type *ValTy = I.getType(); bool OutOfUndef = isa(Op0); unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); const TargetLowering *TLI = TM.getTargetLowering(); SmallVector ValValueVTs; ComputeValueVTs(*TLI, ValTy, ValValueVTs); unsigned NumValValues = ValValueVTs.size(); // Ignore a extractvalue that produces an empty object if (!NumValValues) { setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); return; } SmallVector Values(NumValValues); SDValue Agg = getValue(Op0); // Copy out the selected value(s). for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) Values[i - LinearIndex] = OutOfUndef ? DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : SDValue(Agg.getNode(), Agg.getResNo() + i); setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), DAG.getVTList(&ValValueVTs[0], NumValValues), &Values[0], NumValValues)); } void SelectionDAGBuilder::visitGetElementPtr(const User &I) { Value *Op0 = I.getOperand(0); // Note that the pointer operand may be a vector of pointers. Take the scalar // element which holds a pointer. Type *Ty = Op0->getType()->getScalarType(); unsigned AS = Ty->getPointerAddressSpace(); SDValue N = getValue(Op0); for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); OI != E; ++OI) { const Value *Idx = *OI; if (StructType *StTy = dyn_cast(Ty)) { unsigned Field = cast(Idx)->getUniqueInteger().getZExtValue(); if (Field) { // N = N + Offset uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, DAG.getConstant(Offset, N.getValueType())); } Ty = StTy->getElementType(Field); } else { Ty = cast(Ty)->getElementType(); // If this is a constant subscript, handle it quickly. const TargetLowering *TLI = TM.getTargetLowering(); if (const ConstantInt *CI = dyn_cast(Idx)) { if (CI->isZero()) continue; uint64_t Offs = TD->getTypeAllocSize(Ty)*cast(CI)->getSExtValue(); SDValue OffsVal; EVT PTy = TLI->getPointerTy(AS); unsigned PtrBits = PTy.getSizeInBits(); if (PtrBits < 64) OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, DAG.getConstant(Offs, MVT::i64)); else OffsVal = DAG.getConstant(Offs, PTy); N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal); continue; } // N = N + Idx * ElementSize; APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), TD->getTypeAllocSize(Ty)); SDValue IdxN = getValue(Idx); // If the index is smaller or larger than intptr_t, truncate or extend // it. IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); // If this is a multiply by a power of two, turn it into a shl // immediately. This is a very common case. if (ElementSize != 1) { if (ElementSize.isPowerOf2()) { unsigned Amt = ElementSize.logBase2(); IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), N.getValueType(), IdxN, DAG.getConstant(Amt, IdxN.getValueType())); } else { SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), N.getValueType(), IdxN, Scale); } } N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, IdxN); } } setValue(&I, N); } void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { // If this is a fixed sized alloca in the entry block of the function, // allocate it statically on the stack. if (FuncInfo.StaticAllocaMap.count(&I)) return; // getValue will auto-populate this. Type *Ty = I.getAllocatedType(); const TargetLowering *TLI = TM.getTargetLowering(); uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); unsigned Align = std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), I.getAlignment()); SDValue AllocSize = getValue(I.getArraySize()); EVT IntPtr = TLI->getPointerTy(); if (AllocSize.getValueType() != IntPtr) AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, AllocSize, DAG.getConstant(TySize, IntPtr)); // Handle alignment. If the requested alignment is less than or equal to // the stack alignment, ignore it. If the size is greater than or equal to // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); if (Align <= StackAlign) Align = 0; // Round the size of the allocation up to the stack alignment size // by add SA-1 to the size. AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), AllocSize.getValueType(), AllocSize, DAG.getIntPtrConstant(StackAlign-1)); // Mask out the low bits for alignment purposes. AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), AllocSize.getValueType(), AllocSize, DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops, 3); setValue(&I, DSA); DAG.setRoot(DSA.getValue(1)); // Inform the Frame Information that we have just allocated a variable-sized // object. FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); } void SelectionDAGBuilder::visitLoad(const LoadInst &I) { if (I.isAtomic()) return visitAtomicLoad(I); const Value *SV = I.getOperand(0); SDValue Ptr = getValue(SV); Type *Ty = I.getType(); bool isVolatile = I.isVolatile(); bool isNonTemporal = I.getMetadata("nontemporal") != 0; bool isInvariant = I.getMetadata("invariant.load") != 0; unsigned Alignment = I.getAlignment(); const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); SmallVector ValueVTs; SmallVector Offsets; ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); unsigned NumValues = ValueVTs.size(); if (NumValues == 0) return; SDValue Root; bool ConstantMemory = false; if (I.isVolatile() || NumValues > MaxParallelChains) // Serialize volatile loads with other side effects. Root = getRoot(); else if (AA->pointsToConstantMemory( AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { // Do not serialize (non-volatile) loads of constant memory with anything. Root = DAG.getEntryNode(); ConstantMemory = true; } else { // Do not serialize non-volatile loads against each other. Root = DAG.getRoot(); } SmallVector Values(NumValues); SmallVector Chains(std::min(unsigned(MaxParallelChains), NumValues)); EVT PtrVT = Ptr.getValueType(); unsigned ChainI = 0; for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { // Serializing loads here may result in excessive register pressure, and // TokenFactor places arbitrary choke points on the scheduler. SD scheduling // could recover a bit by hoisting nodes upward in the chain by recognizing // they are side-effect free or do not alias. The optimizer should really // avoid this case by converting large object/array copies to llvm.memcpy // (MaxParallelChains should always remain as failsafe). if (ChainI == MaxParallelChains) { assert(PendingLoads.empty() && "PendingLoads must be serialized first"); SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, &Chains[0], ChainI); Root = Chain; ChainI = 0; } SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, DAG.getConstant(Offsets[i], PtrVT)); SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, A, MachinePointerInfo(SV, Offsets[i]), isVolatile, isNonTemporal, isInvariant, Alignment, TBAAInfo, Ranges); Values[i] = L; Chains[ChainI] = L.getValue(1); } if (!ConstantMemory) { SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, &Chains[0], ChainI); if (isVolatile) DAG.setRoot(Chain); else PendingLoads.push_back(Chain); } setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), DAG.getVTList(&ValueVTs[0], NumValues), &Values[0], NumValues)); } void SelectionDAGBuilder::visitStore(const StoreInst &I) { if (I.isAtomic()) return visitAtomicStore(I); const Value *SrcV = I.getOperand(0); const Value *PtrV = I.getOperand(1); SmallVector ValueVTs; SmallVector Offsets; ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); unsigned NumValues = ValueVTs.size(); if (NumValues == 0) return; // Get the lowered operands. Note that we do this after // checking if NumResults is zero, because with zero results // the operands won't have values in the map. SDValue Src = getValue(SrcV); SDValue Ptr = getValue(PtrV); SDValue Root = getRoot(); SmallVector Chains(std::min(unsigned(MaxParallelChains), NumValues)); EVT PtrVT = Ptr.getValueType(); bool isVolatile = I.isVolatile(); bool isNonTemporal = I.getMetadata("nontemporal") != 0; unsigned Alignment = I.getAlignment(); const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); unsigned ChainI = 0; for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { // See visitLoad comments. if (ChainI == MaxParallelChains) { SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, &Chains[0], ChainI); Root = Chain; ChainI = 0; } SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, DAG.getConstant(Offsets[i], PtrVT)); SDValue St = DAG.getStore(Root, getCurSDLoc(), SDValue(Src.getNode(), Src.getResNo() + i), Add, MachinePointerInfo(PtrV, Offsets[i]), isVolatile, isNonTemporal, Alignment, TBAAInfo); Chains[ChainI] = St; } SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, &Chains[0], ChainI); DAG.setRoot(StoreNode); } static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, SynchronizationScope Scope, bool Before, SDLoc dl, SelectionDAG &DAG, const TargetLowering &TLI) { // Fence, if necessary if (Before) { if (Order == AcquireRelease || Order == SequentiallyConsistent) Order = Release; else if (Order == Acquire || Order == Monotonic) return Chain; } else { if (Order == AcquireRelease) Order = Acquire; else if (Order == Release || Order == Monotonic) return Chain; } SDValue Ops[3]; Ops[0] = Chain; Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); } void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { SDLoc dl = getCurSDLoc(); AtomicOrdering Order = I.getOrdering(); SynchronizationScope Scope = I.getSynchScope(); SDValue InChain = getRoot(); const TargetLowering *TLI = TM.getTargetLowering(); if (TLI->getInsertFencesForAtomic()) InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, DAG, *TLI); SDValue L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, getValue(I.getCompareOperand()).getSimpleValueType(), InChain, getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, TLI->getInsertFencesForAtomic() ? Monotonic : Order, Scope); SDValue OutChain = L.getValue(1); if (TLI->getInsertFencesForAtomic()) OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, DAG, *TLI); setValue(&I, L); DAG.setRoot(OutChain); } void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { SDLoc dl = getCurSDLoc(); ISD::NodeType NT; switch (I.getOperation()) { default: llvm_unreachable("Unknown atomicrmw operation"); case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; } AtomicOrdering Order = I.getOrdering(); SynchronizationScope Scope = I.getSynchScope(); SDValue InChain = getRoot(); const TargetLowering *TLI = TM.getTargetLowering(); if (TLI->getInsertFencesForAtomic()) InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, DAG, *TLI); SDValue L = DAG.getAtomic(NT, dl, getValue(I.getValOperand()).getSimpleValueType(), InChain, getValue(I.getPointerOperand()), getValue(I.getValOperand()), I.getPointerOperand(), 0 /* Alignment */, TLI->getInsertFencesForAtomic() ? Monotonic : Order, Scope); SDValue OutChain = L.getValue(1); if (TLI->getInsertFencesForAtomic()) OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, DAG, *TLI); setValue(&I, L); DAG.setRoot(OutChain); } void SelectionDAGBuilder::visitFence(const FenceInst &I) { SDLoc dl = getCurSDLoc(); const TargetLowering *TLI = TM.getTargetLowering(); SDValue Ops[3]; Ops[0] = getRoot(); Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); } void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { SDLoc dl = getCurSDLoc(); AtomicOrdering Order = I.getOrdering(); SynchronizationScope Scope = I.getSynchScope(); SDValue InChain = getRoot(); const TargetLowering *TLI = TM.getTargetLowering(); EVT VT = TLI->getValueType(I.getType()); if (I.getAlignment() < VT.getSizeInBits() / 8) report_fatal_error("Cannot generate unaligned atomic load"); SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, getValue(I.getPointerOperand()), I.getPointerOperand(), I.getAlignment(), TLI->getInsertFencesForAtomic() ? Monotonic : Order, Scope); SDValue OutChain = L.getValue(1); if (TLI->getInsertFencesForAtomic()) OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, DAG, *TLI); setValue(&I, L); DAG.setRoot(OutChain); } void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { SDLoc dl = getCurSDLoc(); AtomicOrdering Order = I.getOrdering(); SynchronizationScope Scope = I.getSynchScope(); SDValue InChain = getRoot(); const TargetLowering *TLI = TM.getTargetLowering(); EVT VT = TLI->getValueType(I.getValueOperand()->getType()); if (I.getAlignment() < VT.getSizeInBits() / 8) report_fatal_error("Cannot generate unaligned atomic store"); if (TLI->getInsertFencesForAtomic()) InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, DAG, *TLI); SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain, getValue(I.getPointerOperand()), getValue(I.getValueOperand()), I.getPointerOperand(), I.getAlignment(), TLI->getInsertFencesForAtomic() ? Monotonic : Order, Scope); if (TLI->getInsertFencesForAtomic()) OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, DAG, *TLI); DAG.setRoot(OutChain); } /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC /// node. void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic) { bool HasChain = !I.doesNotAccessMemory(); bool OnlyLoad = HasChain && I.onlyReadsMemory(); // Build the operand list. SmallVector Ops; if (HasChain) { // If this intrinsic has side-effects, chainify it. if (OnlyLoad) { // We don't need to serialize loads against other loads. Ops.push_back(DAG.getRoot()); } else { Ops.push_back(getRoot()); } } // Info is set by getTgtMemInstrinsic TargetLowering::IntrinsicInfo Info; const TargetLowering *TLI = TM.getTargetLowering(); bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); // Add the intrinsic ID as an integer operand if it's not a target intrinsic. if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || Info.opc == ISD::INTRINSIC_W_CHAIN) Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); // Add all operands of the call to the operand list. for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { SDValue Op = getValue(I.getArgOperand(i)); Ops.push_back(Op); } SmallVector ValueVTs; ComputeValueVTs(*TLI, I.getType(), ValueVTs); if (HasChain) ValueVTs.push_back(MVT::Other); SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); // Create the node. SDValue Result; if (IsTgtIntrinsic) { // This is target intrinsic that touches memory Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, &Ops[0], Ops.size(), Info.memVT, MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, Info.vol, Info.readMem, Info.writeMem); } else if (!HasChain) { Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, &Ops[0], Ops.size()); } else if (!I.getType()->isVoidTy()) { Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, &Ops[0], Ops.size()); } else { Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, &Ops[0], Ops.size()); } if (HasChain) { SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); if (OnlyLoad) PendingLoads.push_back(Chain); else DAG.setRoot(Chain); } if (!I.getType()->isVoidTy()) { if (VectorType *PTy = dyn_cast(I.getType())) { EVT VT = TLI->getValueType(PTy); Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); } setValue(&I, Result); } } /// GetSignificand - Get the significand and build it into a floating-point /// number with exponent of 1: /// /// Op = (Op & 0x007fffff) | 0x3f800000; /// /// where Op is the hexadecimal representation of floating point value. static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, DAG.getConstant(0x007fffff, MVT::i32)); SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, DAG.getConstant(0x3f800000, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); } /// GetExponent - Get the exponent: /// /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); /// /// where Op is the hexadecimal representation of floating point value. static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, SDLoc dl) { SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, DAG.getConstant(0x7f800000, MVT::i32)); SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, DAG.getConstant(23, TLI.getPointerTy())); SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, DAG.getConstant(127, MVT::i32)); return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); } /// getF32Constant - Get 32-bit floating point constant. static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt) { return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), MVT::f32); } /// expandExp - Lower an exp intrinsic. Handles the special sequences for /// limited-precision mode. static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI) { if (Op.getValueType() == MVT::f32 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { // Put the exponent in the right bit position for later addition to the // final result: // // #define LOG2OFe 1.4426950f // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, getF32Constant(DAG, 0x3fb8aa3b)); SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); // IntegerPartOfX <<= 23; IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, DAG.getConstant(23, TLI.getPointerTy())); SDValue TwoToFracPartOfX; if (LimitFloatPrecision <= 6) { // For floating-point precision of 6: // // TwoToFractionalPartOfX = // 0.997535578f + // (0.735607626f + 0.252464424f * x) * x; // // error 0.0144103317, which is 6 bits SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3e814304)); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3f3c50c8)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x3f7f5e7e)); } else if (LimitFloatPrecision <= 12) { // For floating-point precision of 12: // // TwoToFractionalPartOfX = // 0.999892986f + // (0.696457318f + // (0.224338339f + 0.792043434e-1f * x) * x) * x; // // 0.000107046256 error, which is 13 to 14 bits SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3da235e3)); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3e65b8f3)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x3f324b07)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, getF32Constant(DAG, 0x3f7ff8fd)); } else { // LimitFloatPrecision <= 18 // For floating-point precision of 18: // // TwoToFractionalPartOfX = // 0.999999982f + // (0.693148872f + // (0.240227044f + // (0.554906021e-1f + // (0.961591928e-2f + // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; // // error 2.47208000*10^(-7), which is better than 18 bits SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3924b03e)); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3ab24b87)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x3c1d8c17)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, getF32Constant(DAG, 0x3d634a1d)); SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, getF32Constant(DAG, 0x3e75fe14)); SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, getF32Constant(DAG, 0x3f317234)); SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, getF32Constant(DAG, 0x3f800000)); } // Add the exponent into the result in integer domain. SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); return DAG.getNode(ISD::BITCAST, dl, MVT::f32, DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); } // No special expansion. return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); } /// expandLog - Lower a log intrinsic. Handles the special sequences for /// limited-precision mode. static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI) { if (Op.getValueType() == MVT::f32 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); // Scale the exponent by log(2) [0.69314718f]. SDValue Exp = GetExponent(DAG, Op1, TLI, dl); SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, getF32Constant(DAG, 0x3f317218)); // Get the significand and build it into a floating-point number with // exponent of 1. SDValue X = GetSignificand(DAG, Op1, dl); SDValue LogOfMantissa; if (LimitFloatPrecision <= 6) { // For floating-point precision of 6: // // LogofMantissa = // -1.1609546f + // (1.4034025f - 0.23903021f * x) * x; // // error 0.0034276066, which is better than 8 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0xbe74c456)); SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, getF32Constant(DAG, 0x3fb3a2b1)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, getF32Constant(DAG, 0x3f949a29)); } else if (LimitFloatPrecision <= 12) { // For floating-point precision of 12: // // LogOfMantissa = // -1.7417939f + // (2.8212026f + // (-1.4699568f + // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; // // error 0.000061011436, which is 14 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0xbd67b6d6)); SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, getF32Constant(DAG, 0x3ee4f4b8)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, getF32Constant(DAG, 0x3fbc278b)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x40348e95)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, getF32Constant(DAG, 0x3fdef31a)); } else { // LimitFloatPrecision <= 18 // For floating-point precision of 18: // // LogOfMantissa = // -2.1072184f + // (4.2372794f + // (-3.7029485f + // (2.2781945f + // (-0.87823314f + // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; // // error 0.0000023660568, which is better than 18 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0xbc91e5ac)); SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, getF32Constant(DAG, 0x3e4350aa)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, getF32Constant(DAG, 0x3f60d3e3)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x4011cdf0)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, getF32Constant(DAG, 0x406cfd1c)); SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, getF32Constant(DAG, 0x408797cb)); SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, getF32Constant(DAG, 0x4006dcab)); } return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); } // No special expansion. return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); } /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for /// limited-precision mode. static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI) { if (Op.getValueType() == MVT::f32 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); // Get the exponent. SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); // Get the significand and build it into a floating-point number with // exponent of 1. SDValue X = GetSignificand(DAG, Op1, dl); // Different possible minimax approximations of significand in // floating-point for various degrees of accuracy over [1,2]. SDValue Log2ofMantissa; if (LimitFloatPrecision <= 6) { // For floating-point precision of 6: // // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; // // error 0.0049451742, which is more than 7 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0xbeb08fe0)); SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, getF32Constant(DAG, 0x40019463)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, getF32Constant(DAG, 0x3fd6633d)); } else if (LimitFloatPrecision <= 12) { // For floating-point precision of 12: // // Log2ofMantissa = // -2.51285454f + // (4.07009056f + // (-2.12067489f + // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; // // error 0.0000876136000, which is better than 13 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0xbda7262e)); SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, getF32Constant(DAG, 0x3f25280b)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, getF32Constant(DAG, 0x4007b923)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x40823e2f)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, getF32Constant(DAG, 0x4020d29c)); } else { // LimitFloatPrecision <= 18 // For floating-point precision of 18: // // Log2ofMantissa = // -3.0400495f + // (6.1129976f + // (-5.3420409f + // (3.2865683f + // (-1.2669343f + // (0.27515199f - // 0.25691327e-1f * x) * x) * x) * x) * x) * x; // // error 0.0000018516, which is better than 18 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0xbcd2769e)); SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, getF32Constant(DAG, 0x3e8ce0b9)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, getF32Constant(DAG, 0x3fa22ae7)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x40525723)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, getF32Constant(DAG, 0x40aaf200)); SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, getF32Constant(DAG, 0x40c39dad)); SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, getF32Constant(DAG, 0x4042902c)); } return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); } // No special expansion. return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); } /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for /// limited-precision mode. static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI) { if (Op.getValueType() == MVT::f32 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); // Scale the exponent by log10(2) [0.30102999f]. SDValue Exp = GetExponent(DAG, Op1, TLI, dl); SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, getF32Constant(DAG, 0x3e9a209a)); // Get the significand and build it into a floating-point number with // exponent of 1. SDValue X = GetSignificand(DAG, Op1, dl); SDValue Log10ofMantissa; if (LimitFloatPrecision <= 6) { // For floating-point precision of 6: // // Log10ofMantissa = // -0.50419619f + // (0.60948995f - 0.10380950f * x) * x; // // error 0.0014886165, which is 6 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0xbdd49a13)); SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, getF32Constant(DAG, 0x3f1c0789)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, getF32Constant(DAG, 0x3f011300)); } else if (LimitFloatPrecision <= 12) { // For floating-point precision of 12: // // Log10ofMantissa = // -0.64831180f + // (0.91751397f + // (-0.31664806f + 0.47637168e-1f * x) * x) * x; // // error 0.00019228036, which is better than 12 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3d431f31)); SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, getF32Constant(DAG, 0x3ea21fb2)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3f6ae232)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, getF32Constant(DAG, 0x3f25f7c3)); } else { // LimitFloatPrecision <= 18 // For floating-point precision of 18: // // Log10ofMantissa = // -0.84299375f + // (1.5327582f + // (-1.0688956f + // (0.49102474f + // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; // // error 0.0000037995730, which is better than 18 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3c5d51ce)); SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, getF32Constant(DAG, 0x3e00685a)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3efb6798)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, getF32Constant(DAG, 0x3f88d192)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, getF32Constant(DAG, 0x3fc4316c)); SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, getF32Constant(DAG, 0x3f57ce70)); } return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); } // No special expansion. return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); } /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for /// limited-precision mode. static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI) { if (Op.getValueType() == MVT::f32 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); // FractionalPartOfX = x - (float)IntegerPartOfX; SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); // IntegerPartOfX <<= 23; IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, DAG.getConstant(23, TLI.getPointerTy())); SDValue TwoToFractionalPartOfX; if (LimitFloatPrecision <= 6) { // For floating-point precision of 6: // // TwoToFractionalPartOfX = // 0.997535578f + // (0.735607626f + 0.252464424f * x) * x; // // error 0.0144103317, which is 6 bits SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3e814304)); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3f3c50c8)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x3f7f5e7e)); } else if (LimitFloatPrecision <= 12) { // For floating-point precision of 12: // // TwoToFractionalPartOfX = // 0.999892986f + // (0.696457318f + // (0.224338339f + 0.792043434e-1f * x) * x) * x; // // error 0.000107046256, which is 13 to 14 bits SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3da235e3)); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3e65b8f3)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x3f324b07)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, getF32Constant(DAG, 0x3f7ff8fd)); } else { // LimitFloatPrecision <= 18 // For floating-point precision of 18: // // TwoToFractionalPartOfX = // 0.999999982f + // (0.693148872f + // (0.240227044f + // (0.554906021e-1f + // (0.961591928e-2f + // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; // error 2.47208000*10^(-7), which is better than 18 bits SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3924b03e)); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3ab24b87)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x3c1d8c17)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, getF32Constant(DAG, 0x3d634a1d)); SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, getF32Constant(DAG, 0x3e75fe14)); SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, getF32Constant(DAG, 0x3f317234)); SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, getF32Constant(DAG, 0x3f800000)); } // Add the exponent into the result in integer domain. SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); return DAG.getNode(ISD::BITCAST, dl, MVT::f32, DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); } // No special expansion. return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); } /// visitPow - Lower a pow intrinsic. Handles the special sequences for /// limited-precision mode with x == 10.0f. static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const TargetLowering &TLI) { bool IsExp10 = false; if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { if (ConstantFPSDNode *LHSC = dyn_cast(LHS)) { APFloat Ten(10.0f); IsExp10 = LHSC->isExactlyValue(Ten); } } if (IsExp10) { // Put the exponent in the right bit position for later addition to the // final result: // // #define LOG2OF10 3.3219281f // IntegerPartOfX = (int32_t)(x * LOG2OF10); SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, getF32Constant(DAG, 0x40549a78)); SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); // FractionalPartOfX = x - (float)IntegerPartOfX; SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); // IntegerPartOfX <<= 23; IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, DAG.getConstant(23, TLI.getPointerTy())); SDValue TwoToFractionalPartOfX; if (LimitFloatPrecision <= 6) { // For floating-point precision of 6: // // twoToFractionalPartOfX = // 0.997535578f + // (0.735607626f + 0.252464424f * x) * x; // // error 0.0144103317, which is 6 bits SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3e814304)); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3f3c50c8)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x3f7f5e7e)); } else if (LimitFloatPrecision <= 12) { // For floating-point precision of 12: // // TwoToFractionalPartOfX = // 0.999892986f + // (0.696457318f + // (0.224338339f + 0.792043434e-1f * x) * x) * x; // // error 0.000107046256, which is 13 to 14 bits SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3da235e3)); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3e65b8f3)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x3f324b07)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, getF32Constant(DAG, 0x3f7ff8fd)); } else { // LimitFloatPrecision <= 18 // For floating-point precision of 18: // // TwoToFractionalPartOfX = // 0.999999982f + // (0.693148872f + // (0.240227044f + // (0.554906021e-1f + // (0.961591928e-2f + // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; // error 2.47208000*10^(-7), which is better than 18 bits SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3924b03e)); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3ab24b87)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x3c1d8c17)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, getF32Constant(DAG, 0x3d634a1d)); SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, getF32Constant(DAG, 0x3e75fe14)); SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, getF32Constant(DAG, 0x3f317234)); SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, getF32Constant(DAG, 0x3f800000)); } SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); return DAG.getNode(ISD::BITCAST, dl, MVT::f32, DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); } // No special expansion. return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); } /// ExpandPowI - Expand a llvm.powi intrinsic. static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, SelectionDAG &DAG) { // If RHS is a constant, we can expand this out to a multiplication tree, // otherwise we end up lowering to a call to __powidf2 (for example). When // optimizing for size, we only want to do this if the expansion would produce // a small number of multiplies, otherwise we do the full expansion. if (ConstantSDNode *RHSC = dyn_cast(RHS)) { // Get the exponent as a positive value. unsigned Val = RHSC->getSExtValue(); if ((int)Val < 0) Val = -Val; // powi(x, 0) -> 1.0 if (Val == 0) return DAG.getConstantFP(1.0, LHS.getValueType()); const Function *F = DAG.getMachineFunction().getFunction(); if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) || // If optimizing for size, don't insert too many multiplies. This // inserts up to 5 multiplies. CountPopulation_32(Val)+Log2_32(Val) < 7) { // We use the simple binary decomposition method to generate the multiply // sequence. There are more optimal ways to do this (for example, // powi(x,15) generates one more multiply than it should), but this has // the benefit of being both really simple and much better than a libcall. SDValue Res; // Logically starts equal to 1.0 SDValue CurSquare = LHS; while (Val) { if (Val & 1) { if (Res.getNode()) Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); else Res = CurSquare; // 1.0*CurSquare. } CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), CurSquare, CurSquare); Val >>= 1; } // If the original was negative, invert the result, producing 1/(x*x*x). if (RHSC->getSExtValue() < 0) Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), DAG.getConstantFP(1.0, LHS.getValueType()), Res); return Res; } } // Otherwise, expand to a libcall. return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); } // getTruncatedArgReg - Find underlying register used for an truncated // argument. static unsigned getTruncatedArgReg(const SDValue &N) { if (N.getOpcode() != ISD::TRUNCATE) return 0; const SDValue &Ext = N.getOperand(0); if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext) { const SDValue &CFR = Ext.getOperand(0); if (CFR.getOpcode() == ISD::CopyFromReg) return cast(CFR.getOperand(1))->getReg(); if (CFR.getOpcode() == ISD::TRUNCATE) return getTruncatedArgReg(CFR); } return 0; } /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function /// argument, create the corresponding DBG_VALUE machine instruction for it now. /// At the end of instruction selection, they will be inserted to the entry BB. bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, int64_t Offset, const SDValue &N) { const Argument *Arg = dyn_cast(V); if (!Arg) return false; MachineFunction &MF = DAG.getMachineFunction(); const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); // Ignore inlined function arguments here. DIVariable DV(Variable); if (DV.isInlinedFnArgument(MF.getFunction())) return false; Optional Op; // Some arguments' frame index is recorded during argument lowering. if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) Op = MachineOperand::CreateFI(FI); if (!Op && N.getNode()) { unsigned Reg; if (N.getOpcode() == ISD::CopyFromReg) Reg = cast(N.getOperand(1))->getReg(); else Reg = getTruncatedArgReg(N); if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { MachineRegisterInfo &RegInfo = MF.getRegInfo(); unsigned PR = RegInfo.getLiveInPhysReg(Reg); if (PR) Reg = PR; } if (Reg) Op = MachineOperand::CreateReg(Reg, false); } if (!Op) { // Check if ValueMap has reg number. DenseMap::iterator VMI = FuncInfo.ValueMap.find(V); if (VMI != FuncInfo.ValueMap.end()) Op = MachineOperand::CreateReg(VMI->second, false); } if (!Op && N.getNode()) // Check if frame index is available. if (LoadSDNode *LNode = dyn_cast(N.getNode())) if (FrameIndexSDNode *FINode = dyn_cast(LNode->getBasePtr().getNode())) Op = MachineOperand::CreateFI(FINode->getIndex()); if (!Op) return false; // FIXME: This does not handle register-indirect values at offset 0. bool IsIndirect = Offset != 0; if (Op->isReg()) FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), IsIndirect, Op->getReg(), Offset, Variable)); else FuncInfo.ArgDbgValues.push_back( BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) .addOperand(*Op).addImm(Offset).addMetadata(Variable)); return true; } // VisualStudio defines setjmp as _setjmp #if defined(_MSC_VER) && defined(setjmp) && \ !defined(setjmp_undefined_for_msvc) # pragma push_macro("setjmp") # undef setjmp # define setjmp_undefined_for_msvc #endif /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If /// we want to emit this as a call to a named external function, return the name /// otherwise lower it and return null. const char * SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { const TargetLowering *TLI = TM.getTargetLowering(); SDLoc sdl = getCurSDLoc(); DebugLoc dl = getCurDebugLoc(); SDValue Res; switch (Intrinsic) { default: // By default, turn this into a target intrinsic node. visitTargetIntrinsic(I, Intrinsic); return 0; case Intrinsic::vastart: visitVAStart(I); return 0; case Intrinsic::vaend: visitVAEnd(I); return 0; case Intrinsic::vacopy: visitVACopy(I); return 0; case Intrinsic::returnaddress: setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), getValue(I.getArgOperand(0)))); return 0; case Intrinsic::frameaddress: setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), getValue(I.getArgOperand(0)))); return 0; case Intrinsic::setjmp: return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; case Intrinsic::longjmp: return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; case Intrinsic::memcpy: { // Assert for address < 256 since we support only user defined address // spaces. assert(cast(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && cast(I.getArgOperand(1)->getType())->getAddressSpace() < 256 && "Unknown address space"); SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); SDValue Op3 = getValue(I.getArgOperand(2)); unsigned Align = cast(I.getArgOperand(3))->getZExtValue(); if (!Align) Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. bool isVol = cast(I.getArgOperand(4))->getZExtValue(); DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, MachinePointerInfo(I.getArgOperand(0)), MachinePointerInfo(I.getArgOperand(1)))); return 0; } case Intrinsic::memset: { // Assert for address < 256 since we support only user defined address // spaces. assert(cast(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && "Unknown address space"); SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); SDValue Op3 = getValue(I.getArgOperand(2)); unsigned Align = cast(I.getArgOperand(3))->getZExtValue(); if (!Align) Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. bool isVol = cast(I.getArgOperand(4))->getZExtValue(); DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, MachinePointerInfo(I.getArgOperand(0)))); return 0; } case Intrinsic::memmove: { // Assert for address < 256 since we support only user defined address // spaces. assert(cast(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && cast(I.getArgOperand(1)->getType())->getAddressSpace() < 256 && "Unknown address space"); SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); SDValue Op3 = getValue(I.getArgOperand(2)); unsigned Align = cast(I.getArgOperand(3))->getZExtValue(); if (!Align) Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. bool isVol = cast(I.getArgOperand(4))->getZExtValue(); DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, MachinePointerInfo(I.getArgOperand(0)), MachinePointerInfo(I.getArgOperand(1)))); return 0; } case Intrinsic::dbg_declare: { const DbgDeclareInst &DI = cast(I); MDNode *Variable = DI.getVariable(); const Value *Address = DI.getAddress(); DIVariable DIVar(Variable); assert((!DIVar || DIVar.isVariable()) && "Variable in DbgDeclareInst should be either null or a DIVariable."); if (!Address || !DIVar) { DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); return 0; } // Check if address has undef value. if (isa(Address) || (Address->use_empty() && !isa(Address))) { DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); return 0; } SDValue &N = NodeMap[Address]; if (!N.getNode() && isa(Address)) // Check unused arguments map. N = UnusedArgNodeMap[Address]; SDDbgValue *SDV; if (N.getNode()) { if (const BitCastInst *BCI = dyn_cast(Address)) Address = BCI->getOperand(0); // Parameters are handled specially. bool isParameter = (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || isa(Address)); const AllocaInst *AI = dyn_cast(Address); if (isParameter && !AI) { FrameIndexSDNode *FINode = dyn_cast(N.getNode()); if (FINode) // Byval parameter. We have a frame index at this point. SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 0, dl, SDNodeOrder); else { // Address is an argument, so try to emit its dbg value using // virtual register info from the FuncInfo.ValueMap. EmitFuncArgumentDbgValue(Address, Variable, 0, N); return 0; } } else if (AI) SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 0, dl, SDNodeOrder); else { // Can't do anything with other non-AI cases yet. DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); DEBUG(Address->dump()); return 0; } DAG.AddDbgValue(SDV, N.getNode(), isParameter); } else { // If Address is an argument then try to emit its dbg value using // virtual register info from the FuncInfo.ValueMap. if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { // If variable is pinned by a alloca in dominating bb then // use StaticAllocaMap. if (const AllocaInst *AI = dyn_cast(Address)) { if (AI->getParent() != DI.getParent()) { DenseMap::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) { SDV = DAG.getDbgValue(Variable, SI->second, 0, dl, SDNodeOrder); DAG.AddDbgValue(SDV, 0, false); return 0; } } } DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); } } return 0; } case Intrinsic::dbg_value: { const DbgValueInst &DI = cast(I); DIVariable DIVar(DI.getVariable()); assert((!DIVar || DIVar.isVariable()) && "Variable in DbgValueInst should be either null or a DIVariable."); if (!DIVar) return 0; MDNode *Variable = DI.getVariable(); uint64_t Offset = DI.getOffset(); const Value *V = DI.getValue(); if (!V) return 0; SDDbgValue *SDV; if (isa(V) || isa(V) || isa(V)) { SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); DAG.AddDbgValue(SDV, 0, false); } else { // Do not use getValue() in here; we don't want to generate code at // this point if it hasn't been done yet. SDValue N = NodeMap[V]; if (!N.getNode() && isa(V)) // Check unused arguments map. N = UnusedArgNodeMap[V]; if (N.getNode()) { if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), Offset, dl, SDNodeOrder); DAG.AddDbgValue(SDV, N.getNode(), false); } } else if (!V->use_empty() ) { // Do not call getValue(V) yet, as we don't want to generate code. // Remember it for later. DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); DanglingDebugInfoMap[V] = DDI; } else { // We may expand this to cover more cases. One case where we have no // data available is an unreferenced parameter. DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); } } // Build a debug info table entry. if (const BitCastInst *BCI = dyn_cast(V)) V = BCI->getOperand(0); const AllocaInst *AI = dyn_cast(V); // Don't handle byval struct arguments or VLAs, for example. if (!AI) { DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); return 0; } DenseMap::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI == FuncInfo.StaticAllocaMap.end()) return 0; // VLAs. int FI = SI->second; MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); return 0; } case Intrinsic::eh_typeid_for: { // Find the type id for the given typeinfo. GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); Res = DAG.getConstant(TypeID, MVT::i32); setValue(&I, Res); return 0; } case Intrinsic::eh_return_i32: case Intrinsic::eh_return_i64: DAG.getMachineFunction().getMMI().setCallsEHReturn(true); DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, MVT::Other, getControlRoot(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)))); return 0; case Intrinsic::eh_unwind_init: DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); return 0; case Intrinsic::eh_dwarf_cfa: { SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, TLI->getPointerTy()); SDValue Offset = DAG.getNode(ISD::ADD, sdl, CfaArg.getValueType(), DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, CfaArg.getValueType()), CfaArg); SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), DAG.getConstant(0, TLI->getPointerTy())); setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), FA, Offset)); return 0; } case Intrinsic::eh_sjlj_callsite: { MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); ConstantInt *CI = dyn_cast(I.getArgOperand(0)); assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); MMI.setCurrentCallSite(CI->getZExtValue()); return 0; } case Intrinsic::eh_sjlj_functioncontext: { // Get and store the index of the function context. MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); AllocaInst *FnCtx = cast(I.getArgOperand(0)->stripPointerCasts()); int FI = FuncInfo.StaticAllocaMap[FnCtx]; MFI->setFunctionContextIndex(FI); return 0; } case Intrinsic::eh_sjlj_setjmp: { SDValue Ops[2]; Ops[0] = getRoot(); Ops[1] = getValue(I.getArgOperand(0)); SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, DAG.getVTList(MVT::i32, MVT::Other), Ops, 2); setValue(&I, Op.getValue(0)); DAG.setRoot(Op.getValue(1)); return 0; } case Intrinsic::eh_sjlj_longjmp: { DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, getRoot(), getValue(I.getArgOperand(0)))); return 0; } case Intrinsic::x86_mmx_pslli_w: case Intrinsic::x86_mmx_pslli_d: case Intrinsic::x86_mmx_pslli_q: case Intrinsic::x86_mmx_psrli_w: case Intrinsic::x86_mmx_psrli_d: case Intrinsic::x86_mmx_psrli_q: case Intrinsic::x86_mmx_psrai_w: case Intrinsic::x86_mmx_psrai_d: { SDValue ShAmt = getValue(I.getArgOperand(1)); if (isa(ShAmt)) { visitTargetIntrinsic(I, Intrinsic); return 0; } unsigned NewIntrinsic = 0; EVT ShAmtVT = MVT::v2i32; switch (Intrinsic) { case Intrinsic::x86_mmx_pslli_w: NewIntrinsic = Intrinsic::x86_mmx_psll_w; break; case Intrinsic::x86_mmx_pslli_d: NewIntrinsic = Intrinsic::x86_mmx_psll_d; break; case Intrinsic::x86_mmx_pslli_q: NewIntrinsic = Intrinsic::x86_mmx_psll_q; break; case Intrinsic::x86_mmx_psrli_w: NewIntrinsic = Intrinsic::x86_mmx_psrl_w; break; case Intrinsic::x86_mmx_psrli_d: NewIntrinsic = Intrinsic::x86_mmx_psrl_d; break; case Intrinsic::x86_mmx_psrli_q: NewIntrinsic = Intrinsic::x86_mmx_psrl_q; break; case Intrinsic::x86_mmx_psrai_w: NewIntrinsic = Intrinsic::x86_mmx_psra_w; break; case Intrinsic::x86_mmx_psrai_d: NewIntrinsic = Intrinsic::x86_mmx_psra_d; break; default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. } // The vector shift intrinsics with scalars uses 32b shift amounts but // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits // to be zero. // We must do this early because v2i32 is not a legal type. SDValue ShOps[2]; ShOps[0] = ShAmt; ShOps[1] = DAG.getConstant(0, MVT::i32); ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2); EVT DestVT = TLI->getValueType(I.getType()); ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, DAG.getConstant(NewIntrinsic, MVT::i32), getValue(I.getArgOperand(0)), ShAmt); setValue(&I, Res); return 0; } case Intrinsic::x86_avx_vinsertf128_pd_256: case Intrinsic::x86_avx_vinsertf128_ps_256: case Intrinsic::x86_avx_vinsertf128_si_256: case Intrinsic::x86_avx2_vinserti128: { EVT DestVT = TLI->getValueType(I.getType()); EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); uint64_t Idx = (cast(I.getArgOperand(2))->getZExtValue() & 1) * ElVT.getVectorNumElements(); Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), DAG.getConstant(Idx, TLI->getVectorIdxTy())); setValue(&I, Res); return 0; } case Intrinsic::x86_avx_vextractf128_pd_256: case Intrinsic::x86_avx_vextractf128_ps_256: case Intrinsic::x86_avx_vextractf128_si_256: case Intrinsic::x86_avx2_vextracti128: { EVT DestVT = TLI->getValueType(I.getType()); uint64_t Idx = (cast(I.getArgOperand(1))->getZExtValue() & 1) * DestVT.getVectorNumElements(); Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, getValue(I.getArgOperand(0)), DAG.getConstant(Idx, TLI->getVectorIdxTy())); setValue(&I, Res); return 0; } case Intrinsic::convertff: case Intrinsic::convertfsi: case Intrinsic::convertfui: case Intrinsic::convertsif: case Intrinsic::convertuif: case Intrinsic::convertss: case Intrinsic::convertsu: case Intrinsic::convertus: case Intrinsic::convertuu: { ISD::CvtCode Code = ISD::CVT_INVALID; switch (Intrinsic) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::convertff: Code = ISD::CVT_FF; break; case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; case Intrinsic::convertfui: Code = ISD::CVT_FU; break; case Intrinsic::convertsif: Code = ISD::CVT_SF; break; case Intrinsic::convertuif: Code = ISD::CVT_UF; break; case Intrinsic::convertss: Code = ISD::CVT_SS; break; case Intrinsic::convertsu: Code = ISD::CVT_SU; break; case Intrinsic::convertus: Code = ISD::CVT_US; break; case Intrinsic::convertuu: Code = ISD::CVT_UU; break; } EVT DestVT = TLI->getValueType(I.getType()); const Value *Op1 = I.getArgOperand(0); Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), DAG.getValueType(DestVT), DAG.getValueType(getValue(Op1).getValueType()), getValue(I.getArgOperand(1)), getValue(I.getArgOperand(2)), Code); setValue(&I, Res); return 0; } case Intrinsic::powi: setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), DAG)); return 0; case Intrinsic::log: setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); return 0; case Intrinsic::log2: setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); return 0; case Intrinsic::log10: setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); return 0; case Intrinsic::exp: setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); return 0; case Intrinsic::exp2: setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); return 0; case Intrinsic::pow: setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), DAG, *TLI)); return 0; case Intrinsic::sqrt: case Intrinsic::fabs: case Intrinsic::sin: case Intrinsic::cos: case Intrinsic::floor: case Intrinsic::ceil: case Intrinsic::trunc: case Intrinsic::rint: case Intrinsic::nearbyint: case Intrinsic::round: { unsigned Opcode; switch (Intrinsic) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; case Intrinsic::fabs: Opcode = ISD::FABS; break; case Intrinsic::sin: Opcode = ISD::FSIN; break; case Intrinsic::cos: Opcode = ISD::FCOS; break; case Intrinsic::floor: Opcode = ISD::FFLOOR; break; case Intrinsic::ceil: Opcode = ISD::FCEIL; break; case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; case Intrinsic::rint: Opcode = ISD::FRINT; break; case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; case Intrinsic::round: Opcode = ISD::FROUND; break; } setValue(&I, DAG.getNode(Opcode, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)))); return 0; } case Intrinsic::copysign: setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)))); return 0; case Intrinsic::fma: setValue(&I, DAG.getNode(ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), getValue(I.getArgOperand(2)))); return 0; case Intrinsic::fmuladd: { EVT VT = TLI->getValueType(I.getType()); if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && TLI->isFMAFasterThanFMulAndFAdd(VT)) { setValue(&I, DAG.getNode(ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), getValue(I.getArgOperand(2)))); } else { SDValue Mul = DAG.getNode(ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1))); SDValue Add = DAG.getNode(ISD::FADD, sdl, getValue(I.getArgOperand(0)).getValueType(), Mul, getValue(I.getArgOperand(2))); setValue(&I, Add); } return 0; } case Intrinsic::convert_to_fp16: setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, MVT::i16, getValue(I.getArgOperand(0)))); return 0; case Intrinsic::convert_from_fp16: setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, MVT::f32, getValue(I.getArgOperand(0)))); return 0; case Intrinsic::pcmarker: { SDValue Tmp = getValue(I.getArgOperand(0)); DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); return 0; } case Intrinsic::readcyclecounter: { SDValue Op = getRoot(); Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, DAG.getVTList(MVT::i64, MVT::Other), &Op, 1); setValue(&I, Res); DAG.setRoot(Res.getValue(1)); return 0; } case Intrinsic::bswap: setValue(&I, DAG.getNode(ISD::BSWAP, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)))); return 0; case Intrinsic::cttz: { SDValue Arg = getValue(I.getArgOperand(0)); ConstantInt *CI = cast(I.getArgOperand(1)); EVT Ty = Arg.getValueType(); setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, sdl, Ty, Arg)); return 0; } case Intrinsic::ctlz: { SDValue Arg = getValue(I.getArgOperand(0)); ConstantInt *CI = cast(I.getArgOperand(1)); EVT Ty = Arg.getValueType(); setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, sdl, Ty, Arg)); return 0; } case Intrinsic::ctpop: { SDValue Arg = getValue(I.getArgOperand(0)); EVT Ty = Arg.getValueType(); setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); return 0; } case Intrinsic::stacksave: { SDValue Op = getRoot(); Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1); setValue(&I, Res); DAG.setRoot(Res.getValue(1)); return 0; } case Intrinsic::stackrestore: { Res = getValue(I.getArgOperand(0)); DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); return 0; } case Intrinsic::stackprotector: { // Emit code into the DAG to store the stack guard onto the stack. MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); EVT PtrTy = TLI->getPointerTy(); SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. AllocaInst *Slot = cast(I.getArgOperand(1)); int FI = FuncInfo.StaticAllocaMap[Slot]; MFI->setStackProtectorIndex(FI); SDValue FIN = DAG.getFrameIndex(FI, PtrTy); // Store the stack protector onto the stack. Res = DAG.getStore(getRoot(), sdl, Src, FIN, MachinePointerInfo::getFixedStack(FI), true, false, 0); setValue(&I, Res); DAG.setRoot(Res); return 0; } case Intrinsic::objectsize: { // If we don't know by now, we're never going to know. ConstantInt *CI = dyn_cast(I.getArgOperand(1)); assert(CI && "Non-constant type in __builtin_object_size?"); SDValue Arg = getValue(I.getCalledValue()); EVT Ty = Arg.getValueType(); if (CI->isZero()) Res = DAG.getConstant(-1ULL, Ty); else Res = DAG.getConstant(0, Ty); setValue(&I, Res); return 0; } case Intrinsic::annotation: case Intrinsic::ptr_annotation: // Drop the intrinsic, but forward the value setValue(&I, getValue(I.getOperand(0))); return 0; case Intrinsic::var_annotation: // Discard annotate attributes return 0; case Intrinsic::init_trampoline: { const Function *F = cast(I.getArgOperand(1)->stripPointerCasts()); SDValue Ops[6]; Ops[0] = getRoot(); Ops[1] = getValue(I.getArgOperand(0)); Ops[2] = getValue(I.getArgOperand(1)); Ops[3] = getValue(I.getArgOperand(2)); Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); Ops[5] = DAG.getSrcValue(F); Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6); DAG.setRoot(Res); return 0; } case Intrinsic::adjust_trampoline: { setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, TLI->getPointerTy(), getValue(I.getArgOperand(0)))); return 0; } case Intrinsic::gcroot: if (GFI) { const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); const Constant *TypeMap = cast(I.getArgOperand(1)); FrameIndexSDNode *FI = cast(getValue(Alloca).getNode()); GFI->addStackRoot(FI->getIndex(), TypeMap); } return 0; case Intrinsic::gcread: case Intrinsic::gcwrite: llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); case Intrinsic::flt_rounds: setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); return 0; case Intrinsic::expect: { // Just replace __builtin_expect(exp, c) with EXP. setValue(&I, getValue(I.getArgOperand(0))); return 0; } case Intrinsic::debugtrap: case Intrinsic::trap: { StringRef TrapFuncName = TM.Options.getTrapFunctionName(); if (TrapFuncName.empty()) { ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? ISD::TRAP : ISD::DEBUGTRAP; DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); return 0; } TargetLowering::ArgListTy Args; TargetLowering:: CallLoweringInfo CLI(getRoot(), I.getType(), false, false, false, false, 0, CallingConv::C, /*isTailCall=*/false, /*doesNotRet=*/false, /*isReturnValueUsed=*/true, DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()), Args, DAG, sdl); std::pair Result = TLI->LowerCallTo(CLI); DAG.setRoot(Result.second); return 0; } case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::umul_with_overflow: case Intrinsic::smul_with_overflow: { ISD::NodeType Op; switch (Intrinsic) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; } SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); return 0; } case Intrinsic::prefetch: { SDValue Ops[5]; unsigned rw = cast(I.getArgOperand(1))->getZExtValue(); Ops[0] = getRoot(); Ops[1] = getValue(I.getArgOperand(0)); Ops[2] = getValue(I.getArgOperand(1)); Ops[3] = getValue(I.getArgOperand(2)); Ops[4] = getValue(I.getArgOperand(3)); DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), &Ops[0], 5, EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 0, /* align */ false, /* volatile */ rw==0, /* read */ rw==1)); /* write */ return 0; } case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: { bool IsStart = (Intrinsic == Intrinsic::lifetime_start); // Stack coloring is not enabled in O0, discard region information. if (TM.getOptLevel() == CodeGenOpt::None) return 0; SmallVector Allocas; GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); for (SmallVectorImpl::iterator Object = Allocas.begin(), E = Allocas.end(); Object != E; ++Object) { AllocaInst *LifetimeObject = dyn_cast_or_null(*Object); // Could not find an Alloca. if (!LifetimeObject) continue; int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; SDValue Ops[2]; Ops[0] = getRoot(); Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2); DAG.setRoot(Res); } return 0; } case Intrinsic::invariant_start: // Discard region information. setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); return 0; case Intrinsic::invariant_end: // Discard region information. return 0; case Intrinsic::stackprotectorcheck: { // Do not actually emit anything for this basic block. Instead we initialize // the stack protector descriptor and export the guard variable so we can // access it in FinishBasicBlock. const BasicBlock *BB = I.getParent(); SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); ExportFromCurrentBlock(SPDescriptor.getGuard()); // Flush our exports since we are going to process a terminator. (void)getControlRoot(); return 0; } case Intrinsic::donothing: // ignore return 0; case Intrinsic::experimental_stackmap: { visitStackmap(I); return 0; } case Intrinsic::experimental_patchpoint_void: case Intrinsic::experimental_patchpoint_i64: { visitPatchpoint(I); return 0; } } } void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool isTailCall, MachineBasicBlock *LandingPad) { PointerType *PT = cast(CS.getCalledValue()->getType()); FunctionType *FTy = cast(PT->getElementType()); Type *RetTy = FTy->getReturnType(); MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); MCSymbol *BeginLabel = 0; TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Args.reserve(CS.arg_size()); // Check whether the function can return without sret-demotion. SmallVector Outs; const TargetLowering *TLI = TM.getTargetLowering(); GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), DAG.getMachineFunction(), FTy->isVarArg(), Outs, FTy->getContext()); SDValue DemoteStackSlot; int DemoteStackIdx = -100; if (!CanLowerReturn) { uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( FTy->getReturnType()); unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( FTy->getReturnType()); MachineFunction &MF = DAG.getMachineFunction(); DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); Entry.Node = DemoteStackSlot; Entry.Ty = StackSlotPtrType; Entry.isSExt = false; Entry.isZExt = false; Entry.isInReg = false; Entry.isSRet = true; Entry.isNest = false; Entry.isByVal = false; Entry.isReturned = false; Entry.Alignment = Align; Args.push_back(Entry); RetTy = Type::getVoidTy(FTy->getContext()); } for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) { const Value *V = *i; // Skip empty types if (V->getType()->isEmptyTy()) continue; SDValue ArgNode = getValue(V); Entry.Node = ArgNode; Entry.Ty = V->getType(); // Skip the first return-type Attribute to get to params. Entry.setAttributes(&CS, i - CS.arg_begin() + 1); Args.push_back(Entry); } if (LandingPad) { // Insert a label before the invoke call to mark the try range. This can be // used to detect deletion of the invoke via the MachineModuleInfo. BeginLabel = MMI.getContext().CreateTempSymbol(); // For SjLj, keep track of which landing pads go with which invokes // so as to maintain the ordering of pads in the LSDA. unsigned CallSiteIndex = MMI.getCurrentCallSite(); if (CallSiteIndex) { MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); // Now that the call site is handled, stop tracking it. MMI.setCurrentCallSite(0); } // Both PendingLoads and PendingExports must be flushed here; // this call might not return. (void)getRoot(); DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); } // Check if target-independent constraints permit a tail call here. // Target-dependent constraints are checked within TLI->LowerCallTo. if (isTailCall && !isInTailCallPosition(CS, *TLI)) isTailCall = false; TargetLowering:: CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, getCurSDLoc(), CS); std::pair Result = TLI->LowerCallTo(CLI); assert((isTailCall || Result.second.getNode()) && "Non-null chain expected with non-tail call!"); assert((Result.second.getNode() || !Result.first.getNode()) && "Null value expected with tail call!"); if (Result.first.getNode()) { setValue(CS.getInstruction(), Result.first); } else if (!CanLowerReturn && Result.second.getNode()) { // The instruction result is the result of loading from the // hidden sret parameter. SmallVector PVTs; Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); ComputeValueVTs(*TLI, PtrRetTy, PVTs); assert(PVTs.size() == 1 && "Pointers should fit in one register"); EVT PtrVT = PVTs[0]; SmallVector RetTys; SmallVector Offsets; RetTy = FTy->getReturnType(); ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); unsigned NumValues = RetTys.size(); SmallVector Values(NumValues); SmallVector Chains(NumValues); for (unsigned i = 0; i < NumValues; ++i) { SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, DemoteStackSlot, DAG.getConstant(Offsets[i], PtrVT)); SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, false, false, 1); Values[i] = L; Chains[i] = L.getValue(1); } SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, &Chains[0], NumValues); PendingLoads.push_back(Chain); setValue(CS.getInstruction(), DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), DAG.getVTList(&RetTys[0], RetTys.size()), &Values[0], Values.size())); } if (!Result.second.getNode()) { // As a special case, a null chain means that a tail call has been emitted // and the DAG root is already updated. HasTailCall = true; // Since there's no actual continuation from this block, nothing can be // relying on us setting vregs for them. PendingExports.clear(); } else { DAG.setRoot(Result.second); } if (LandingPad) { // Insert a label at the end of the invoke call to mark the try range. This // can be used to detect deletion of the invoke via the MachineModuleInfo. MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); // Inform MachineModuleInfo of range. MMI.addInvoke(LandingPad, BeginLabel, EndLabel); } } /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the /// value is equal or not-equal to zero. static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) { if (const ICmpInst *IC = dyn_cast(*UI)) if (IC->isEquality()) if (const Constant *C = dyn_cast(IC->getOperand(1))) if (C->isNullValue()) continue; // Unknown instruction. return false; } return true; } static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, Type *LoadTy, SelectionDAGBuilder &Builder) { // Check to see if this load can be trivially constant folded, e.g. if the // input is from a string literal. if (const Constant *LoadInput = dyn_cast(PtrVal)) { // Cast pointer to the type we really want to load. LoadInput = ConstantExpr::getBitCast(const_cast(LoadInput), PointerType::getUnqual(LoadTy)); if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(const_cast(LoadInput), Builder.TD)) return Builder.getValue(LoadCst); } // Otherwise, we have to emit the load. If the pointer is to unfoldable but // still constant memory, the input chain can be the entry node. SDValue Root; bool ConstantMemory = false; // Do not serialize (non-volatile) loads of constant memory with anything. if (Builder.AA->pointsToConstantMemory(PtrVal)) { Root = Builder.DAG.getEntryNode(); ConstantMemory = true; } else { // Do not serialize non-volatile loads against each other. Root = Builder.DAG.getRoot(); } SDValue Ptr = Builder.getValue(PtrVal); SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, MachinePointerInfo(PtrVal), false /*volatile*/, false /*nontemporal*/, false /*isinvariant*/, 1 /* align=1 */); if (!ConstantMemory) Builder.PendingLoads.push_back(LoadVal.getValue(1)); return LoadVal; } /// processIntegerCallValue - Record the value for an instruction that /// produces an integer result, converting the type where necessary. void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, SDValue Value, bool IsSigned) { EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); if (IsSigned) Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); else Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); setValue(&I, Value); } /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. /// If so, return true and lower it, otherwise return false and it will be /// lowered like a normal call. bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) if (I.getNumArgOperands() != 3) return false; const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || !I.getArgOperand(2)->getType()->isIntegerTy() || !I.getType()->isIntegerTy()) return false; const Value *Size = I.getArgOperand(2); const ConstantInt *CSize = dyn_cast(Size); if (CSize && CSize->getZExtValue() == 0) { EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); setValue(&I, DAG.getConstant(0, CallVT)); return true; } const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); std::pair Res = TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); if (Res.first.getNode()) { processIntegerCallValue(I, Res.first, true); PendingLoads.push_back(Res.second); return true; } // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { bool ActuallyDoIt = true; MVT LoadVT; Type *LoadTy; switch (CSize->getZExtValue()) { default: LoadVT = MVT::Other; LoadTy = 0; ActuallyDoIt = false; break; case 2: LoadVT = MVT::i16; LoadTy = Type::getInt16Ty(CSize->getContext()); break; case 4: LoadVT = MVT::i32; LoadTy = Type::getInt32Ty(CSize->getContext()); break; case 8: LoadVT = MVT::i64; LoadTy = Type::getInt64Ty(CSize->getContext()); break; /* case 16: LoadVT = MVT::v4i32; LoadTy = Type::getInt32Ty(CSize->getContext()); LoadTy = VectorType::get(LoadTy, 4); break; */ } // This turns into unaligned loads. We only do this if the target natively // supports the MVT we'll be loading or if it is small enough (<= 4) that // we'll only produce a small number of byte loads. // Require that we can find a legal MVT, and only do this if the target // supports unaligned loads of that type. Expanding into byte loads would // bloat the code. const TargetLowering *TLI = TM.getTargetLowering(); if (ActuallyDoIt && CSize->getZExtValue() > 4) { // TODO: Handle 5 byte compare as 4-byte + 1 byte. // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT)) ActuallyDoIt = false; } if (ActuallyDoIt) { SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, ISD::SETNE); processIntegerCallValue(I, Res, false); return true; } } return false; } /// visitMemChrCall -- See if we can lower a memchr call into an optimized /// form. If so, return true and lower it, otherwise return false and it /// will be lowered like a normal call. bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { // Verify that the prototype makes sense. void *memchr(void *, int, size_t) if (I.getNumArgOperands() != 3) return false; const Value *Src = I.getArgOperand(0); const Value *Char = I.getArgOperand(1); const Value *Length = I.getArgOperand(2); if (!Src->getType()->isPointerTy() || !Char->getType()->isIntegerTy() || !Length->getType()->isIntegerTy() || !I.getType()->isPointerTy()) return false; const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); std::pair Res = TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), getValue(Src), getValue(Char), getValue(Length), MachinePointerInfo(Src)); if (Res.first.getNode()) { setValue(&I, Res.first); PendingLoads.push_back(Res.second); return true; } return false; } /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an /// optimized form. If so, return true and lower it, otherwise return false /// and it will be lowered like a normal call. bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { // Verify that the prototype makes sense. char *strcpy(char *, char *) if (I.getNumArgOperands() != 2) return false; const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); if (!Arg0->getType()->isPointerTy() || !Arg1->getType()->isPointerTy() || !I.getType()->isPointerTy()) return false; const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); std::pair Res = TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), getValue(Arg0), getValue(Arg1), MachinePointerInfo(Arg0), MachinePointerInfo(Arg1), isStpcpy); if (Res.first.getNode()) { setValue(&I, Res.first); DAG.setRoot(Res.second); return true; } return false; } /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. /// If so, return true and lower it, otherwise return false and it will be /// lowered like a normal call. bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { // Verify that the prototype makes sense. int strcmp(void*,void*) if (I.getNumArgOperands() != 2) return false; const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); if (!Arg0->getType()->isPointerTy() || !Arg1->getType()->isPointerTy() || !I.getType()->isIntegerTy()) return false; const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); std::pair Res = TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), getValue(Arg0), getValue(Arg1), MachinePointerInfo(Arg0), MachinePointerInfo(Arg1)); if (Res.first.getNode()) { processIntegerCallValue(I, Res.first, true); PendingLoads.push_back(Res.second); return true; } return false; } /// visitStrLenCall -- See if we can lower a strlen call into an optimized /// form. If so, return true and lower it, otherwise return false and it /// will be lowered like a normal call. bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { // Verify that the prototype makes sense. size_t strlen(char *) if (I.getNumArgOperands() != 1) return false; const Value *Arg0 = I.getArgOperand(0); if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) return false; const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); std::pair Res = TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), getValue(Arg0), MachinePointerInfo(Arg0)); if (Res.first.getNode()) { processIntegerCallValue(I, Res.first, false); PendingLoads.push_back(Res.second); return true; } return false; } /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized /// form. If so, return true and lower it, otherwise return false and it /// will be lowered like a normal call. bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { // Verify that the prototype makes sense. size_t strnlen(char *, size_t) if (I.getNumArgOperands() != 2) return false; const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); if (!Arg0->getType()->isPointerTy() || !Arg1->getType()->isIntegerTy() || !I.getType()->isIntegerTy()) return false; const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); std::pair Res = TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), getValue(Arg0), getValue(Arg1), MachinePointerInfo(Arg0)); if (Res.first.getNode()) { processIntegerCallValue(I, Res.first, false); PendingLoads.push_back(Res.second); return true; } return false; } /// visitUnaryFloatCall - If a call instruction is a unary floating-point /// operation (as expected), translate it to an SDNode with the specified opcode /// and return true. bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, unsigned Opcode) { // Sanity check that it really is a unary floating-point call. if (I.getNumArgOperands() != 1 || !I.getArgOperand(0)->getType()->isFloatingPointTy() || I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory()) return false; SDValue Tmp = getValue(I.getArgOperand(0)); setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); return true; } void SelectionDAGBuilder::visitCall(const CallInst &I) { // Handle inline assembly differently. if (isa(I.getCalledValue())) { visitInlineAsm(&I); return; } MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); ComputeUsesVAFloatArgument(I, &MMI); const char *RenameFn = 0; if (Function *F = I.getCalledFunction()) { if (F->isDeclaration()) { if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { if (unsigned IID = II->getIntrinsicID(F)) { RenameFn = visitIntrinsicCall(I, IID); if (!RenameFn) return; } } if (unsigned IID = F->getIntrinsicID()) { RenameFn = visitIntrinsicCall(I, IID); if (!RenameFn) return; } } // Check for well-known libc/libm calls. If the function is internal, it // can't be a library call. LibFunc::Func Func; if (!F->hasLocalLinkage() && F->hasName() && LibInfo->getLibFunc(F->getName(), Func) && LibInfo->hasOptimizedCodeGen(Func)) { switch (Func) { default: break; case LibFunc::copysign: case LibFunc::copysignf: case LibFunc::copysignl: if (I.getNumArgOperands() == 2 && // Basic sanity checks. I.getArgOperand(0)->getType()->isFloatingPointTy() && I.getType() == I.getArgOperand(0)->getType() && I.getType() == I.getArgOperand(1)->getType() && I.onlyReadsMemory()) { SDValue LHS = getValue(I.getArgOperand(0)); SDValue RHS = getValue(I.getArgOperand(1)); setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), LHS.getValueType(), LHS, RHS)); return; } break; case LibFunc::fabs: case LibFunc::fabsf: case LibFunc::fabsl: if (visitUnaryFloatCall(I, ISD::FABS)) return; break; case LibFunc::sin: case LibFunc::sinf: case LibFunc::sinl: if (visitUnaryFloatCall(I, ISD::FSIN)) return; break; case LibFunc::cos: case LibFunc::cosf: case LibFunc::cosl: if (visitUnaryFloatCall(I, ISD::FCOS)) return; break; case LibFunc::sqrt: case LibFunc::sqrtf: case LibFunc::sqrtl: case LibFunc::sqrt_finite: case LibFunc::sqrtf_finite: case LibFunc::sqrtl_finite: if (visitUnaryFloatCall(I, ISD::FSQRT)) return; break; case LibFunc::floor: case LibFunc::floorf: case LibFunc::floorl: if (visitUnaryFloatCall(I, ISD::FFLOOR)) return; break; case LibFunc::nearbyint: case LibFunc::nearbyintf: case LibFunc::nearbyintl: if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) return; break; case LibFunc::ceil: case LibFunc::ceilf: case LibFunc::ceill: if (visitUnaryFloatCall(I, ISD::FCEIL)) return; break; case LibFunc::rint: case LibFunc::rintf: case LibFunc::rintl: if (visitUnaryFloatCall(I, ISD::FRINT)) return; break; case LibFunc::round: case LibFunc::roundf: case LibFunc::roundl: if (visitUnaryFloatCall(I, ISD::FROUND)) return; break; case LibFunc::trunc: case LibFunc::truncf: case LibFunc::truncl: if (visitUnaryFloatCall(I, ISD::FTRUNC)) return; break; case LibFunc::log2: case LibFunc::log2f: case LibFunc::log2l: if (visitUnaryFloatCall(I, ISD::FLOG2)) return; break; case LibFunc::exp2: case LibFunc::exp2f: case LibFunc::exp2l: if (visitUnaryFloatCall(I, ISD::FEXP2)) return; break; case LibFunc::memcmp: if (visitMemCmpCall(I)) return; break; case LibFunc::memchr: if (visitMemChrCall(I)) return; break; case LibFunc::strcpy: if (visitStrCpyCall(I, false)) return; break; case LibFunc::stpcpy: if (visitStrCpyCall(I, true)) return; break; case LibFunc::strcmp: if (visitStrCmpCall(I)) return; break; case LibFunc::strlen: if (visitStrLenCall(I)) return; break; case LibFunc::strnlen: if (visitStrNLenCall(I)) return; break; } } } SDValue Callee; if (!RenameFn) Callee = getValue(I.getCalledValue()); else Callee = DAG.getExternalSymbol(RenameFn, TM.getTargetLowering()->getPointerTy()); // Check if we can potentially perform a tail call. More detailed checking is // be done within LowerCallTo, after more information about the call is known. LowerCallTo(&I, Callee, I.isTailCall()); } namespace { /// AsmOperandInfo - This contains information for each constraint that we are /// lowering. class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { public: /// CallOperand - If this is the result output operand or a clobber /// this is null, otherwise it is the incoming operand to the CallInst. /// This gets modified as the asm is processed. SDValue CallOperand; /// AssignedRegs - If this is a register or register class operand, this /// contains the set of register corresponding to the operand. RegsForValue AssignedRegs; explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { } /// getCallOperandValEVT - Return the EVT of the Value* that this operand /// corresponds to. If there is no Value* for this operand, it returns /// MVT::Other. EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, const DataLayout *TD) const { if (CallOperandVal == 0) return MVT::Other; if (isa(CallOperandVal)) return TLI.getPointerTy(); llvm::Type *OpTy = CallOperandVal->getType(); // FIXME: code duplicated from TargetLowering::ParseConstraints(). // If this is an indirect operand, the operand is a pointer to the // accessed type. if (isIndirect) { llvm::PointerType *PtrTy = dyn_cast(OpTy); if (!PtrTy) report_fatal_error("Indirect operand for inline asm not a pointer!"); OpTy = PtrTy->getElementType(); } // Look for vector wrapped in a struct. e.g. { <16 x i8> }. if (StructType *STy = dyn_cast(OpTy)) if (STy->getNumElements() == 1) OpTy = STy->getElementType(0); // If OpTy is not a single value, it may be a struct/union that we // can tile with integers. if (!OpTy->isSingleValueType() && OpTy->isSized()) { unsigned BitSize = TD->getTypeSizeInBits(OpTy); switch (BitSize) { default: break; case 1: case 8: case 16: case 32: case 64: case 128: OpTy = IntegerType::get(Context, BitSize); break; } } return TLI.getValueType(OpTy, true); } }; typedef SmallVector SDISelAsmOperandInfoVector; } // end anonymous namespace /// GetRegistersForValue - Assign registers (virtual or physical) for the /// specified operand. We prefer to assign virtual registers, to allow the /// register allocator to handle the assignment process. However, if the asm /// uses features that we can't model on machineinstrs, we have SDISel do the /// allocation. This produces generally horrible, but correct, code. /// /// OpInfo describes the operand. /// static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, SDLoc DL, SDISelAsmOperandInfo &OpInfo) { LLVMContext &Context = *DAG.getContext(); MachineFunction &MF = DAG.getMachineFunction(); SmallVector Regs; // If this is a constraint for a single physreg, or a constraint for a // register class, find it. std::pair PhysReg = TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT); unsigned NumRegs = 1; if (OpInfo.ConstraintVT != MVT::Other) { // If this is a FP input in an integer register (or visa versa) insert a bit // cast of the input value. More generally, handle any case where the input // value disagrees with the register class we plan to stick this in. if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { // Try to convert to the first EVT that the reg class contains. If the // types are identical size, use a bitcast to convert (e.g. two differing // vector types). MVT RegVT = *PhysReg.second->vt_begin(); if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); OpInfo.ConstraintVT = RegVT; } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { // If the input is a FP value and we want it in FP registers, do a // bitcast to the corresponding integer type. This turns an f64 value // into i64, which can be passed with two i32 values on a 32-bit // machine. RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); OpInfo.ConstraintVT = RegVT; } } NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); } MVT RegVT; EVT ValueVT = OpInfo.ConstraintVT; // If this is a constraint for a specific physical register, like {r17}, // assign it now. if (unsigned AssignedReg = PhysReg.first) { const TargetRegisterClass *RC = PhysReg.second; if (OpInfo.ConstraintVT == MVT::Other) ValueVT = *RC->vt_begin(); // Get the actual register value type. This is important, because the user // may have asked for (e.g.) the AX register in i32 type. We need to // remember that AX is actually i16 to get the right extension. RegVT = *RC->vt_begin(); // This is a explicit reference to a physical register. Regs.push_back(AssignedReg); // If this is an expanded reference, add the rest of the regs to Regs. if (NumRegs != 1) { TargetRegisterClass::iterator I = RC->begin(); for (; *I != AssignedReg; ++I) assert(I != RC->end() && "Didn't find reg!"); // Already added the first reg. --NumRegs; ++I; for (; NumRegs; --NumRegs, ++I) { assert(I != RC->end() && "Ran out of registers to allocate!"); Regs.push_back(*I); } } OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); return; } // Otherwise, if this was a reference to an LLVM register class, create vregs // for this reference. if (const TargetRegisterClass *RC = PhysReg.second) { RegVT = *RC->vt_begin(); if (OpInfo.ConstraintVT == MVT::Other) ValueVT = RegVT; // Create the appropriate number of virtual registers. MachineRegisterInfo &RegInfo = MF.getRegInfo(); for (; NumRegs; --NumRegs) Regs.push_back(RegInfo.createVirtualRegister(RC)); OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); return; } // Otherwise, we couldn't allocate enough registers for this. } /// visitInlineAsm - Handle a call to an InlineAsm object. /// void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { const InlineAsm *IA = cast(CS.getCalledValue()); /// ConstraintOperands - Information about all of the constraints. SDISelAsmOperandInfoVector ConstraintOperands; const TargetLowering *TLI = TM.getTargetLowering(); TargetLowering::AsmOperandInfoVector TargetConstraints = TLI->ParseConstraints(CS); bool hasMemory = false; unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. unsigned ResNo = 0; // ResNo - The result number of the next output. for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); MVT OpVT = MVT::Other; // Compute the value type for each operand. switch (OpInfo.Type) { case InlineAsm::isOutput: // Indirect outputs just consume an argument. if (OpInfo.isIndirect) { OpInfo.CallOperandVal = const_cast(CS.getArgument(ArgNo++)); break; } // The return value of the call is this value. As such, there is no // corresponding argument. assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); if (StructType *STy = dyn_cast(CS.getType())) { OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); } else { assert(ResNo == 0 && "Asm only has one result!"); OpVT = TLI->getSimpleValueType(CS.getType()); } ++ResNo; break; case InlineAsm::isInput: OpInfo.CallOperandVal = const_cast(CS.getArgument(ArgNo++)); break; case InlineAsm::isClobber: // Nothing to do. break; } // If this is an input or an indirect output, process the call argument. // BasicBlocks are labels, currently appearing only in asm's. if (OpInfo.CallOperandVal) { if (const BasicBlock *BB = dyn_cast(OpInfo.CallOperandVal)) { OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); } else { OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); } OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD). getSimpleVT(); } OpInfo.ConstraintVT = OpVT; // Indirect operand accesses access memory. if (OpInfo.isIndirect) hasMemory = true; else { for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { TargetLowering::ConstraintType CType = TLI->getConstraintType(OpInfo.Codes[j]); if (CType == TargetLowering::C_Memory) { hasMemory = true; break; } } } } SDValue Chain, Flag; // We won't need to flush pending loads if this asm doesn't touch // memory and is nonvolatile. if (hasMemory || IA->hasSideEffects()) Chain = getRoot(); else Chain = DAG.getRoot(); // Second pass over the constraints: compute which constraint option to use // and assign registers to constraints that want a specific physreg. for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; // If this is an output operand with a matching input operand, look up the // matching input. If their types mismatch, e.g. one is an integer, the // other is floating point, or their sizes are different, flag it as an // error. if (OpInfo.hasMatchingInput()) { SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; if (OpInfo.ConstraintVT != Input.ConstraintVT) { std::pair MatchRC = TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT); std::pair InputRC = TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT); if ((OpInfo.ConstraintVT.isInteger() != Input.ConstraintVT.isInteger()) || (MatchRC.second != InputRC.second)) { report_fatal_error("Unsupported asm: input constraint" " with a matching output constraint of" " incompatible type!"); } Input.ConstraintVT = OpInfo.ConstraintVT; } } // Compute the constraint code and ConstraintType to use. TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); if (OpInfo.ConstraintType == TargetLowering::C_Memory && OpInfo.Type == InlineAsm::isClobber) continue; // If this is a memory input, and if the operand is not indirect, do what we // need to to provide an address for the memory input. if (OpInfo.ConstraintType == TargetLowering::C_Memory && !OpInfo.isIndirect) { assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) && "Can only indirectify direct input operands!"); // Memory operands really want the address of the value. If we don't have // an indirect input, put it in the constpool if we can, otherwise spill // it to a stack slot. // TODO: This isn't quite right. We need to handle these according to // the addressing mode that the constraint wants. Also, this may take // an additional register for the computation and we don't want that // either. // If the operand is a float, integer, or vector constant, spill to a // constant pool entry to get its address. const Value *OpVal = OpInfo.CallOperandVal; if (isa(OpVal) || isa(OpVal) || isa(OpVal) || isa(OpVal)) { OpInfo.CallOperand = DAG.getConstantPool(cast(OpVal), TLI->getPointerTy()); } else { // Otherwise, create a stack slot and emit a store to it before the // asm. Type *Ty = OpVal->getType(); uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); Chain = DAG.getStore(Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, MachinePointerInfo::getFixedStack(SSFI), false, false, 0); OpInfo.CallOperand = StackSlot; } // There is no longer a Value* corresponding to this operand. OpInfo.CallOperandVal = 0; // It is now an indirect operand. OpInfo.isIndirect = true; } // If this constraint is for a specific register, allocate it before // anything else. if (OpInfo.ConstraintType == TargetLowering::C_Register) GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); } // Second pass - Loop over all of the operands, assigning virtual or physregs // to register class operands. for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; // C_Register operands have already been allocated, Other/Memory don't need // to be. if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); } // AsmNodeOperands - The operands for the ISD::INLINEASM node. std::vector AsmNodeOperands; AsmNodeOperands.push_back(SDValue()); // reserve space for input chain AsmNodeOperands.push_back( DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), TLI->getPointerTy())); // If we have a !srcloc metadata node associated with it, we want to attach // this to the ultimately generated inline asm machineinstr. To do this, we // pass in the third operand as this (potentially null) inline asm MDNode. const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore // bits as operand 3. unsigned ExtraInfo = 0; if (IA->hasSideEffects()) ExtraInfo |= InlineAsm::Extra_HasSideEffects; if (IA->isAlignStack()) ExtraInfo |= InlineAsm::Extra_IsAlignStack; // Set the asm dialect. ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; // Determine if this InlineAsm MayLoad or MayStore based on the constraints. for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; // Compute the constraint code and ConstraintType to use. TLI->ComputeConstraintToUse(OpInfo, SDValue()); // Ideally, we would only check against memory constraints. However, the // meaning of an other constraint can be target-specific and we can't easily // reason about it. Therefore, be conservative and set MayLoad/MayStore // for other constriants as well. if (OpInfo.ConstraintType == TargetLowering::C_Memory || OpInfo.ConstraintType == TargetLowering::C_Other) { if (OpInfo.Type == InlineAsm::isInput) ExtraInfo |= InlineAsm::Extra_MayLoad; else if (OpInfo.Type == InlineAsm::isOutput) ExtraInfo |= InlineAsm::Extra_MayStore; else if (OpInfo.Type == InlineAsm::isClobber) ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); } } AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, TLI->getPointerTy())); // Loop over all of the inputs, copying the operand values into the // appropriate registers and processing the output regs. RegsForValue RetValRegs; // IndirectStoresToEmit - The set of stores to emit after the inline asm node. std::vector > IndirectStoresToEmit; for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; switch (OpInfo.Type) { case InlineAsm::isOutput: { if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && OpInfo.ConstraintType != TargetLowering::C_Register) { // Memory output, or 'other' output (e.g. 'X' constraint). assert(OpInfo.isIndirect && "Memory output must be indirect operand"); // Add information to the INLINEASM node to know about this output. unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, TLI->getPointerTy())); AsmNodeOperands.push_back(OpInfo.CallOperand); break; } // Otherwise, this is a register or register class output. // Copy the output from the appropriate register. Find a register that // we can use. if (OpInfo.AssignedRegs.Regs.empty()) { LLVMContext &Ctx = *DAG.getContext(); Ctx.emitError(CS.getInstruction(), "couldn't allocate output register for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); return; } // If this is an indirect operand, store through the pointer after the // asm. if (OpInfo.isIndirect) { IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, OpInfo.CallOperandVal)); } else { // This is the result value of the call. assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); // Concatenate this output onto the outputs list. RetValRegs.append(OpInfo.AssignedRegs); } // Add information to the INLINEASM node to know that this register is // set. OpInfo.AssignedRegs .AddInlineAsmOperands(OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber : InlineAsm::Kind_RegDef, false, 0, DAG, AsmNodeOperands); break; } case InlineAsm::isInput: { SDValue InOperandVal = OpInfo.CallOperand; if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? // If this is required to match an output register we have already set, // just use its register. unsigned OperandNo = OpInfo.getMatchedOperand(); // Scan until we find the definition we already emitted of this operand. // When we find it, create a RegsForValue operand. unsigned CurOp = InlineAsm::Op_FirstOperand; for (; OperandNo; --OperandNo) { // Advance to the next operand. unsigned OpFlag = cast(AsmNodeOperands[CurOp])->getZExtValue(); assert((InlineAsm::isRegDefKind(OpFlag) || InlineAsm::isRegDefEarlyClobberKind(OpFlag) || InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; } unsigned OpFlag = cast(AsmNodeOperands[CurOp])->getZExtValue(); if (InlineAsm::isRegDefKind(OpFlag) || InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. if (OpInfo.isIndirect) { // This happens on gcc/testsuite/gcc.dg/pr8788-1.c LLVMContext &Ctx = *DAG.getContext(); Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" " don't know how to handle tied " "indirect register inputs"); return; } RegsForValue MatchedRegs; MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); MatchedRegs.RegVTs.push_back(RegVT); MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); i != e; ++i) { if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); else { LLVMContext &Ctx = *DAG.getContext(); Ctx.emitError(CS.getInstruction(), "inline asm error: This value" " type register class is not natively supported!"); return; } } // Use the produced MatchedRegs object to MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, true, OpInfo.getMatchedOperand(), DAG, AsmNodeOperands); break; } assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && "Unexpected number of operands"); // Add information to the INLINEASM node to know about this input. // See InlineAsm.h isUseOperandTiedToDef. OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, OpInfo.getMatchedOperand()); AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, TLI->getPointerTy())); AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); break; } // Treat indirect 'X' constraint as memory. if (OpInfo.ConstraintType == TargetLowering::C_Other && OpInfo.isIndirect) OpInfo.ConstraintType = TargetLowering::C_Memory; if (OpInfo.ConstraintType == TargetLowering::C_Other) { std::vector Ops; TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, Ops, DAG); if (Ops.empty()) { LLVMContext &Ctx = *DAG.getContext(); Ctx.emitError(CS.getInstruction(), "invalid operand for inline asm constraint '" + Twine(OpInfo.ConstraintCode) + "'"); return; } // Add information to the INLINEASM node to know about this input. unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, TLI->getPointerTy())); AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); break; } if (OpInfo.ConstraintType == TargetLowering::C_Memory) { assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); assert(InOperandVal.getValueType() == TLI->getPointerTy() && "Memory operands expect pointer values"); // Add information to the INLINEASM node to know about this input. unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, TLI->getPointerTy())); AsmNodeOperands.push_back(InOperandVal); break; } assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || OpInfo.ConstraintType == TargetLowering::C_Register) && "Unknown constraint type!"); // TODO: Support this. if (OpInfo.isIndirect) { LLVMContext &Ctx = *DAG.getContext(); Ctx.emitError(CS.getInstruction(), "Don't know how to handle indirect register inputs yet " "for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); return; } // Copy the input into the appropriate registers. if (OpInfo.AssignedRegs.Regs.empty()) { LLVMContext &Ctx = *DAG.getContext(); Ctx.emitError(CS.getInstruction(), "couldn't allocate input reg for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); return; } OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, DAG, AsmNodeOperands); break; } case InlineAsm::isClobber: { // Add the clobbered value to the operand list, so that the register // allocator is aware that the physreg got clobbered. if (!OpInfo.AssignedRegs.Regs.empty()) OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, false, 0, DAG, AsmNodeOperands); break; } } } // Finish up input operands. Set the input chain and add the flag last. AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; if (Flag.getNode()) AsmNodeOperands.push_back(Flag); Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), DAG.getVTList(MVT::Other, MVT::Glue), &AsmNodeOperands[0], AsmNodeOperands.size()); Flag = Chain.getValue(1); // If this asm returns a register value, copy the result from that register // and set it as the value of the call. if (!RetValRegs.Regs.empty()) { SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); // FIXME: Why don't we do this for inline asms with MRVs? if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { EVT ResultType = TLI->getValueType(CS.getType()); // If any of the results of the inline asm is a vector, it may have the // wrong width/num elts. This can happen for register classes that can // contain multiple different value types. The preg or vreg allocated may // not have the same VT as was expected. Convert it to the right type // with bit_convert. if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultType, Val); } else if (ResultType != Val.getValueType() && ResultType.isInteger() && Val.getValueType().isInteger()) { // If a result value was tied to an input value, the computed result may // have a wider width than the expected result. Extract the relevant // portion. Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); } assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); } setValue(CS.getInstruction(), Val); // Don't need to use this as a chain in this case. if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) return; } std::vector > StoresToEmit; // Process indirect outputs, first output all of the flagged copies out of // physregs. for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { RegsForValue &OutRegs = IndirectStoresToEmit[i].first; const Value *Ptr = IndirectStoresToEmit[i].second; SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, IA); StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); } // Emit the non-flagged stores from the physregs. SmallVector OutChains; for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, getValue(StoresToEmit[i].second), MachinePointerInfo(StoresToEmit[i].second), false, false, 0); OutChains.push_back(Val); } if (!OutChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, &OutChains[0], OutChains.size()); DAG.setRoot(Chain); } void SelectionDAGBuilder::visitVAStart(const CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), MVT::Other, getRoot(), getValue(I.getArgOperand(0)), DAG.getSrcValue(I.getArgOperand(0)))); } void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { const TargetLowering *TLI = TM.getTargetLowering(); const DataLayout &TD = *TLI->getDataLayout(); SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), TD.getABITypeAlignment(I.getType())); setValue(&I, V); DAG.setRoot(V.getValue(1)); } void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), MVT::Other, getRoot(), getValue(I.getArgOperand(0)), DAG.getSrcValue(I.getArgOperand(0)))); } void SelectionDAGBuilder::visitVACopy(const CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), MVT::Other, getRoot(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), DAG.getSrcValue(I.getArgOperand(0)), DAG.getSrcValue(I.getArgOperand(1)))); } /// \brief Lower an argument list according to the target calling convention. /// /// \return A tuple of /// /// This is a helper for lowering intrinsics that follow a target calling /// convention or require stack pointer adjustment. Only a subset of the /// intrinsic's operands need to participate in the calling convention. std::pair SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, bool useVoidTy) { TargetLowering::ArgListTy Args; Args.reserve(NumArgs); // Populate the argument list. // Attributes for args start at offset 1, after the return attribute. ImmutableCallSite CS(&CI); for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; ArgI != ArgE; ++ArgI) { const Value *V = CI.getOperand(ArgI); assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); TargetLowering::ArgListEntry Entry; Entry.Node = getValue(V); Entry.Ty = V->getType(); Entry.setAttributes(&CS, AttrI); Args.push_back(Entry); } Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false, /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs, CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false, /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc()); const TargetLowering *TLI = TM.getTargetLowering(); return TLI->LowerCallTo(CLI); } /// \brief Lower llvm.experimental.stackmap directly to its target opcode. void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { // void @llvm.experimental.stackmap(i32 , i32 , // [live variables...]) assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); SDValue Callee = getValue(CI.getCalledValue()); // Lower into a call sequence with no args and no return value. std::pair Result = LowerCallOperands(CI, 0, 0, Callee); // Set the root to the target-lowered call chain. SDValue Chain = Result.second; DAG.setRoot(Chain); /// Get a call instruction from the call sequence chain. /// Tail calls are not allowed. SDNode *CallEnd = Chain.getNode(); assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "Expected a callseq node."); SDNode *Call = CallEnd->getOperand(0).getNode(); bool hasGlue = Call->getGluedNode(); // Replace the target specific call node with the stackmap intrinsic. SmallVector Ops; // Add the and constants. for (unsigned i = 0; i < 2; ++i) { SDValue tmp = getValue(CI.getOperand(i)); Ops.push_back(DAG.getTargetConstant( cast(tmp)->getZExtValue(), MVT::i32)); } // Push live variables for the stack map. for (unsigned i = 2, e = CI.getNumArgOperands(); i != e; ++i) Ops.push_back(getValue(CI.getArgOperand(i))); // Push the chain (this is originally the first operand of the call, but // becomes now the last or second to last operand). Ops.push_back(*(Call->op_begin())); // Push the glue flag (last operand). if (hasGlue) Ops.push_back(*(Call->op_end()-1)); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); // Replace the target specific call node with a STACKMAP node. MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::STACKMAP, getCurSDLoc(), NodeTys, Ops); // StackMap generates no value, so nothing goes in the NodeMap. // Fixup the consumers of the intrinsic. The chain and glue may be used in the // call sequence. DAG.ReplaceAllUsesWith(Call, MN); DAG.DeleteNode(Call); } /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { // void|i64 @llvm.experimental.patchpoint.void|i64(i32 , // i32 , // i8* , // i32 , // [Args...], // [live variables...]) CallingConv::ID CC = CI.getCallingConv(); bool isAnyRegCC = CC == CallingConv::AnyReg; bool hasDef = !CI.getType()->isVoidTy(); SDValue Callee = getValue(CI.getOperand(2)); // // Get the real number of arguments participating in the call unsigned NumArgs = cast(getValue(CI.getArgOperand(3)))->getZExtValue(); // Skip the four meta args: , , , assert(CI.getNumArgOperands() >= NumArgs + 4 && "Not enough arguments provided to the patchpoint intrinsic"); // For AnyRegCC the arguments are lowered later on manually. unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; std::pair Result = LowerCallOperands(CI, 4, NumCallArgs, Callee, isAnyRegCC); // Set the root to the target-lowered call chain. SDValue Chain = Result.second; DAG.setRoot(Chain); SDNode *CallEnd = Chain.getNode(); if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) CallEnd = CallEnd->getOperand(0).getNode(); /// Get a call instruction from the call sequence chain. /// Tail calls are not allowed. assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "Expected a callseq node."); SDNode *Call = CallEnd->getOperand(0).getNode(); bool hasGlue = Call->getGluedNode(); // Replace the target specific call node with the patchable intrinsic. SmallVector Ops; // Add the and constants. for (unsigned i = 0; i < 2; ++i) { SDValue tmp = getValue(CI.getOperand(i)); Ops.push_back(DAG.getTargetConstant( cast(tmp)->getZExtValue(), MVT::i32)); } // Assume that the Callee is a constant address. Ops.push_back( DAG.getIntPtrConstant(cast(Callee)->getZExtValue(), /*isTarget=*/true)); // Adjust to account for any arguments that have been passed on the // stack instead. // Call Node: Chain, Target, {Args}, RegMask, [Glue] unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); // Add the calling convention Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); // Add the arguments we omitted previously. The register allocator should // place these in any free register. if (isAnyRegCC) for (unsigned i = 4, e = NumArgs + 4; i != e; ++i) Ops.push_back(getValue(CI.getArgOperand(i))); // Push the arguments from the call instruction. SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) Ops.push_back(*i); // Push live variables for the stack map. for (unsigned i = NumArgs + 4, e = CI.getNumArgOperands(); i != e; ++i) { SDValue OpVal = getValue(CI.getArgOperand(i)); if (ConstantSDNode *C = dyn_cast(OpVal)) { Ops.push_back( DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); Ops.push_back( DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); } else Ops.push_back(OpVal); } // Push the register mask info. if (hasGlue) Ops.push_back(*(Call->op_end()-2)); else Ops.push_back(*(Call->op_end()-1)); // Push the chain (this is originally the first operand of the call, but // becomes now the last or second to last operand). Ops.push_back(*(Call->op_begin())); // Push the glue flag (last operand). if (hasGlue) Ops.push_back(*(Call->op_end()-1)); SDVTList NodeTys; if (isAnyRegCC && hasDef) { // Create the return types based on the intrinsic definition const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SmallVector ValueVTs; ComputeValueVTs(TLI, CI.getType(), ValueVTs); assert(ValueVTs.size() == 1 && "Expected only one return value type."); // There is always a chain and a glue type at the end ValueVTs.push_back(MVT::Other); ValueVTs.push_back(MVT::Glue); NodeTys = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); } else NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); // Replace the target specific call node with a PATCHPOINT node. MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, getCurSDLoc(), NodeTys, Ops); // Update the NodeMap. if (hasDef) { if (isAnyRegCC) setValue(&CI, SDValue(MN, 0)); else setValue(&CI, Result.first); } // Fixup the consumers of the intrinsic. The chain and glue may be used in the // call sequence. Furthermore the location of the chain and glue can change // when the AnyReg calling convention is used and the intrinsic returns a // value. if (isAnyRegCC && hasDef) { SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; DAG.ReplaceAllUsesOfValuesWith(From, To, 2); } else DAG.ReplaceAllUsesWith(Call, MN); DAG.DeleteNode(Call); } /// TargetLowering::LowerCallTo - This is the default LowerCallTo /// implementation, which just calls LowerCall. /// FIXME: When all targets are /// migrated to using LowerCall, this hook should be integrated into SDISel. std::pair TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { // Handle the incoming return values from the call. CLI.Ins.clear(); SmallVector RetTys; ComputeValueVTs(*this, CLI.RetTy, RetTys); for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { EVT VT = RetTys[I]; MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); for (unsigned i = 0; i != NumRegs; ++i) { ISD::InputArg MyFlags; MyFlags.VT = RegisterVT; MyFlags.ArgVT = VT; MyFlags.Used = CLI.IsReturnValueUsed; if (CLI.RetSExt) MyFlags.Flags.setSExt(); if (CLI.RetZExt) MyFlags.Flags.setZExt(); if (CLI.IsInReg) MyFlags.Flags.setInReg(); CLI.Ins.push_back(MyFlags); } } // Handle all of the outgoing arguments. CLI.Outs.clear(); CLI.OutVals.clear(); ArgListTy &Args = CLI.Args; for (unsigned i = 0, e = Args.size(); i != e; ++i) { SmallVector ValueVTs; ComputeValueVTs(*this, Args[i].Ty, ValueVTs); for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; ++Value) { EVT VT = ValueVTs[Value]; Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); SDValue Op = SDValue(Args[i].Node.getNode(), Args[i].Node.getResNo() + Value); ISD::ArgFlagsTy Flags; unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); if (Args[i].isZExt) Flags.setZExt(); if (Args[i].isSExt) Flags.setSExt(); if (Args[i].isInReg) Flags.setInReg(); if (Args[i].isSRet) Flags.setSRet(); if (Args[i].isByVal) { Flags.setByVal(); PointerType *Ty = cast(Args[i].Ty); Type *ElementTy = Ty->getElementType(); Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); // For ByVal, alignment should come from FE. BE will guess if this // info is not there but there are cases it cannot get right. unsigned FrameAlign; if (Args[i].Alignment) FrameAlign = Args[i].Alignment; else FrameAlign = getByValTypeAlignment(ElementTy); Flags.setByValAlign(FrameAlign); } if (Args[i].isNest) Flags.setNest(); Flags.setOrigAlign(OriginalAlignment); MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); SmallVector Parts(NumParts); ISD::NodeType ExtendKind = ISD::ANY_EXTEND; if (Args[i].isSExt) ExtendKind = ISD::SIGN_EXTEND; else if (Args[i].isZExt) ExtendKind = ISD::ZERO_EXTEND; // Conservatively only handle 'returned' on non-vectors for now if (Args[i].isReturned && !Op.getValueType().isVector()) { assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && "unexpected use of 'returned'"); // Before passing 'returned' to the target lowering code, ensure that // either the register MVT and the actual EVT are the same size or that // the return value and argument are extended in the same way; in these // cases it's safe to pass the argument register value unchanged as the // return register value (although it's at the target's option whether // to do so) // TODO: allow code generation to take advantage of partially preserved // registers rather than clobbering the entire register when the // parameter extension method is not compatible with the return // extension method if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) Flags.setReturned(); } getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); for (unsigned j = 0; j != NumParts; ++j) { // if it isn't first piece, alignment must be 1 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, i < CLI.NumFixedArgs, i, j*Parts[j].getValueType().getStoreSize()); if (NumParts > 1 && j == 0) MyFlags.Flags.setSplit(); else if (j != 0) MyFlags.Flags.setOrigAlign(1); CLI.Outs.push_back(MyFlags); CLI.OutVals.push_back(Parts[j]); } } } SmallVector InVals; CLI.Chain = LowerCall(CLI, InVals); // Verify that the target's LowerCall behaved as expected. assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && "LowerCall didn't return a valid chain!"); assert((!CLI.IsTailCall || InVals.empty()) && "LowerCall emitted a return value for a tail call!"); assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && "LowerCall didn't emit the correct number of values!"); // For a tail call, the return value is merely live-out and there aren't // any nodes in the DAG representing it. Return a special value to // indicate that a tail call has been emitted and no more Instructions // should be processed in the current block. if (CLI.IsTailCall) { CLI.DAG.setRoot(CLI.Chain); return std::make_pair(SDValue(), SDValue()); } DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { assert(InVals[i].getNode() && "LowerCall emitted a null value!"); assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && "LowerCall emitted a value with the wrong type!"); }); // Collect the legal value parts into potentially illegal values // that correspond to the original function's return values. ISD::NodeType AssertOp = ISD::DELETED_NODE; if (CLI.RetSExt) AssertOp = ISD::AssertSext; else if (CLI.RetZExt) AssertOp = ISD::AssertZext; SmallVector ReturnValues; unsigned CurReg = 0; for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { EVT VT = RetTys[I]; MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, NULL, AssertOp)); CurReg += NumRegs; } // For a function returning void, there is no return value. We can't create // such a node, so we just return a null return value in that case. In // that case, nothing will actually look at the value. if (ReturnValues.empty()) return std::make_pair(SDValue(), CLI.Chain); SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, CLI.DAG.getVTList(&RetTys[0], RetTys.size()), &ReturnValues[0], ReturnValues.size()); return std::make_pair(Res, CLI.Chain); } void TargetLowering::LowerOperationWrapper(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { SDValue Res = LowerOperation(SDValue(N, 0), DAG); if (Res.getNode()) Results.push_back(Res); } SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { llvm_unreachable("LowerOperation not implemented for this target!"); } void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { SDValue Op = getNonRegisterValue(V); assert((Op.getOpcode() != ISD::CopyFromReg || cast(Op.getOperand(1))->getReg() != Reg) && "Copy from a reg to the same reg!"); assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); const TargetLowering *TLI = TM.getTargetLowering(); RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); SDValue Chain = DAG.getEntryNode(); RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V); PendingExports.push_back(Chain); } #include "llvm/CodeGen/SelectionDAGISel.h" /// isOnlyUsedInEntryBlock - If the specified argument is only used in the /// entry block, return true. This includes arguments used by switches, since /// the switch may expand into multiple basic blocks. static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { // With FastISel active, we may be splitting blocks, so force creation // of virtual registers for all non-dead arguments. if (FastISel) return A->use_empty(); const BasicBlock *Entry = A->getParent()->begin(); for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) { const User *U = *UI; if (cast(U)->getParent() != Entry || isa(U)) return false; // Use not in entry block. } return true; } void SelectionDAGISel::LowerArguments(const Function &F) { SelectionDAG &DAG = SDB->DAG; SDLoc dl = SDB->getCurSDLoc(); const TargetLowering *TLI = getTargetLowering(); const DataLayout *TD = TLI->getDataLayout(); SmallVector Ins; if (!FuncInfo->CanLowerReturn) { // Put in an sret pointer parameter before all the other parameters. SmallVector ValueVTs; ComputeValueVTs(*getTargetLowering(), PointerType::getUnqual(F.getReturnType()), ValueVTs); // NOTE: Assuming that a pointer will never break down to more than one VT // or one register. ISD::ArgFlagsTy Flags; Flags.setSRet(); MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); Ins.push_back(RetArg); } // Set up the incoming argument description vector. unsigned Idx = 1; for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I, ++Idx) { SmallVector ValueVTs; ComputeValueVTs(*TLI, I->getType(), ValueVTs); bool isArgValueUsed = !I->use_empty(); unsigned PartBase = 0; for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; ++Value) { EVT VT = ValueVTs[Value]; Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); ISD::ArgFlagsTy Flags; unsigned OriginalAlignment = TD->getABITypeAlignment(ArgTy); if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) Flags.setZExt(); if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) Flags.setSExt(); if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) Flags.setInReg(); if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) Flags.setSRet(); if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) { Flags.setByVal(); PointerType *Ty = cast(I->getType()); Type *ElementTy = Ty->getElementType(); Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); // For ByVal, alignment should be passed from FE. BE will guess if // this info is not there but there are cases it cannot get right. unsigned FrameAlign; if (F.getParamAlignment(Idx)) FrameAlign = F.getParamAlignment(Idx); else FrameAlign = TLI->getByValTypeAlignment(ElementTy); Flags.setByValAlign(FrameAlign); } if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) Flags.setNest(); Flags.setOrigAlign(OriginalAlignment); MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); for (unsigned i = 0; i != NumRegs; ++i) { ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, Idx-1, PartBase+i*RegisterVT.getStoreSize()); if (NumRegs > 1 && i == 0) MyFlags.Flags.setSplit(); // if it isn't first piece, alignment must be 1 else if (i > 0) MyFlags.Flags.setOrigAlign(1); Ins.push_back(MyFlags); } PartBase += VT.getStoreSize(); } } // Call the target to set up the argument values. SmallVector InVals; SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); // Verify that the target's LowerFormalArguments behaved as expected. assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && "LowerFormalArguments didn't return a valid chain!"); assert(InVals.size() == Ins.size() && "LowerFormalArguments didn't emit the correct number of values!"); DEBUG({ for (unsigned i = 0, e = Ins.size(); i != e; ++i) { assert(InVals[i].getNode() && "LowerFormalArguments emitted a null value!"); assert(EVT(Ins[i].VT) == InVals[i].getValueType() && "LowerFormalArguments emitted a value with the wrong type!"); } }); // Update the DAG with the new chain value resulting from argument lowering. DAG.setRoot(NewRoot); // Set up the argument values. unsigned i = 0; Idx = 1; if (!FuncInfo->CanLowerReturn) { // Create a virtual register for the sret pointer, and put in a copy // from the sret argument into it. SmallVector ValueVTs; ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); MVT VT = ValueVTs[0].getSimpleVT(); MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); ISD::NodeType AssertOp = ISD::DELETED_NODE; SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, NULL, AssertOp); MachineFunction& MF = SDB->DAG.getMachineFunction(); MachineRegisterInfo& RegInfo = MF.getRegInfo(); unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); FuncInfo->DemoteRegister = SRetReg; NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); DAG.setRoot(NewRoot); // i indexes lowered arguments. Bump it past the hidden sret argument. // Idx indexes LLVM arguments. Don't touch it. ++i; } for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I, ++Idx) { SmallVector ArgValues; SmallVector ValueVTs; ComputeValueVTs(*TLI, I->getType(), ValueVTs); unsigned NumValues = ValueVTs.size(); // If this argument is unused then remember its value. It is used to generate // debugging information. if (I->use_empty() && NumValues) { SDB->setUnusedArgValue(I, InVals[i]); // Also remember any frame index for use in FastISel. if (FrameIndexSDNode *FI = dyn_cast(InVals[i].getNode())) FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); } for (unsigned Val = 0; Val != NumValues; ++Val) { EVT VT = ValueVTs[Val]; MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); if (!I->use_empty()) { ISD::NodeType AssertOp = ISD::DELETED_NODE; if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) AssertOp = ISD::AssertSext; else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) AssertOp = ISD::AssertZext; ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, PartVT, VT, NULL, AssertOp)); } i += NumParts; } // We don't need to do anything else for unused arguments. if (ArgValues.empty()) continue; // Note down frame index. if (FrameIndexSDNode *FI = dyn_cast(ArgValues[0].getNode())) FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, SDB->getCurSDLoc()); SDB->setValue(I, Res); if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { if (LoadSDNode *LNode = dyn_cast(Res.getOperand(0).getNode())) if (FrameIndexSDNode *FI = dyn_cast(LNode->getBasePtr().getNode())) FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); } // If this argument is live outside of the entry block, insert a copy from // wherever we got it to the vreg that other BB's will reference it as. if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { // If we can, though, try to skip creating an unnecessary vreg. // FIXME: This isn't very clean... it would be nice to make this more // general. It's also subtly incompatible with the hacks FastISel // uses with vregs. unsigned Reg = cast(Res.getOperand(1))->getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { FuncInfo->ValueMap[I] = Reg; continue; } } if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { FuncInfo->InitializeRegForValue(I); SDB->CopyToExportRegsIfNeeded(I); } } assert(i == InVals.size() && "Argument register count mismatch!"); // Finally, if the target has anything special to do, allow it to do so. // FIXME: this should insert code into the DAG! EmitFunctionEntryCode(); } /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to /// ensure constants are generated when needed. Remember the virtual registers /// that need to be added to the Machine PHI nodes as input. We cannot just /// directly add them, because expansion might result in multiple MBB's for one /// BB. As such, the start of the BB might correspond to a different MBB than /// the end. /// void SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { const TerminatorInst *TI = LLVMBB->getTerminator(); SmallPtrSet SuccsHandled; // Check successor nodes' PHI nodes that expect a constant to be available // from this block. for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { const BasicBlock *SuccBB = TI->getSuccessor(succ); if (!isa(SuccBB->begin())) continue; MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; // If this terminator has multiple identical successors (common for // switches), only handle each succ once. if (!SuccsHandled.insert(SuccMBB)) continue; MachineBasicBlock::iterator MBBI = SuccMBB->begin(); // At this point we know that there is a 1-1 correspondence between LLVM PHI // nodes and Machine PHI nodes, but the incoming operands have not been // emitted yet. for (BasicBlock::const_iterator I = SuccBB->begin(); const PHINode *PN = dyn_cast(I); ++I) { // Ignore dead phi's. if (PN->use_empty()) continue; // Skip empty types if (PN->getType()->isEmptyTy()) continue; unsigned Reg; const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); if (const Constant *C = dyn_cast(PHIOp)) { unsigned &RegOut = ConstantsOut[C]; if (RegOut == 0) { RegOut = FuncInfo.CreateRegs(C->getType()); CopyValueToVirtualRegister(C, RegOut); } Reg = RegOut; } else { DenseMap::iterator I = FuncInfo.ValueMap.find(PHIOp); if (I != FuncInfo.ValueMap.end()) Reg = I->second; else { assert(isa(PHIOp) && FuncInfo.StaticAllocaMap.count(cast(PHIOp)) && "Didn't codegen value into a register!??"); Reg = FuncInfo.CreateRegs(PHIOp->getType()); CopyValueToVirtualRegister(PHIOp, Reg); } } // Remember that this register needs to added to the machine PHI node as // the input for this MBB. SmallVector ValueVTs; const TargetLowering *TLI = TM.getTargetLowering(); ComputeValueVTs(*TLI, PN->getType(), ValueVTs); for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { EVT VT = ValueVTs[vti]; unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); for (unsigned i = 0, e = NumRegisters; i != e; ++i) FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); Reg += NumRegisters; } } } ConstantsOut.clear(); } /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB /// is 0. MachineBasicBlock * SelectionDAGBuilder::StackProtectorDescriptor:: AddSuccessorMBB(const BasicBlock *BB, MachineBasicBlock *ParentMBB, MachineBasicBlock *SuccMBB) { // If SuccBB has not been created yet, create it. if (!SuccMBB) { MachineFunction *MF = ParentMBB->getParent(); MachineFunction::iterator BBI = ParentMBB; SuccMBB = MF->CreateMachineBasicBlock(BB); MF->insert(++BBI, SuccMBB); } // Add it as a successor of ParentMBB. ParentMBB->addSuccessor(SuccMBB); return SuccMBB; }