/*===-- X86DisassemblerDecoderCommon.h - Disassembler decoder -----*- C -*-===* * * The LLVM Compiler Infrastructure * * This file is distributed under the University of Illinois Open Source * License. See LICENSE.TXT for details. * *===----------------------------------------------------------------------===* * * This file is part of the X86 Disassembler. * It contains common definitions used by both the disassembler and the table * generator. * Documentation for the disassembler can be found in X86Disassembler.h. * *===----------------------------------------------------------------------===*/ /* * This header file provides those definitions that need to be shared between * the decoder and the table generator in a C-friendly manner. */ #ifndef X86DISASSEMBLERDECODERCOMMON_H #define X86DISASSEMBLERDECODERCOMMON_H #include "llvm/Support/DataTypes.h" #define INSTRUCTIONS_SYM x86DisassemblerInstrSpecifiers #define CONTEXTS_SYM x86DisassemblerContexts #define ONEBYTE_SYM x86DisassemblerOneByteOpcodes #define TWOBYTE_SYM x86DisassemblerTwoByteOpcodes #define THREEBYTE38_SYM x86DisassemblerThreeByte38Opcodes #define THREEBYTE3A_SYM x86DisassemblerThreeByte3AOpcodes #define THREEBYTEA6_SYM x86DisassemblerThreeByteA6Opcodes #define THREEBYTEA7_SYM x86DisassemblerThreeByteA7Opcodes #define INSTRUCTIONS_STR "x86DisassemblerInstrSpecifiers" #define CONTEXTS_STR "x86DisassemblerContexts" #define ONEBYTE_STR "x86DisassemblerOneByteOpcodes" #define TWOBYTE_STR "x86DisassemblerTwoByteOpcodes" #define THREEBYTE38_STR "x86DisassemblerThreeByte38Opcodes" #define THREEBYTE3A_STR "x86DisassemblerThreeByte3AOpcodes" #define THREEBYTEA6_STR "x86DisassemblerThreeByteA6Opcodes" #define THREEBYTEA7_STR "x86DisassemblerThreeByteA7Opcodes" /* * Attributes of an instruction that must be known before the opcode can be * processed correctly. Most of these indicate the presence of particular * prefixes, but ATTR_64BIT is simply an attribute of the decoding context. */ #define ATTRIBUTE_BITS \ ENUM_ENTRY(ATTR_NONE, 0x00) \ ENUM_ENTRY(ATTR_64BIT, 0x01) \ ENUM_ENTRY(ATTR_XS, 0x02) \ ENUM_ENTRY(ATTR_XD, 0x04) \ ENUM_ENTRY(ATTR_REXW, 0x08) \ ENUM_ENTRY(ATTR_OPSIZE, 0x10) \ ENUM_ENTRY(ATTR_ADSIZE, 0x20) \ ENUM_ENTRY(ATTR_VEX, 0x40) \ ENUM_ENTRY(ATTR_VEXL, 0x80) #define ENUM_ENTRY(n, v) n = v, enum attributeBits { ATTRIBUTE_BITS ATTR_max }; #undef ENUM_ENTRY /* * Combinations of the above attributes that are relevant to instruction * decode. Although other combinations are possible, they can be reduced to * these without affecting the ultimately decoded instruction. */ /* Class name Rank Rationale for rank assignment */ #define INSTRUCTION_CONTEXTS \ ENUM_ENTRY(IC, 0, "says nothing about the instruction") \ ENUM_ENTRY(IC_64BIT, 1, "says the instruction applies in " \ "64-bit mode but no more") \ ENUM_ENTRY(IC_OPSIZE, 3, "requires an OPSIZE prefix, so " \ "operands change width") \ ENUM_ENTRY(IC_ADSIZE, 3, "requires an ADSIZE prefix, so " \ "operands change width") \ ENUM_ENTRY(IC_XD, 2, "may say something about the opcode " \ "but not the operands") \ ENUM_ENTRY(IC_XS, 2, "may say something about the opcode " \ "but not the operands") \ ENUM_ENTRY(IC_XD_OPSIZE, 3, "requires an OPSIZE prefix, so " \ "operands change width") \ ENUM_ENTRY(IC_XS_OPSIZE, 3, "requires an OPSIZE prefix, so " \ "operands change width") \ ENUM_ENTRY(IC_64BIT_REXW, 4, "requires a REX.W prefix, so operands "\ "change width; overrides IC_OPSIZE") \ ENUM_ENTRY(IC_64BIT_OPSIZE, 3, "Just as meaningful as IC_OPSIZE") \ ENUM_ENTRY(IC_64BIT_ADSIZE, 3, "Just as meaningful as IC_ADSIZE") \ ENUM_ENTRY(IC_64BIT_XD, 5, "XD instructions are SSE; REX.W is " \ "secondary") \ ENUM_ENTRY(IC_64BIT_XS, 5, "Just as meaningful as IC_64BIT_XD") \ ENUM_ENTRY(IC_64BIT_XD_OPSIZE, 3, "Just as meaningful as IC_XD_OPSIZE") \ ENUM_ENTRY(IC_64BIT_XS_OPSIZE, 3, "Just as meaningful as IC_XS_OPSIZE") \ ENUM_ENTRY(IC_64BIT_REXW_XS, 6, "OPSIZE could mean a different " \ "opcode") \ ENUM_ENTRY(IC_64BIT_REXW_XD, 6, "Just as meaningful as " \ "IC_64BIT_REXW_XS") \ ENUM_ENTRY(IC_64BIT_REXW_OPSIZE, 7, "The Dynamic Duo! Prefer over all " \ "else because this changes most " \ "operands' meaning") \ ENUM_ENTRY(IC_VEX, 1, "requires a VEX prefix") \ ENUM_ENTRY(IC_VEX_XS, 2, "requires VEX and the XS prefix") \ ENUM_ENTRY(IC_VEX_XD, 2, "requires VEX and the XD prefix") \ ENUM_ENTRY(IC_VEX_OPSIZE, 2, "requires VEX and the OpSize prefix") \ ENUM_ENTRY(IC_VEX_W, 3, "requires VEX and the W prefix") \ ENUM_ENTRY(IC_VEX_W_XS, 4, "requires VEX, W, and XS prefix") \ ENUM_ENTRY(IC_VEX_W_XD, 4, "requires VEX, W, and XD prefix") \ ENUM_ENTRY(IC_VEX_W_OPSIZE, 4, "requires VEX, W, and OpSize") \ ENUM_ENTRY(IC_VEX_L, 3, "requires VEX and the L prefix") \ ENUM_ENTRY(IC_VEX_L_XS, 4, "requires VEX and the L and XS prefix")\ ENUM_ENTRY(IC_VEX_L_XD, 4, "requires VEX and the L and XD prefix")\ ENUM_ENTRY(IC_VEX_L_OPSIZE, 4, "requires VEX, L, and OpSize") \ ENUM_ENTRY(IC_VEX_L_W_OPSIZE, 5, "requires VEX, L, W and OpSize") #define ENUM_ENTRY(n, r, d) n, typedef enum { INSTRUCTION_CONTEXTS IC_max } InstructionContext; #undef ENUM_ENTRY /* * Opcode types, which determine which decode table to use, both in the Intel * manual and also for the decoder. */ typedef enum { ONEBYTE = 0, TWOBYTE = 1, THREEBYTE_38 = 2, THREEBYTE_3A = 3, THREEBYTE_A6 = 4, THREEBYTE_A7 = 5 } OpcodeType; /* * The following structs are used for the hierarchical decode table. After * determining the instruction's class (i.e., which IC_* constant applies to * it), the decoder reads the opcode. Some instructions require specific * values of the ModR/M byte, so the ModR/M byte indexes into the final table. * * If a ModR/M byte is not required, "required" is left unset, and the values * for each instructionID are identical. */ typedef uint16_t InstrUID; /* * ModRMDecisionType - describes the type of ModR/M decision, allowing the * consumer to determine the number of entries in it. * * MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded * instruction is the same. * MODRM_SPLITRM - If the ModR/M byte is between 0x00 and 0xbf, the opcode * corresponds to one instruction; otherwise, it corresponds to * a different instruction. * MODRM_SPLITREG - ModR/M byte divided by 8 is used to select instruction. This corresponds to instructions that use reg field as opcode * MODRM_FULL - Potentially, each value of the ModR/M byte could correspond * to a different instruction. */ #define MODRMTYPES \ ENUM_ENTRY(MODRM_ONEENTRY) \ ENUM_ENTRY(MODRM_SPLITRM) \ ENUM_ENTRY(MODRM_SPLITREG) \ ENUM_ENTRY(MODRM_FULL) #define ENUM_ENTRY(n) n, typedef enum { MODRMTYPES MODRM_max } ModRMDecisionType; #undef ENUM_ENTRY /* * ModRMDecision - Specifies whether a ModR/M byte is needed and (if so) which * instruction each possible value of the ModR/M byte corresponds to. Once * this information is known, we have narrowed down to a single instruction. */ struct ModRMDecision { uint8_t modrm_type; /* The macro below must be defined wherever this file is included. */ INSTRUCTION_IDS }; /* * OpcodeDecision - Specifies which set of ModR/M->instruction tables to look at * given a particular opcode. */ struct OpcodeDecision { struct ModRMDecision modRMDecisions[256]; }; /* * ContextDecision - Specifies which opcode->instruction tables to look at given * a particular context (set of attributes). Since there are many possible * contexts, the decoder first uses CONTEXTS_SYM to determine which context * applies given a specific set of attributes. Hence there are only IC_max * entries in this table, rather than 2^(ATTR_max). */ struct ContextDecision { struct OpcodeDecision opcodeDecisions[IC_max]; }; /* * Physical encodings of instruction operands. */ #define ENCODINGS \ ENUM_ENTRY(ENCODING_NONE, "") \ ENUM_ENTRY(ENCODING_REG, "Register operand in ModR/M byte.") \ ENUM_ENTRY(ENCODING_RM, "R/M operand in ModR/M byte.") \ ENUM_ENTRY(ENCODING_VVVV, "Register operand in VEX.vvvv byte.") \ ENUM_ENTRY(ENCODING_CB, "1-byte code offset (possible new CS value)") \ ENUM_ENTRY(ENCODING_CW, "2-byte") \ ENUM_ENTRY(ENCODING_CD, "4-byte") \ ENUM_ENTRY(ENCODING_CP, "6-byte") \ ENUM_ENTRY(ENCODING_CO, "8-byte") \ ENUM_ENTRY(ENCODING_CT, "10-byte") \ ENUM_ENTRY(ENCODING_IB, "1-byte immediate") \ ENUM_ENTRY(ENCODING_IW, "2-byte") \ ENUM_ENTRY(ENCODING_ID, "4-byte") \ ENUM_ENTRY(ENCODING_IO, "8-byte") \ ENUM_ENTRY(ENCODING_RB, "(AL..DIL, R8L..R15L) Register code added to " \ "the opcode byte") \ ENUM_ENTRY(ENCODING_RW, "(AX..DI, R8W..R15W)") \ ENUM_ENTRY(ENCODING_RD, "(EAX..EDI, R8D..R15D)") \ ENUM_ENTRY(ENCODING_RO, "(RAX..RDI, R8..R15)") \ ENUM_ENTRY(ENCODING_I, "Position on floating-point stack added to the " \ "opcode byte") \ \ ENUM_ENTRY(ENCODING_Iv, "Immediate of operand size") \ ENUM_ENTRY(ENCODING_Ia, "Immediate of address size") \ ENUM_ENTRY(ENCODING_Rv, "Register code of operand size added to the " \ "opcode byte") \ ENUM_ENTRY(ENCODING_DUP, "Duplicate of another operand; ID is encoded " \ "in type") #define ENUM_ENTRY(n, d) n, typedef enum { ENCODINGS ENCODING_max } OperandEncoding; #undef ENUM_ENTRY /* * Semantic interpretations of instruction operands. */ #define TYPES \ ENUM_ENTRY(TYPE_NONE, "") \ ENUM_ENTRY(TYPE_REL8, "1-byte immediate address") \ ENUM_ENTRY(TYPE_REL16, "2-byte") \ ENUM_ENTRY(TYPE_REL32, "4-byte") \ ENUM_ENTRY(TYPE_REL64, "8-byte") \ ENUM_ENTRY(TYPE_PTR1616, "2+2-byte segment+offset address") \ ENUM_ENTRY(TYPE_PTR1632, "2+4-byte") \ ENUM_ENTRY(TYPE_PTR1664, "2+8-byte") \ ENUM_ENTRY(TYPE_R8, "1-byte register operand") \ ENUM_ENTRY(TYPE_R16, "2-byte") \ ENUM_ENTRY(TYPE_R32, "4-byte") \ ENUM_ENTRY(TYPE_R64, "8-byte") \ ENUM_ENTRY(TYPE_IMM8, "1-byte immediate operand") \ ENUM_ENTRY(TYPE_IMM16, "2-byte") \ ENUM_ENTRY(TYPE_IMM32, "4-byte") \ ENUM_ENTRY(TYPE_IMM64, "8-byte") \ ENUM_ENTRY(TYPE_IMM3, "1-byte immediate operand between 0 and 7") \ ENUM_ENTRY(TYPE_RM8, "1-byte register or memory operand") \ ENUM_ENTRY(TYPE_RM16, "2-byte") \ ENUM_ENTRY(TYPE_RM32, "4-byte") \ ENUM_ENTRY(TYPE_RM64, "8-byte") \ ENUM_ENTRY(TYPE_M, "Memory operand") \ ENUM_ENTRY(TYPE_M8, "1-byte") \ ENUM_ENTRY(TYPE_M16, "2-byte") \ ENUM_ENTRY(TYPE_M32, "4-byte") \ ENUM_ENTRY(TYPE_M64, "8-byte") \ ENUM_ENTRY(TYPE_LEA, "Effective address") \ ENUM_ENTRY(TYPE_M128, "16-byte (SSE/SSE2)") \ ENUM_ENTRY(TYPE_M256, "256-byte (AVX)") \ ENUM_ENTRY(TYPE_M1616, "2+2-byte segment+offset address") \ ENUM_ENTRY(TYPE_M1632, "2+4-byte") \ ENUM_ENTRY(TYPE_M1664, "2+8-byte") \ ENUM_ENTRY(TYPE_M16_32, "2+4-byte two-part memory operand (LIDT, LGDT)") \ ENUM_ENTRY(TYPE_M16_16, "2+2-byte (BOUND)") \ ENUM_ENTRY(TYPE_M32_32, "4+4-byte (BOUND)") \ ENUM_ENTRY(TYPE_M16_64, "2+8-byte (LIDT, LGDT)") \ ENUM_ENTRY(TYPE_MOFFS8, "1-byte memory offset (relative to segment " \ "base)") \ ENUM_ENTRY(TYPE_MOFFS16, "2-byte") \ ENUM_ENTRY(TYPE_MOFFS32, "4-byte") \ ENUM_ENTRY(TYPE_MOFFS64, "8-byte") \ ENUM_ENTRY(TYPE_SREG, "Byte with single bit set: 0 = ES, 1 = CS, " \ "2 = SS, 3 = DS, 4 = FS, 5 = GS") \ ENUM_ENTRY(TYPE_M32FP, "32-bit IEE754 memory floating-point operand") \ ENUM_ENTRY(TYPE_M64FP, "64-bit") \ ENUM_ENTRY(TYPE_M80FP, "80-bit extended") \ ENUM_ENTRY(TYPE_M16INT, "2-byte memory integer operand for use in " \ "floating-point instructions") \ ENUM_ENTRY(TYPE_M32INT, "4-byte") \ ENUM_ENTRY(TYPE_M64INT, "8-byte") \ ENUM_ENTRY(TYPE_ST, "Position on the floating-point stack") \ ENUM_ENTRY(TYPE_MM, "MMX register operand") \ ENUM_ENTRY(TYPE_MM32, "4-byte MMX register or memory operand") \ ENUM_ENTRY(TYPE_MM64, "8-byte") \ ENUM_ENTRY(TYPE_XMM, "XMM register operand") \ ENUM_ENTRY(TYPE_XMM32, "4-byte XMM register or memory operand") \ ENUM_ENTRY(TYPE_XMM64, "8-byte") \ ENUM_ENTRY(TYPE_XMM128, "16-byte") \ ENUM_ENTRY(TYPE_XMM256, "32-byte") \ ENUM_ENTRY(TYPE_XMM0, "Implicit use of XMM0") \ ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand") \ ENUM_ENTRY(TYPE_DEBUGREG, "Debug register operand") \ ENUM_ENTRY(TYPE_CONTROLREG, "Control register operand") \ \ ENUM_ENTRY(TYPE_Mv, "Memory operand of operand size") \ ENUM_ENTRY(TYPE_Rv, "Register operand of operand size") \ ENUM_ENTRY(TYPE_IMMv, "Immediate operand of operand size") \ ENUM_ENTRY(TYPE_RELv, "Immediate address of operand size") \ ENUM_ENTRY(TYPE_DUP0, "Duplicate of operand 0") \ ENUM_ENTRY(TYPE_DUP1, "operand 1") \ ENUM_ENTRY(TYPE_DUP2, "operand 2") \ ENUM_ENTRY(TYPE_DUP3, "operand 3") \ ENUM_ENTRY(TYPE_DUP4, "operand 4") \ ENUM_ENTRY(TYPE_M512, "512-bit FPU/MMX/XMM/MXCSR state") #define ENUM_ENTRY(n, d) n, typedef enum { TYPES TYPE_max } OperandType; #undef ENUM_ENTRY /* * OperandSpecifier - The specification for how to extract and interpret one * operand. */ struct OperandSpecifier { OperandEncoding encoding; OperandType type; }; /* * Indicates where the opcode modifier (if any) is to be found. Extended * opcodes with AddRegFrm have the opcode modifier in the ModR/M byte. */ #define MODIFIER_TYPES \ ENUM_ENTRY(MODIFIER_NONE) \ ENUM_ENTRY(MODIFIER_OPCODE) \ ENUM_ENTRY(MODIFIER_MODRM) #define ENUM_ENTRY(n) n, typedef enum { MODIFIER_TYPES MODIFIER_max } ModifierType; #undef ENUM_ENTRY #define X86_MAX_OPERANDS 5 /* * The specification for how to extract and interpret a full instruction and * its operands. */ struct InstructionSpecifier { ModifierType modifierType; uint8_t modifierBase; struct OperandSpecifier operands[X86_MAX_OPERANDS]; /* The macro below must be defined wherever this file is included. */ INSTRUCTION_SPECIFIER_FIELDS }; /* * Decoding mode for the Intel disassembler. 16-bit, 32-bit, and 64-bit mode * are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode, * respectively. */ typedef enum { MODE_16BIT, MODE_32BIT, MODE_64BIT } DisassemblerMode; #endif