//===-- MachODump.cpp - Object file dumping utility for llvm --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the MachO-specific dumper for llvm-objdump. // //===----------------------------------------------------------------------===// #include "llvm-objdump.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/DebugInfo/DIContext.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Object/MachO.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Format.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/MachO.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; using namespace object; static cl::opt UseDbg("g", cl::desc("Print line information from debug info if available")); static cl::opt DSYMFile("dsym", cl::desc("Use .dSYM file for debug info")); static std::string ThumbTripleName; static const Target *GetTarget(const MachOObjectFile *MachOObj, const char **McpuDefault, const Target **ThumbTarget) { // Figure out the target triple. if (TripleName.empty()) { llvm::Triple TT("unknown-unknown-unknown"); llvm::Triple ThumbTriple = Triple(); TT = MachOObj->getArch(McpuDefault, &ThumbTriple); TripleName = TT.str(); ThumbTripleName = ThumbTriple.str(); } // Get the target specific parser. std::string Error; const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error); if (TheTarget && ThumbTripleName.empty()) return TheTarget; *ThumbTarget = TargetRegistry::lookupTarget(ThumbTripleName, Error); if (*ThumbTarget) return TheTarget; errs() << "llvm-objdump: error: unable to get target for '"; if (!TheTarget) errs() << TripleName; else errs() << ThumbTripleName; errs() << "', see --version and --triple.\n"; return nullptr; } struct SymbolSorter { bool operator()(const SymbolRef &A, const SymbolRef &B) { SymbolRef::Type AType, BType; A.getType(AType); B.getType(BType); uint64_t AAddr, BAddr; if (AType != SymbolRef::ST_Function) AAddr = 0; else A.getAddress(AAddr); if (BType != SymbolRef::ST_Function) BAddr = 0; else B.getAddress(BAddr); return AAddr < BAddr; } }; // Types for the storted data in code table that is built before disassembly // and the predicate function to sort them. typedef std::pair DiceTableEntry; typedef std::vector DiceTable; typedef DiceTable::iterator dice_table_iterator; static bool compareDiceTableEntries(const DiceTableEntry i, const DiceTableEntry j) { return i.first == j.first; } static void DumpDataInCode(const char *bytes, uint64_t Size, unsigned short Kind) { uint64_t Value; switch (Kind) { case MachO::DICE_KIND_DATA: switch (Size) { case 4: Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0]; outs() << "\t.long " << Value; break; case 2: Value = bytes[1] << 8 | bytes[0]; outs() << "\t.short " << Value; break; case 1: Value = bytes[0]; outs() << "\t.byte " << Value; break; } outs() << "\t@ KIND_DATA\n"; break; case MachO::DICE_KIND_JUMP_TABLE8: Value = bytes[0]; outs() << "\t.byte " << Value << "\t@ KIND_JUMP_TABLE8"; break; case MachO::DICE_KIND_JUMP_TABLE16: Value = bytes[1] << 8 | bytes[0]; outs() << "\t.short " << Value << "\t@ KIND_JUMP_TABLE16"; break; case MachO::DICE_KIND_JUMP_TABLE32: Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0]; outs() << "\t.long " << Value << "\t@ KIND_JUMP_TABLE32"; break; default: outs() << "\t@ data in code kind = " << Kind << "\n"; break; } } static void getSectionsAndSymbols(const MachO::mach_header Header, MachOObjectFile *MachOObj, std::vector &Sections, std::vector &Symbols, SmallVectorImpl &FoundFns, uint64_t &BaseSegmentAddress) { for (const SymbolRef &Symbol : MachOObj->symbols()) Symbols.push_back(Symbol); for (const SectionRef &Section : MachOObj->sections()) { StringRef SectName; Section.getName(SectName); Sections.push_back(Section); } MachOObjectFile::LoadCommandInfo Command = MachOObj->getFirstLoadCommandInfo(); bool BaseSegmentAddressSet = false; for (unsigned i = 0; ; ++i) { if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) { // We found a function starts segment, parse the addresses for later // consumption. MachO::linkedit_data_command LLC = MachOObj->getLinkeditDataLoadCommand(Command); MachOObj->ReadULEB128s(LLC.dataoff, FoundFns); } else if (Command.C.cmd == MachO::LC_SEGMENT) { MachO::segment_command SLC = MachOObj->getSegmentLoadCommand(Command); StringRef SegName = SLC.segname; if(!BaseSegmentAddressSet && SegName != "__PAGEZERO") { BaseSegmentAddressSet = true; BaseSegmentAddress = SLC.vmaddr; } } if (i == Header.ncmds - 1) break; else Command = MachOObj->getNextLoadCommandInfo(Command); } } static void DisassembleInputMachO2(StringRef Filename, MachOObjectFile *MachOOF); void llvm::DisassembleInputMachO(StringRef Filename) { ErrorOr> BuffOrErr = MemoryBuffer::getFileOrSTDIN(Filename); if (std::error_code EC = BuffOrErr.getError()) { errs() << "llvm-objdump: " << Filename << ": " << EC.message() << "\n"; return; } std::unique_ptr Buff = std::move(BuffOrErr.get()); std::unique_ptr MachOOF = std::move( ObjectFile::createMachOObjectFile(Buff.get()->getMemBufferRef()).get()); DisassembleInputMachO2(Filename, MachOOF.get()); } static void DisassembleInputMachO2(StringRef Filename, MachOObjectFile *MachOOF) { const char *McpuDefault = nullptr; const Target *ThumbTarget = nullptr; const Target *TheTarget = GetTarget(MachOOF, &McpuDefault, &ThumbTarget); if (!TheTarget) { // GetTarget prints out stuff. return; } if (MCPU.empty() && McpuDefault) MCPU = McpuDefault; std::unique_ptr InstrInfo(TheTarget->createMCInstrInfo()); std::unique_ptr InstrAnalysis( TheTarget->createMCInstrAnalysis(InstrInfo.get())); std::unique_ptr ThumbInstrInfo; std::unique_ptr ThumbInstrAnalysis; if (ThumbTarget) { ThumbInstrInfo.reset(ThumbTarget->createMCInstrInfo()); ThumbInstrAnalysis.reset( ThumbTarget->createMCInstrAnalysis(ThumbInstrInfo.get())); } // Package up features to be passed to target/subtarget std::string FeaturesStr; if (MAttrs.size()) { SubtargetFeatures Features; for (unsigned i = 0; i != MAttrs.size(); ++i) Features.AddFeature(MAttrs[i]); FeaturesStr = Features.getString(); } // Set up disassembler. std::unique_ptr MRI( TheTarget->createMCRegInfo(TripleName)); std::unique_ptr AsmInfo( TheTarget->createMCAsmInfo(*MRI, TripleName)); std::unique_ptr STI( TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr)); MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr); std::unique_ptr DisAsm( TheTarget->createMCDisassembler(*STI, Ctx)); int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); std::unique_ptr IP(TheTarget->createMCInstPrinter( AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI, *STI)); if (!InstrAnalysis || !AsmInfo || !STI || !DisAsm || !IP) { errs() << "error: couldn't initialize disassembler for target " << TripleName << '\n'; return; } // Set up thumb disassembler. std::unique_ptr ThumbMRI; std::unique_ptr ThumbAsmInfo; std::unique_ptr ThumbSTI; std::unique_ptr ThumbDisAsm; std::unique_ptr ThumbIP; std::unique_ptr ThumbCtx; if (ThumbTarget) { ThumbMRI.reset(ThumbTarget->createMCRegInfo(ThumbTripleName)); ThumbAsmInfo.reset( ThumbTarget->createMCAsmInfo(*ThumbMRI, ThumbTripleName)); ThumbSTI.reset( ThumbTarget->createMCSubtargetInfo(ThumbTripleName, MCPU, FeaturesStr)); ThumbCtx.reset(new MCContext(ThumbAsmInfo.get(), ThumbMRI.get(), nullptr)); ThumbDisAsm.reset(ThumbTarget->createMCDisassembler(*ThumbSTI, *ThumbCtx)); int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect(); ThumbIP.reset(ThumbTarget->createMCInstPrinter( ThumbAsmPrinterVariant, *ThumbAsmInfo, *ThumbInstrInfo, *ThumbMRI, *ThumbSTI)); } if (ThumbTarget && (!ThumbInstrAnalysis || !ThumbAsmInfo || !ThumbSTI || !ThumbDisAsm || !ThumbIP)) { errs() << "error: couldn't initialize disassembler for target " << ThumbTripleName << '\n'; return; } outs() << '\n' << Filename << ":\n\n"; MachO::mach_header Header = MachOOF->getHeader(); // FIXME: FoundFns isn't used anymore. Using symbols/LC_FUNCTION_STARTS to // determine function locations will eventually go in MCObjectDisassembler. // FIXME: Using the -cfg command line option, this code used to be able to // annotate relocations with the referenced symbol's name, and if this was // inside a __[cf]string section, the data it points to. This is now replaced // by the upcoming MCSymbolizer, which needs the appropriate setup done above. std::vector Sections; std::vector Symbols; SmallVector FoundFns; uint64_t BaseSegmentAddress; getSectionsAndSymbols(Header, MachOOF, Sections, Symbols, FoundFns, BaseSegmentAddress); // Sort the symbols by address, just in case they didn't come in that way. std::sort(Symbols.begin(), Symbols.end(), SymbolSorter()); // Build a data in code table that is sorted on by the address of each entry. uint64_t BaseAddress = 0; if (Header.filetype == MachO::MH_OBJECT) Sections[0].getAddress(BaseAddress); else BaseAddress = BaseSegmentAddress; DiceTable Dices; for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices(); DI != DE; ++DI) { uint32_t Offset; DI->getOffset(Offset); Dices.push_back(std::make_pair(BaseAddress + Offset, *DI)); } array_pod_sort(Dices.begin(), Dices.end()); #ifndef NDEBUG raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); #else raw_ostream &DebugOut = nulls(); #endif std::unique_ptr diContext; ObjectFile *DbgObj = MachOOF; // Try to find debug info and set up the DIContext for it. if (UseDbg) { // A separate DSym file path was specified, parse it as a macho file, // get the sections and supply it to the section name parsing machinery. if (!DSYMFile.empty()) { ErrorOr> BufOrErr = MemoryBuffer::getFileOrSTDIN(DSYMFile); if (std::error_code EC = BufOrErr.getError()) { errs() << "llvm-objdump: " << Filename << ": " << EC.message() << '\n'; return; } DbgObj = ObjectFile::createMachOObjectFile(BufOrErr.get()->getMemBufferRef()) .get() .release(); } // Setup the DIContext diContext.reset(DIContext::getDWARFContext(*DbgObj)); } for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) { bool SectIsText = false; Sections[SectIdx].isText(SectIsText); if (SectIsText == false) continue; StringRef SectName; if (Sections[SectIdx].getName(SectName) || SectName != "__text") continue; // Skip non-text sections DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl(); StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR); if (SegmentName != "__TEXT") continue; StringRef Bytes; Sections[SectIdx].getContents(Bytes); StringRefMemoryObject memoryObject(Bytes); bool symbolTableWorked = false; // Parse relocations. std::vector> Relocs; for (const RelocationRef &Reloc : Sections[SectIdx].relocations()) { uint64_t RelocOffset, SectionAddress; Reloc.getOffset(RelocOffset); Sections[SectIdx].getAddress(SectionAddress); RelocOffset -= SectionAddress; symbol_iterator RelocSym = Reloc.getSymbol(); Relocs.push_back(std::make_pair(RelocOffset, *RelocSym)); } array_pod_sort(Relocs.begin(), Relocs.end()); // Disassemble symbol by symbol. for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) { StringRef SymName; Symbols[SymIdx].getName(SymName); SymbolRef::Type ST; Symbols[SymIdx].getType(ST); if (ST != SymbolRef::ST_Function) continue; // Make sure the symbol is defined in this section. bool containsSym = false; Sections[SectIdx].containsSymbol(Symbols[SymIdx], containsSym); if (!containsSym) continue; // Start at the address of the symbol relative to the section's address. uint64_t SectionAddress = 0; uint64_t Start = 0; Sections[SectIdx].getAddress(SectionAddress); Symbols[SymIdx].getAddress(Start); Start -= SectionAddress; // Stop disassembling either at the beginning of the next symbol or at // the end of the section. bool containsNextSym = false; uint64_t NextSym = 0; uint64_t NextSymIdx = SymIdx+1; while (Symbols.size() > NextSymIdx) { SymbolRef::Type NextSymType; Symbols[NextSymIdx].getType(NextSymType); if (NextSymType == SymbolRef::ST_Function) { Sections[SectIdx].containsSymbol(Symbols[NextSymIdx], containsNextSym); Symbols[NextSymIdx].getAddress(NextSym); NextSym -= SectionAddress; break; } ++NextSymIdx; } uint64_t SectSize; Sections[SectIdx].getSize(SectSize); uint64_t End = containsNextSym ? NextSym : SectSize; uint64_t Size; symbolTableWorked = true; DataRefImpl Symb = Symbols[SymIdx].getRawDataRefImpl(); bool isThumb = (MachOOF->getSymbolFlags(Symb) & SymbolRef::SF_Thumb) && ThumbTarget; outs() << SymName << ":\n"; DILineInfo lastLine; for (uint64_t Index = Start; Index < End; Index += Size) { MCInst Inst; uint64_t SectAddress = 0; Sections[SectIdx].getAddress(SectAddress); outs() << format("%8" PRIx64 ":\t", SectAddress + Index); // Check the data in code table here to see if this is data not an // instruction to be disassembled. DiceTable Dice; Dice.push_back(std::make_pair(SectAddress + Index, DiceRef())); dice_table_iterator DTI = std::search(Dices.begin(), Dices.end(), Dice.begin(), Dice.end(), compareDiceTableEntries); if (DTI != Dices.end()){ uint16_t Length; DTI->second.getLength(Length); DumpBytes(StringRef(Bytes.data() + Index, Length)); uint16_t Kind; DTI->second.getKind(Kind); DumpDataInCode(Bytes.data() + Index, Length, Kind); continue; } bool gotInst; if (isThumb) gotInst = ThumbDisAsm->getInstruction(Inst, Size, memoryObject, Index, DebugOut, nulls()); else gotInst = DisAsm->getInstruction(Inst, Size, memoryObject, Index, DebugOut, nulls()); if (gotInst) { DumpBytes(StringRef(Bytes.data() + Index, Size)); if (isThumb) ThumbIP->printInst(&Inst, outs(), ""); else IP->printInst(&Inst, outs(), ""); // Print debug info. if (diContext) { DILineInfo dli = diContext->getLineInfoForAddress(SectAddress + Index); // Print valid line info if it changed. if (dli != lastLine && dli.Line != 0) outs() << "\t## " << dli.FileName << ':' << dli.Line << ':' << dli.Column; lastLine = dli; } outs() << "\n"; } else { errs() << "llvm-objdump: warning: invalid instruction encoding\n"; if (Size == 0) Size = 1; // skip illegible bytes } } } if (!symbolTableWorked) { // Reading the symbol table didn't work, disassemble the whole section. uint64_t SectAddress; Sections[SectIdx].getAddress(SectAddress); uint64_t SectSize; Sections[SectIdx].getSize(SectSize); uint64_t InstSize; for (uint64_t Index = 0; Index < SectSize; Index += InstSize) { MCInst Inst; if (DisAsm->getInstruction(Inst, InstSize, memoryObject, Index, DebugOut, nulls())) { outs() << format("%8" PRIx64 ":\t", SectAddress + Index); DumpBytes(StringRef(Bytes.data() + Index, InstSize)); IP->printInst(&Inst, outs(), ""); outs() << "\n"; } else { errs() << "llvm-objdump: warning: invalid instruction encoding\n"; if (InstSize == 0) InstSize = 1; // skip illegible bytes } } } } } //===----------------------------------------------------------------------===// // __compact_unwind section dumping //===----------------------------------------------------------------------===// namespace { template static uint64_t readNext(const char *&Buf) { using llvm::support::little; using llvm::support::unaligned; uint64_t Val = support::endian::read(Buf); Buf += sizeof(T); return Val; } struct CompactUnwindEntry { uint32_t OffsetInSection; uint64_t FunctionAddr; uint32_t Length; uint32_t CompactEncoding; uint64_t PersonalityAddr; uint64_t LSDAAddr; RelocationRef FunctionReloc; RelocationRef PersonalityReloc; RelocationRef LSDAReloc; CompactUnwindEntry(StringRef Contents, unsigned Offset, bool Is64) : OffsetInSection(Offset) { if (Is64) read(Contents.data() + Offset); else read(Contents.data() + Offset); } private: template void read(const char *Buf) { FunctionAddr = readNext(Buf); Length = readNext(Buf); CompactEncoding = readNext(Buf); PersonalityAddr = readNext(Buf); LSDAAddr = readNext(Buf); } }; } /// Given a relocation from __compact_unwind, consisting of the RelocationRef /// and data being relocated, determine the best base Name and Addend to use for /// display purposes. /// /// 1. An Extern relocation will directly reference a symbol (and the data is /// then already an addend), so use that. /// 2. Otherwise the data is an offset in the object file's layout; try to find // a symbol before it in the same section, and use the offset from there. /// 3. Finally, if all that fails, fall back to an offset from the start of the /// referenced section. static void findUnwindRelocNameAddend(const MachOObjectFile *Obj, std::map &Symbols, const RelocationRef &Reloc, uint64_t Addr, StringRef &Name, uint64_t &Addend) { if (Reloc.getSymbol() != Obj->symbol_end()) { Reloc.getSymbol()->getName(Name); Addend = Addr; return; } auto RE = Obj->getRelocation(Reloc.getRawDataRefImpl()); SectionRef RelocSection = Obj->getRelocationSection(RE); uint64_t SectionAddr; RelocSection.getAddress(SectionAddr); auto Sym = Symbols.upper_bound(Addr); if (Sym == Symbols.begin()) { // The first symbol in the object is after this reference, the best we can // do is section-relative notation. RelocSection.getName(Name); Addend = Addr - SectionAddr; return; } // Go back one so that SymbolAddress <= Addr. --Sym; section_iterator SymSection = Obj->section_end(); Sym->second.getSection(SymSection); if (RelocSection == *SymSection) { // There's a valid symbol in the same section before this reference. Sym->second.getName(Name); Addend = Addr - Sym->first; return; } // There is a symbol before this reference, but it's in a different // section. Probably not helpful to mention it, so use the section name. RelocSection.getName(Name); Addend = Addr - SectionAddr; } static void printUnwindRelocDest(const MachOObjectFile *Obj, std::map &Symbols, const RelocationRef &Reloc, uint64_t Addr) { StringRef Name; uint64_t Addend; findUnwindRelocNameAddend(Obj, Symbols, Reloc, Addr, Name, Addend); outs() << Name; if (Addend) outs() << " + " << format("0x%" PRIx64, Addend); } static void printMachOCompactUnwindSection(const MachOObjectFile *Obj, std::map &Symbols, const SectionRef &CompactUnwind) { assert(Obj->isLittleEndian() && "There should not be a big-endian .o with __compact_unwind"); bool Is64 = Obj->is64Bit(); uint32_t PointerSize = Is64 ? sizeof(uint64_t) : sizeof(uint32_t); uint32_t EntrySize = 3 * PointerSize + 2 * sizeof(uint32_t); StringRef Contents; CompactUnwind.getContents(Contents); SmallVector CompactUnwinds; // First populate the initial raw offsets, encodings and so on from the entry. for (unsigned Offset = 0; Offset < Contents.size(); Offset += EntrySize) { CompactUnwindEntry Entry(Contents.data(), Offset, Is64); CompactUnwinds.push_back(Entry); } // Next we need to look at the relocations to find out what objects are // actually being referred to. for (const RelocationRef &Reloc : CompactUnwind.relocations()) { uint64_t RelocAddress; Reloc.getOffset(RelocAddress); uint32_t EntryIdx = RelocAddress / EntrySize; uint32_t OffsetInEntry = RelocAddress - EntryIdx * EntrySize; CompactUnwindEntry &Entry = CompactUnwinds[EntryIdx]; if (OffsetInEntry == 0) Entry.FunctionReloc = Reloc; else if (OffsetInEntry == PointerSize + 2 * sizeof(uint32_t)) Entry.PersonalityReloc = Reloc; else if (OffsetInEntry == 2 * PointerSize + 2 * sizeof(uint32_t)) Entry.LSDAReloc = Reloc; else llvm_unreachable("Unexpected relocation in __compact_unwind section"); } // Finally, we're ready to print the data we've gathered. outs() << "Contents of __compact_unwind section:\n"; for (auto &Entry : CompactUnwinds) { outs() << " Entry at offset " << format("0x%" PRIx32, Entry.OffsetInSection) << ":\n"; // 1. Start of the region this entry applies to. outs() << " start: " << format("0x%" PRIx64, Entry.FunctionAddr) << ' '; printUnwindRelocDest(Obj, Symbols, Entry.FunctionReloc, Entry.FunctionAddr); outs() << '\n'; // 2. Length of the region this entry applies to. outs() << " length: " << format("0x%" PRIx32, Entry.Length) << '\n'; // 3. The 32-bit compact encoding. outs() << " compact encoding: " << format("0x%08" PRIx32, Entry.CompactEncoding) << '\n'; // 4. The personality function, if present. if (Entry.PersonalityReloc.getObjectFile()) { outs() << " personality function: " << format("0x%" PRIx64, Entry.PersonalityAddr) << ' '; printUnwindRelocDest(Obj, Symbols, Entry.PersonalityReloc, Entry.PersonalityAddr); outs() << '\n'; } // 5. This entry's language-specific data area. if (Entry.LSDAReloc.getObjectFile()) { outs() << " LSDA: " << format("0x%" PRIx64, Entry.LSDAAddr) << ' '; printUnwindRelocDest(Obj, Symbols, Entry.LSDAReloc, Entry.LSDAAddr); outs() << '\n'; } } } //===----------------------------------------------------------------------===// // __unwind_info section dumping //===----------------------------------------------------------------------===// static void printRegularSecondLevelUnwindPage(const char *PageStart) { const char *Pos = PageStart; uint32_t Kind = readNext(Pos); (void)Kind; assert(Kind == 2 && "kind for a regular 2nd level index should be 2"); uint16_t EntriesStart = readNext(Pos); uint16_t NumEntries = readNext(Pos); Pos = PageStart + EntriesStart; for (unsigned i = 0; i < NumEntries; ++i) { uint32_t FunctionOffset = readNext(Pos); uint32_t Encoding = readNext(Pos); outs() << " [" << i << "]: " << "function offset=" << format("0x%08" PRIx32, FunctionOffset) << ", " << "encoding=" << format("0x%08" PRIx32, Encoding) << '\n'; } } static void printCompressedSecondLevelUnwindPage( const char *PageStart, uint32_t FunctionBase, const SmallVectorImpl &CommonEncodings) { const char *Pos = PageStart; uint32_t Kind = readNext(Pos); (void)Kind; assert(Kind == 3 && "kind for a compressed 2nd level index should be 3"); uint16_t EntriesStart = readNext(Pos); uint16_t NumEntries = readNext(Pos); uint16_t EncodingsStart = readNext(Pos); readNext(Pos); const auto *PageEncodings = reinterpret_cast( PageStart + EncodingsStart); Pos = PageStart + EntriesStart; for (unsigned i = 0; i < NumEntries; ++i) { uint32_t Entry = readNext(Pos); uint32_t FunctionOffset = FunctionBase + (Entry & 0xffffff); uint32_t EncodingIdx = Entry >> 24; uint32_t Encoding; if (EncodingIdx < CommonEncodings.size()) Encoding = CommonEncodings[EncodingIdx]; else Encoding = PageEncodings[EncodingIdx - CommonEncodings.size()]; outs() << " [" << i << "]: " << "function offset=" << format("0x%08" PRIx32, FunctionOffset) << ", " << "encoding[" << EncodingIdx << "]=" << format("0x%08" PRIx32, Encoding) << '\n'; } } static void printMachOUnwindInfoSection(const MachOObjectFile *Obj, std::map &Symbols, const SectionRef &UnwindInfo) { assert(Obj->isLittleEndian() && "There should not be a big-endian .o with __unwind_info"); outs() << "Contents of __unwind_info section:\n"; StringRef Contents; UnwindInfo.getContents(Contents); const char *Pos = Contents.data(); //===---------------------------------- // Section header //===---------------------------------- uint32_t Version = readNext(Pos); outs() << " Version: " << format("0x%" PRIx32, Version) << '\n'; assert(Version == 1 && "only understand version 1"); uint32_t CommonEncodingsStart = readNext(Pos); outs() << " Common encodings array section offset: " << format("0x%" PRIx32, CommonEncodingsStart) << '\n'; uint32_t NumCommonEncodings = readNext(Pos); outs() << " Number of common encodings in array: " << format("0x%" PRIx32, NumCommonEncodings) << '\n'; uint32_t PersonalitiesStart = readNext(Pos); outs() << " Personality function array section offset: " << format("0x%" PRIx32, PersonalitiesStart) << '\n'; uint32_t NumPersonalities = readNext(Pos); outs() << " Number of personality functions in array: " << format("0x%" PRIx32, NumPersonalities) << '\n'; uint32_t IndicesStart = readNext(Pos); outs() << " Index array section offset: " << format("0x%" PRIx32, IndicesStart) << '\n'; uint32_t NumIndices = readNext(Pos); outs() << " Number of indices in array: " << format("0x%" PRIx32, NumIndices) << '\n'; //===---------------------------------- // A shared list of common encodings //===---------------------------------- // These occupy indices in the range [0, N] whenever an encoding is referenced // from a compressed 2nd level index table. In practice the linker only // creates ~128 of these, so that indices are available to embed encodings in // the 2nd level index. SmallVector CommonEncodings; outs() << " Common encodings: (count = " << NumCommonEncodings << ")\n"; Pos = Contents.data() + CommonEncodingsStart; for (unsigned i = 0; i < NumCommonEncodings; ++i) { uint32_t Encoding = readNext(Pos); CommonEncodings.push_back(Encoding); outs() << " encoding[" << i << "]: " << format("0x%08" PRIx32, Encoding) << '\n'; } //===---------------------------------- // Personality functions used in this executable //===---------------------------------- // There should be only a handful of these (one per source language, // roughly). Particularly since they only get 2 bits in the compact encoding. outs() << " Personality functions: (count = " << NumPersonalities << ")\n"; Pos = Contents.data() + PersonalitiesStart; for (unsigned i = 0; i < NumPersonalities; ++i) { uint32_t PersonalityFn = readNext(Pos); outs() << " personality[" << i + 1 << "]: " << format("0x%08" PRIx32, PersonalityFn) << '\n'; } //===---------------------------------- // The level 1 index entries //===---------------------------------- // These specify an approximate place to start searching for the more detailed // information, sorted by PC. struct IndexEntry { uint32_t FunctionOffset; uint32_t SecondLevelPageStart; uint32_t LSDAStart; }; SmallVector IndexEntries; outs() << " Top level indices: (count = " << NumIndices << ")\n"; Pos = Contents.data() + IndicesStart; for (unsigned i = 0; i < NumIndices; ++i) { IndexEntry Entry; Entry.FunctionOffset = readNext(Pos); Entry.SecondLevelPageStart = readNext(Pos); Entry.LSDAStart = readNext(Pos); IndexEntries.push_back(Entry); outs() << " [" << i << "]: " << "function offset=" << format("0x%08" PRIx32, Entry.FunctionOffset) << ", " << "2nd level page offset=" << format("0x%08" PRIx32, Entry.SecondLevelPageStart) << ", " << "LSDA offset=" << format("0x%08" PRIx32, Entry.LSDAStart) << '\n'; } //===---------------------------------- // Next come the LSDA tables //===---------------------------------- // The LSDA layout is rather implicit: it's a contiguous array of entries from // the first top-level index's LSDAOffset to the last (sentinel). outs() << " LSDA descriptors:\n"; Pos = Contents.data() + IndexEntries[0].LSDAStart; int NumLSDAs = (IndexEntries.back().LSDAStart - IndexEntries[0].LSDAStart) / (2 * sizeof(uint32_t)); for (int i = 0; i < NumLSDAs; ++i) { uint32_t FunctionOffset = readNext(Pos); uint32_t LSDAOffset = readNext(Pos); outs() << " [" << i << "]: " << "function offset=" << format("0x%08" PRIx32, FunctionOffset) << ", " << "LSDA offset=" << format("0x%08" PRIx32, LSDAOffset) << '\n'; } //===---------------------------------- // Finally, the 2nd level indices //===---------------------------------- // Generally these are 4K in size, and have 2 possible forms: // + Regular stores up to 511 entries with disparate encodings // + Compressed stores up to 1021 entries if few enough compact encoding // values are used. outs() << " Second level indices:\n"; for (unsigned i = 0; i < IndexEntries.size() - 1; ++i) { // The final sentinel top-level index has no associated 2nd level page if (IndexEntries[i].SecondLevelPageStart == 0) break; outs() << " Second level index[" << i << "]: " << "offset in section=" << format("0x%08" PRIx32, IndexEntries[i].SecondLevelPageStart) << ", " << "base function offset=" << format("0x%08" PRIx32, IndexEntries[i].FunctionOffset) << '\n'; Pos = Contents.data() + IndexEntries[i].SecondLevelPageStart; uint32_t Kind = *reinterpret_cast(Pos); if (Kind == 2) printRegularSecondLevelUnwindPage(Pos); else if (Kind == 3) printCompressedSecondLevelUnwindPage(Pos, IndexEntries[i].FunctionOffset, CommonEncodings); else llvm_unreachable("Do not know how to print this kind of 2nd level page"); } } void llvm::printMachOUnwindInfo(const MachOObjectFile *Obj) { std::map Symbols; for (const SymbolRef &SymRef : Obj->symbols()) { // Discard any undefined or absolute symbols. They're not going to take part // in the convenience lookup for unwind info and just take up resources. section_iterator Section = Obj->section_end(); SymRef.getSection(Section); if (Section == Obj->section_end()) continue; uint64_t Addr; SymRef.getAddress(Addr); Symbols.insert(std::make_pair(Addr, SymRef)); } for (const SectionRef &Section : Obj->sections()) { StringRef SectName; Section.getName(SectName); if (SectName == "__compact_unwind") printMachOCompactUnwindSection(Obj, Symbols, Section); else if (SectName == "__unwind_info") printMachOUnwindInfoSection(Obj, Symbols, Section); else if (SectName == "__eh_frame") outs() << "llvm-objdump: warning: unhandled __eh_frame section\n"; } } static void PrintMachHeader(uint32_t magic, uint32_t cputype, uint32_t cpusubtype, uint32_t filetype, uint32_t ncmds, uint32_t sizeofcmds, uint32_t flags, bool verbose) { outs() << "Mach header\n"; outs() << " magic cputype cpusubtype caps filetype ncmds " "sizeofcmds flags\n"; if (verbose) { if (magic == MachO::MH_MAGIC) outs() << " MH_MAGIC"; else if (magic == MachO::MH_MAGIC_64) outs() << "MH_MAGIC_64"; else outs() << format(" 0x%08" PRIx32, magic); switch (cputype) { case MachO::CPU_TYPE_I386: outs() << " I386"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_I386_ALL: outs() << " ALL"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; case MachO::CPU_TYPE_X86_64: outs() << " X86_64"; case MachO::CPU_SUBTYPE_X86_64_ALL: outs() << " ALL"; break; case MachO::CPU_SUBTYPE_X86_64_H: outs() << " Haswell"; outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; case MachO::CPU_TYPE_ARM: outs() << " ARM"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_ARM_ALL: outs() << " ALL"; break; case MachO::CPU_SUBTYPE_ARM_V4T: outs() << " V4T"; break; case MachO::CPU_SUBTYPE_ARM_V5TEJ: outs() << " V5TEJ"; break; case MachO::CPU_SUBTYPE_ARM_XSCALE: outs() << " XSCALE"; break; case MachO::CPU_SUBTYPE_ARM_V6: outs() << " V6"; break; case MachO::CPU_SUBTYPE_ARM_V6M: outs() << " V6M"; break; case MachO::CPU_SUBTYPE_ARM_V7: outs() << " V7"; break; case MachO::CPU_SUBTYPE_ARM_V7EM: outs() << " V7EM"; break; case MachO::CPU_SUBTYPE_ARM_V7K: outs() << " V7K"; break; case MachO::CPU_SUBTYPE_ARM_V7M: outs() << " V7M"; break; case MachO::CPU_SUBTYPE_ARM_V7S: outs() << " V7S"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; case MachO::CPU_TYPE_ARM64: outs() << " ARM64"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_ARM64_ALL: outs() << " ALL"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; case MachO::CPU_TYPE_POWERPC: outs() << " PPC"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_POWERPC_ALL: outs() << " ALL"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; case MachO::CPU_TYPE_POWERPC64: outs() << " PPC64"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_POWERPC_ALL: outs() << " ALL"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; } if ((cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) { outs() << " LIB64 "; } else { outs() << format(" 0x%02" PRIx32, (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24); } switch (filetype) { case MachO::MH_OBJECT: outs() << " OBJECT"; break; case MachO::MH_EXECUTE: outs() << " EXECUTE"; break; case MachO::MH_FVMLIB: outs() << " FVMLIB"; break; case MachO::MH_CORE: outs() << " CORE"; break; case MachO::MH_PRELOAD: outs() << " PRELOAD"; break; case MachO::MH_DYLIB: outs() << " DYLIB"; break; case MachO::MH_DYLIB_STUB: outs() << " DYLIB_STUB"; break; case MachO::MH_DYLINKER: outs() << " DYLINKER"; break; case MachO::MH_BUNDLE: outs() << " BUNDLE"; break; case MachO::MH_DSYM: outs() << " DSYM"; break; case MachO::MH_KEXT_BUNDLE: outs() << " KEXTBUNDLE"; break; default: outs() << format(" %10u", filetype); break; } outs() << format(" %5u", ncmds); outs() << format(" %10u", sizeofcmds); uint32_t f = flags; if (f & MachO::MH_NOUNDEFS) { outs() << " NOUNDEFS"; f &= ~MachO::MH_NOUNDEFS; } if (f & MachO::MH_INCRLINK) { outs() << " INCRLINK"; f &= ~MachO::MH_INCRLINK; } if (f & MachO::MH_DYLDLINK) { outs() << " DYLDLINK"; f &= ~MachO::MH_DYLDLINK; } if (f & MachO::MH_BINDATLOAD) { outs() << " BINDATLOAD"; f &= ~MachO::MH_BINDATLOAD; } if (f & MachO::MH_PREBOUND) { outs() << " PREBOUND"; f &= ~MachO::MH_PREBOUND; } if (f & MachO::MH_SPLIT_SEGS) { outs() << " SPLIT_SEGS"; f &= ~MachO::MH_SPLIT_SEGS; } if (f & MachO::MH_LAZY_INIT) { outs() << " LAZY_INIT"; f &= ~MachO::MH_LAZY_INIT; } if (f & MachO::MH_TWOLEVEL) { outs() << " TWOLEVEL"; f &= ~MachO::MH_TWOLEVEL; } if (f & MachO::MH_FORCE_FLAT) { outs() << " FORCE_FLAT"; f &= ~MachO::MH_FORCE_FLAT; } if (f & MachO::MH_NOMULTIDEFS) { outs() << " NOMULTIDEFS"; f &= ~MachO::MH_NOMULTIDEFS; } if (f & MachO::MH_NOFIXPREBINDING) { outs() << " NOFIXPREBINDING"; f &= ~MachO::MH_NOFIXPREBINDING; } if (f & MachO::MH_PREBINDABLE) { outs() << " PREBINDABLE"; f &= ~MachO::MH_PREBINDABLE; } if (f & MachO::MH_ALLMODSBOUND) { outs() << " ALLMODSBOUND"; f &= ~MachO::MH_ALLMODSBOUND; } if (f & MachO::MH_SUBSECTIONS_VIA_SYMBOLS) { outs() << " SUBSECTIONS_VIA_SYMBOLS"; f &= ~MachO::MH_SUBSECTIONS_VIA_SYMBOLS; } if (f & MachO::MH_CANONICAL) { outs() << " CANONICAL"; f &= ~MachO::MH_CANONICAL; } if (f & MachO::MH_WEAK_DEFINES) { outs() << " WEAK_DEFINES"; f &= ~MachO::MH_WEAK_DEFINES; } if (f & MachO::MH_BINDS_TO_WEAK) { outs() << " BINDS_TO_WEAK"; f &= ~MachO::MH_BINDS_TO_WEAK; } if (f & MachO::MH_ALLOW_STACK_EXECUTION) { outs() << " ALLOW_STACK_EXECUTION"; f &= ~MachO::MH_ALLOW_STACK_EXECUTION; } if (f & MachO::MH_DEAD_STRIPPABLE_DYLIB) { outs() << " DEAD_STRIPPABLE_DYLIB"; f &= ~MachO::MH_DEAD_STRIPPABLE_DYLIB; } if (f & MachO::MH_PIE) { outs() << " PIE"; f &= ~MachO::MH_PIE; } if (f & MachO::MH_NO_REEXPORTED_DYLIBS) { outs() << " NO_REEXPORTED_DYLIBS"; f &= ~MachO::MH_NO_REEXPORTED_DYLIBS; } if (f & MachO::MH_HAS_TLV_DESCRIPTORS) { outs() << " MH_HAS_TLV_DESCRIPTORS"; f &= ~MachO::MH_HAS_TLV_DESCRIPTORS; } if (f & MachO::MH_NO_HEAP_EXECUTION) { outs() << " MH_NO_HEAP_EXECUTION"; f &= ~MachO::MH_NO_HEAP_EXECUTION; } if (f & MachO::MH_APP_EXTENSION_SAFE) { outs() << " APP_EXTENSION_SAFE"; f &= ~MachO::MH_APP_EXTENSION_SAFE; } if (f != 0 || flags == 0) outs() << format(" 0x%08" PRIx32, f); } else { outs() << format(" 0x%08" PRIx32, magic); outs() << format(" %7d", cputype); outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); outs() << format(" 0x%02" PRIx32, (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24); outs() << format(" %10u", filetype); outs() << format(" %5u", ncmds); outs() << format(" %10u", sizeofcmds); outs() << format(" 0x%08" PRIx32, flags); } outs() << "\n"; } static void PrintSegmentCommand(uint32_t cmd, uint32_t cmdsize, StringRef SegName, uint64_t vmaddr, uint64_t vmsize, uint64_t fileoff, uint64_t filesize, uint32_t maxprot, uint32_t initprot, uint32_t nsects, uint32_t flags, uint32_t object_size, bool verbose) { uint64_t expected_cmdsize; if (cmd == MachO::LC_SEGMENT) { outs() << " cmd LC_SEGMENT\n"; expected_cmdsize = nsects; expected_cmdsize *= sizeof(struct MachO::section); expected_cmdsize += sizeof(struct MachO::segment_command); } else { outs() << " cmd LC_SEGMENT_64\n"; expected_cmdsize = nsects; expected_cmdsize *= sizeof(struct MachO::section_64); expected_cmdsize += sizeof(struct MachO::segment_command_64); } outs() << " cmdsize " << cmdsize; if (cmdsize != expected_cmdsize) outs() << " Inconsistent size\n"; else outs() << "\n"; outs() << " segname " << SegName << "\n"; if (cmd == MachO::LC_SEGMENT_64) { outs() << " vmaddr " << format("0x%016" PRIx64, vmaddr) << "\n"; outs() << " vmsize " << format("0x%016" PRIx64, vmsize) << "\n"; } else { outs() << " vmaddr " << format("0x%08" PRIx32, vmaddr) << "\n"; outs() << " vmsize " << format("0x%08" PRIx32, vmsize) << "\n"; } outs() << " fileoff " << fileoff; if (fileoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " filesize " << filesize; if (fileoff + filesize > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; if (verbose) { if ((maxprot & ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE | MachO::VM_PROT_EXECUTE)) != 0) outs() << " maxprot ?" << format("0x%08" PRIx32, maxprot) << "\n"; else { if (maxprot & MachO::VM_PROT_READ) outs() << " maxprot r"; else outs() << " maxprot -"; if (maxprot & MachO::VM_PROT_WRITE) outs() << "w"; else outs() << "-"; if (maxprot & MachO::VM_PROT_EXECUTE) outs() << "x\n"; else outs() << "-\n"; } if ((initprot & ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE | MachO::VM_PROT_EXECUTE)) != 0) outs() << " initprot ?" << format("0x%08" PRIx32, initprot) << "\n"; else { if (initprot & MachO::VM_PROT_READ) outs() << " initprot r"; else outs() << " initprot -"; if (initprot & MachO::VM_PROT_WRITE) outs() << "w"; else outs() << "-"; if (initprot & MachO::VM_PROT_EXECUTE) outs() << "x\n"; else outs() << "-\n"; } } else { outs() << " maxprot " << format("0x%08" PRIx32, maxprot) << "\n"; outs() << " initprot " << format("0x%08" PRIx32, initprot) << "\n"; } outs() << " nsects " << nsects << "\n"; if (verbose) { outs() << " flags"; if (flags == 0) outs() << " (none)\n"; else { if (flags & MachO::SG_HIGHVM) { outs() << " HIGHVM"; flags &= ~MachO::SG_HIGHVM; } if (flags & MachO::SG_FVMLIB) { outs() << " FVMLIB"; flags &= ~MachO::SG_FVMLIB; } if (flags & MachO::SG_NORELOC) { outs() << " NORELOC"; flags &= ~MachO::SG_NORELOC; } if (flags & MachO::SG_PROTECTED_VERSION_1) { outs() << " PROTECTED_VERSION_1"; flags &= ~MachO::SG_PROTECTED_VERSION_1; } if (flags) outs() << format(" 0x%08" PRIx32, flags) << " (unknown flags)\n"; else outs() << "\n"; } } else { outs() << " flags " << format("0x%" PRIx32, flags) << "\n"; } } static void PrintSection(const char *sectname, const char *segname, uint64_t addr, uint64_t size, uint32_t offset, uint32_t align, uint32_t reloff, uint32_t nreloc, uint32_t flags, uint32_t reserved1, uint32_t reserved2, uint32_t cmd, const char *sg_segname, uint32_t filetype, uint32_t object_size, bool verbose) { outs() << "Section\n"; outs() << " sectname " << format("%.16s\n", sectname); outs() << " segname " << format("%.16s", segname); if (filetype != MachO::MH_OBJECT && strncmp(sg_segname, segname, 16) != 0) outs() << " (does not match segment)\n"; else outs() << "\n"; if (cmd == MachO::LC_SEGMENT_64) { outs() << " addr " << format("0x%016" PRIx64, addr) << "\n"; outs() << " size " << format("0x%016" PRIx64, size); } else { outs() << " addr " << format("0x%08" PRIx32, addr) << "\n"; outs() << " size " << format("0x%08" PRIx32, size); } if ((flags & MachO::S_ZEROFILL) != 0 && offset + size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " offset " << offset; if (offset > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; uint32_t align_shifted = 1 << align; outs() << " align 2^" << align << " (" << align_shifted << ")\n"; outs() << " reloff " << reloff; if (reloff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nreloc " << nreloc; if (reloff + nreloc * sizeof(struct MachO::relocation_info) > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; uint32_t section_type = flags & MachO::SECTION_TYPE; if (verbose) { outs() << " type"; if (section_type == MachO::S_REGULAR) outs() << " S_REGULAR\n"; else if (section_type == MachO::S_ZEROFILL) outs() << " S_ZEROFILL\n"; else if (section_type == MachO::S_CSTRING_LITERALS) outs() << " S_CSTRING_LITERALS\n"; else if (section_type == MachO::S_4BYTE_LITERALS) outs() << " S_4BYTE_LITERALS\n"; else if (section_type == MachO::S_8BYTE_LITERALS) outs() << " S_8BYTE_LITERALS\n"; else if (section_type == MachO::S_16BYTE_LITERALS) outs() << " S_16BYTE_LITERALS\n"; else if (section_type == MachO::S_LITERAL_POINTERS) outs() << " S_LITERAL_POINTERS\n"; else if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS) outs() << " S_NON_LAZY_SYMBOL_POINTERS\n"; else if (section_type == MachO::S_LAZY_SYMBOL_POINTERS) outs() << " S_LAZY_SYMBOL_POINTERS\n"; else if (section_type == MachO::S_SYMBOL_STUBS) outs() << " S_SYMBOL_STUBS\n"; else if (section_type == MachO::S_MOD_INIT_FUNC_POINTERS) outs() << " S_MOD_INIT_FUNC_POINTERS\n"; else if (section_type == MachO::S_MOD_TERM_FUNC_POINTERS) outs() << " S_MOD_TERM_FUNC_POINTERS\n"; else if (section_type == MachO::S_COALESCED) outs() << " S_COALESCED\n"; else if (section_type == MachO::S_INTERPOSING) outs() << " S_INTERPOSING\n"; else if (section_type == MachO::S_DTRACE_DOF) outs() << " S_DTRACE_DOF\n"; else if (section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS) outs() << " S_LAZY_DYLIB_SYMBOL_POINTERS\n"; else if (section_type == MachO::S_THREAD_LOCAL_REGULAR) outs() << " S_THREAD_LOCAL_REGULAR\n"; else if (section_type == MachO::S_THREAD_LOCAL_ZEROFILL) outs() << " S_THREAD_LOCAL_ZEROFILL\n"; else if (section_type == MachO::S_THREAD_LOCAL_VARIABLES) outs() << " S_THREAD_LOCAL_VARIABLES\n"; else if (section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS) outs() << " S_THREAD_LOCAL_VARIABLE_POINTERS\n"; else if (section_type == MachO::S_THREAD_LOCAL_INIT_FUNCTION_POINTERS) outs() << " S_THREAD_LOCAL_INIT_FUNCTION_POINTERS\n"; else outs() << format("0x%08" PRIx32, section_type) << "\n"; outs() << "attributes"; uint32_t section_attributes = flags & MachO::SECTION_ATTRIBUTES; if (section_attributes & MachO::S_ATTR_PURE_INSTRUCTIONS) outs() << " PURE_INSTRUCTIONS"; if (section_attributes & MachO::S_ATTR_NO_TOC) outs() << " NO_TOC"; if (section_attributes & MachO::S_ATTR_STRIP_STATIC_SYMS) outs() << " STRIP_STATIC_SYMS"; if (section_attributes & MachO::S_ATTR_NO_DEAD_STRIP) outs() << " NO_DEAD_STRIP"; if (section_attributes & MachO::S_ATTR_LIVE_SUPPORT) outs() << " LIVE_SUPPORT"; if (section_attributes & MachO::S_ATTR_SELF_MODIFYING_CODE) outs() << " SELF_MODIFYING_CODE"; if (section_attributes & MachO::S_ATTR_DEBUG) outs() << " DEBUG"; if (section_attributes & MachO::S_ATTR_SOME_INSTRUCTIONS) outs() << " SOME_INSTRUCTIONS"; if (section_attributes & MachO::S_ATTR_EXT_RELOC) outs() << " EXT_RELOC"; if (section_attributes & MachO::S_ATTR_LOC_RELOC) outs() << " LOC_RELOC"; if (section_attributes == 0) outs() << " (none)"; outs() << "\n"; } else outs() << " flags " << format("0x%08" PRIx32, flags) << "\n"; outs() << " reserved1 " << reserved1; if (section_type == MachO::S_SYMBOL_STUBS || section_type == MachO::S_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS || section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS || section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS) outs() << " (index into indirect symbol table)\n"; else outs() << "\n"; outs() << " reserved2 " << reserved2; if (section_type == MachO::S_SYMBOL_STUBS) outs() << " (size of stubs)\n"; else outs() << "\n"; } static void PrintSymtabLoadCommand(MachO::symtab_command st, uint32_t cputype, uint32_t object_size) { outs() << " cmd LC_SYMTAB\n"; outs() << " cmdsize " << st.cmdsize; if (st.cmdsize != sizeof(struct MachO::symtab_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " symoff " << st.symoff; if (st.symoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nsyms " << st.nsyms; uint64_t big_size; if (cputype & MachO::CPU_ARCH_ABI64) { big_size = st.nsyms; big_size *= sizeof(struct MachO::nlist_64); big_size += st.symoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } else { big_size = st.nsyms; big_size *= sizeof(struct MachO::nlist); big_size += st.symoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } outs() << " stroff " << st.stroff; if (st.stroff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " strsize " << st.strsize; big_size = st.stroff; big_size += st.strsize; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } static void PrintDysymtabLoadCommand(MachO::dysymtab_command dyst, uint32_t nsyms, uint32_t object_size, uint32_t cputype) { outs() << " cmd LC_DYSYMTAB\n"; outs() << " cmdsize " << dyst.cmdsize; if (dyst.cmdsize != sizeof(struct MachO::dysymtab_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " ilocalsym " << dyst.ilocalsym; if (dyst.ilocalsym > nsyms) outs() << " (greater than the number of symbols)\n"; else outs() << "\n"; outs() << " nlocalsym " << dyst.nlocalsym; uint64_t big_size; big_size = dyst.ilocalsym; big_size += dyst.nlocalsym; if (big_size > nsyms) outs() << " (past the end of the symbol table)\n"; else outs() << "\n"; outs() << " iextdefsym " << dyst.iextdefsym; if (dyst.iextdefsym > nsyms) outs() << " (greater than the number of symbols)\n"; else outs() << "\n"; outs() << " nextdefsym " << dyst.nextdefsym; big_size = dyst.iextdefsym; big_size += dyst.nextdefsym; if (big_size > nsyms) outs() << " (past the end of the symbol table)\n"; else outs() << "\n"; outs() << " iundefsym " << dyst.iundefsym; if (dyst.iundefsym > nsyms) outs() << " (greater than the number of symbols)\n"; else outs() << "\n"; outs() << " nundefsym " << dyst.nundefsym; big_size = dyst.iundefsym; big_size += dyst.nundefsym; if (big_size > nsyms) outs() << " (past the end of the symbol table)\n"; else outs() << "\n"; outs() << " tocoff " << dyst.tocoff; if (dyst.tocoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " ntoc " << dyst.ntoc; big_size = dyst.ntoc; big_size *= sizeof(struct MachO::dylib_table_of_contents); big_size += dyst.tocoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " modtaboff " << dyst.modtaboff; if (dyst.modtaboff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nmodtab " << dyst.nmodtab; uint64_t modtabend; if (cputype & MachO::CPU_ARCH_ABI64) { modtabend = dyst.nmodtab; modtabend *= sizeof(struct MachO::dylib_module_64); modtabend += dyst.modtaboff; } else { modtabend = dyst.nmodtab; modtabend *= sizeof(struct MachO::dylib_module); modtabend += dyst.modtaboff; } if (modtabend > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " extrefsymoff " << dyst.extrefsymoff; if (dyst.extrefsymoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nextrefsyms " << dyst.nextrefsyms; big_size = dyst.nextrefsyms; big_size *= sizeof(struct MachO::dylib_reference); big_size += dyst.extrefsymoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " indirectsymoff " << dyst.indirectsymoff; if (dyst.indirectsymoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nindirectsyms " << dyst.nindirectsyms; big_size = dyst.nindirectsyms; big_size *= sizeof(uint32_t); big_size += dyst.indirectsymoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " extreloff " << dyst.extreloff; if (dyst.extreloff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nextrel " << dyst.nextrel; big_size = dyst.nextrel; big_size *= sizeof(struct MachO::relocation_info); big_size += dyst.extreloff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " locreloff " << dyst.locreloff; if (dyst.locreloff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nlocrel " << dyst.nlocrel; big_size = dyst.nlocrel; big_size *= sizeof(struct MachO::relocation_info); big_size += dyst.locreloff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } static void PrintLoadCommands(const MachOObjectFile *Obj, uint32_t ncmds, uint32_t filetype, uint32_t cputype, bool verbose) { StringRef Buf = Obj->getData(); MachOObjectFile::LoadCommandInfo Command = Obj->getFirstLoadCommandInfo(); for (unsigned i = 0;; ++i) { outs() << "Load command " << i << "\n"; if (Command.C.cmd == MachO::LC_SEGMENT) { MachO::segment_command SLC = Obj->getSegmentLoadCommand(Command); const char *sg_segname = SLC.segname; PrintSegmentCommand(SLC.cmd, SLC.cmdsize, SLC.segname, SLC.vmaddr, SLC.vmsize, SLC.fileoff, SLC.filesize, SLC.maxprot, SLC.initprot, SLC.nsects, SLC.flags, Buf.size(), verbose); for (unsigned j = 0; j < SLC.nsects; j++) { MachO::section_64 S = Obj->getSection64(Command, j); PrintSection(S.sectname, S.segname, S.addr, S.size, S.offset, S.align, S.reloff, S.nreloc, S.flags, S.reserved1, S.reserved2, SLC.cmd, sg_segname, filetype, Buf.size(), verbose); } } else if (Command.C.cmd == MachO::LC_SEGMENT_64) { MachO::segment_command_64 SLC_64 = Obj->getSegment64LoadCommand(Command); const char *sg_segname = SLC_64.segname; PrintSegmentCommand(SLC_64.cmd, SLC_64.cmdsize, SLC_64.segname, SLC_64.vmaddr, SLC_64.vmsize, SLC_64.fileoff, SLC_64.filesize, SLC_64.maxprot, SLC_64.initprot, SLC_64.nsects, SLC_64.flags, Buf.size(), verbose); for (unsigned j = 0; j < SLC_64.nsects; j++) { MachO::section_64 S_64 = Obj->getSection64(Command, j); PrintSection(S_64.sectname, S_64.segname, S_64.addr, S_64.size, S_64.offset, S_64.align, S_64.reloff, S_64.nreloc, S_64.flags, S_64.reserved1, S_64.reserved2, SLC_64.cmd, sg_segname, filetype, Buf.size(), verbose); } } else if (Command.C.cmd == MachO::LC_SYMTAB) { MachO::symtab_command Symtab = Obj->getSymtabLoadCommand(); PrintSymtabLoadCommand(Symtab, cputype, Buf.size()); } else if (Command.C.cmd == MachO::LC_DYSYMTAB) { MachO::dysymtab_command Dysymtab = Obj->getDysymtabLoadCommand(); MachO::symtab_command Symtab = Obj->getSymtabLoadCommand(); PrintDysymtabLoadCommand(Dysymtab, Symtab.nsyms, Buf.size(), cputype); } else { outs() << " cmd ?(" << format("0x%08" PRIx32, Command.C.cmd) << ")\n"; outs() << " cmdsize " << Command.C.cmdsize << "\n"; // TODO: get and print the raw bytes of the load command. } // TODO: print all the other kinds of load commands. if (i == ncmds - 1) break; else Command = Obj->getNextLoadCommandInfo(Command); } } static void getAndPrintMachHeader(const MachOObjectFile *Obj, uint32_t &ncmds, uint32_t &filetype, uint32_t &cputype, bool verbose) { if (Obj->is64Bit()) { MachO::mach_header_64 H_64; H_64 = Obj->getHeader64(); PrintMachHeader(H_64.magic, H_64.cputype, H_64.cpusubtype, H_64.filetype, H_64.ncmds, H_64.sizeofcmds, H_64.flags, verbose); ncmds = H_64.ncmds; filetype = H_64.filetype; cputype = H_64.cputype; } else { MachO::mach_header H; H = Obj->getHeader(); PrintMachHeader(H.magic, H.cputype, H.cpusubtype, H.filetype, H.ncmds, H.sizeofcmds, H.flags, verbose); ncmds = H.ncmds; filetype = H.filetype; cputype = H.cputype; } } void llvm::printMachOFileHeader(const object::ObjectFile *Obj) { const MachOObjectFile *file = dyn_cast(Obj); uint32_t ncmds = 0; uint32_t filetype = 0; uint32_t cputype = 0; getAndPrintMachHeader(file, ncmds, filetype, cputype, true); PrintLoadCommands(file, ncmds, filetype, cputype, true); } //===----------------------------------------------------------------------===// // export trie dumping //===----------------------------------------------------------------------===// void llvm::printMachOExportsTrie(const object::MachOObjectFile *Obj) { for (const llvm::object::ExportEntry &entry : Obj->exports()) { uint64_t Flags = entry.flags(); bool ReExport = (Flags & MachO::EXPORT_SYMBOL_FLAGS_REEXPORT); bool WeakDef = (Flags & MachO::EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION); bool ThreadLocal = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) == MachO::EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL); bool Abs = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) == MachO::EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE); bool Resolver = (Flags & MachO::EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER); if (ReExport) outs() << "[re-export] "; else outs() << format("0x%08llX ", entry.address()); // FIXME:add in base address outs() << entry.name(); if (WeakDef || ThreadLocal || Resolver || Abs) { bool needComma = false; printf(" ["); if (WeakDef) { outs() << "weak_def"; needComma = true; } if (ThreadLocal) { if (needComma) outs() << ", "; outs() << "per-thread"; needComma = true; } if (Abs) { if (needComma) outs() << ", "; outs() << "absolute"; needComma = true; } if (Resolver) { if (needComma) outs() << ", "; outs() << format("resolver=0x%08llX", entry.other()); needComma = true; } outs() << "]"; } if (ReExport) { StringRef DylibName = "unknown"; int ordinal = entry.other() - 1; Obj->getLibraryShortNameByIndex(ordinal, DylibName); if (entry.otherName().empty()) outs() << " (from " << DylibName << ")"; else outs() << " (" << entry.otherName() << " from " << DylibName << ")"; } outs() << "\n"; } }