OpenAMP Framework User Reference

© 2010-2014 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT LICENSE RIGHTS: The software and documentation were developed entirely at
private expense and are commercial computer software and commercial computer software
documentation within the meaning of the applicable acquisition regulations. Accordingly, pursuant to
FAR 48 CFR 12.212 and DFARS 48 CFR 227.7202, use, duplication and disclosure by or for the U.S.
Government or a U.S. Government subcontractor is subject solely to the terms and conditions set forth in
the license agreement provided with the software, except for provisions which are contrary to applicable
mandatory federal laws.

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other parties. No one is permitted to use these Marks without the prior
written consent of Mentor Graphics or the owner of the Mark, as applicable. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/trademarks.

The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of
Linus Torvalds, owner of the mark on a world-wide basis.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777
Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210
Website: www.mentor.com
SupportNet: supportnet.mentor.com/

Send Feedback on Documentation: supportnet.mentor.com/doc_feedback form

http://www.mentor.com/trademarks
http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form

Table of Contents

Chapter 1
OpenAMP Framework OVErVIEeW oo e e e e 7
Abbreviations, Terminology, and Definitions. 7
0= = T P 8
Componentsand Capabilities 8
Chapter 2
System-Wide Considerationsfor Using OpenAMP Framework 11
Chapter 3
TheremoteproC CoOmMPONENtttt ettt 15
O] 00 o £ 15
Creation and Boot of Remote Firmware Using remoteproccovvuven... 18
Defining the Resource Table and Creating the RemoteELF Image 18
Making Remote Firmware AccessibletotheMaster 19
remoteproC APl USage.o 20
remoteproC APl FUNCLIONS. o e et e e 24
FEMOLEPIOC INiL. . o et et e 25
remMOtEProC_deinit.o e 27
FeMOtEPIOC DOOLo 28
remoteproC_SNULAOWN. oottt e e e e e 29
FemMOtEPrOC FESOUNCE NIt . .. oottt et e ettt e et 30
remoteproc resource deinit i e et 32
remoteproc Configurable Options. i e 32
Chapter 4
The RPMSg COmMpPONeNntttt e e et e et et e 35
RPMsSg Channel 35
RPMSO ENAPOINt 35
RPMSg HEadEr o 36
OpenAMP Framework RPMSg DIiVer e et 37
RPMSO API USa0E. . . .ottt ittt e e e e 38
RPMsg API Usage From the Master SoftwareContext. 38
RPMsg APl Usage From Remote SoftwareContext 40
RPMSO API FUNCLIONS. . . . oot e e e e e e 42
FPMISY SN . . ottt e 43
TPMSY SENOLO . . .ot 44
rpmsg_send offchannel 46
[PPSO Y SN, . . ottt 438
FPMSY_LrYSENOLOo 49
rpmsg_trysendoffchannel 51
rPMSY_get buffer_Size 53

OpemAMP Framework User Reference, 3

Table of Contents

FPMSY_CrEalE Bto 54
FPMSY_AEStrOY Otot 55
rPMSg_ChNl_Cbh L. .. 56
[PPSO IX Ch b . 57
RPMsg Configurable Options.o 57
Chapter 5
ProxXy INfrastrUCture. et 59
Proxy Infrastructure OVEIVIEW o e e e 59
Usage of Proxy Infrastructureon Master. e 60
Usage of Proxy Infrastructure oOn Remote.t 61
Chapter 6
OpenAMP Framework Porting Guidelines. i, 63
Platform Porting OVErVIEWo e e e 64
Platform-SpecifiC APIS . .. o e 65
Configuration POrtingot 68
ENvironment POrtingot 68
Appendix A
Virtio Conceptsand RPMSgUSage. oo ittt 71

Third-Party Information
Mentor GraphicsBSD License, v1.0

4 OpemAMP Framework User Reference,

List of Figures

Figure 1-1. Managing Remote Processes with the OpenAMP framework 10
Figure 2-1. System Topology TYPESo vttt e e e e e 12
Figure 2-2. Determining the Memory Layoutinan AMP System 13
Figure 3-1. remoteproc Conceptual Diagram, 16
Figure 3-2. The Remote Firmware Creation Process., 18
Figure4-1. RPMSg ENdpOintSot e e 36
Figure 4-2. RPMsg Driver COMPONENtSo vt ettt e e 37
Figure5-1. The Proxy Infrastructure. e 60
Figure A-1. Virtio CONCEPLSot i ittt e e e 71
Figure A-2. TheVirtqueue and VIingot e 73

OpemAMP Framework User Reference, 5

List of Tables

Table 1-1. Abbreviationsand Terminologyc.c.oiiiiiiiann. 7
Table 6-1. OpenAMP Framework Porting Layers ..., 63
Table6-2. OpenAMPHIL Files e 63
Table6-3. HIL FIleChanges e 64

Table 6-4. Environment Porting APIs

OpemAMP Framework User Reference,

Chapter 1
OpenAMP Framework Overview

Open Asymmetric Multi Processing (OpenAMP) Framework provides software components
that enable development of software applications for Asymmetric Multiprocessing (AMP)
systems.

Abbreviations, Terminology, and Definitions

The following abbreviations and terminology appear throughout the document.

Table 1-1. Abbreviations and Terminology

Abbreviations and Terminology Definition

OpenAMP Framework Open Asymmetric Multi Processing Framework

AMP Asymmetric Multi Processing

LCM Life Cycle Management

IPC Inter Processor Communication

RTOS Real Time Operating System

BM or BME Bare Metal or Bare Metal Environment

HIL Hardware Interface Layer

[Pl I nter-Processor Interrupt

Master The CPU/software context that comes up first
and manages other CPUs/software contexts
present in the AMP system.

Remote The CPU/software context that is brought up by

the master CPUs/software context present in the
AMP system.

Master processor

A Master CPU in amulticore SoC.

Remote processor

A Remote CPU in amulticore SoC.

Master software context

Any software context that can run on a master
processor. This software context could be Linux
or other OS, RTOS, or bare metal environment
based.

OpemAMP Framework User Reference,

OpenAMP Framework Overview
Overview

Table 1-1. Abbreviations and Terminology (cont.)

Remote software context Any software context that can run on aremote
processor. This software context could be Linux
or other OS, RTOS, or bare metal environment
based.

Environment or software environment | Refers to the underlying software environment
which could be OS, RTOS, or bare metal based.

Overview

An AMP system is characterized by multiple homogeneous and/or heterogeneous processing
cores (for example, the Texas Instruments TI OMAP (System on Chips) SoCs have dua ARM
Cortex A15, dual ARM Cortex M4, and C64 DSP cores). These corestypically run independent
instances of homogeneous and/or heterogeneous software environments, such as Linux-,
RTOS, and Bare Metal that work together to achieve the design goals of the end application.
While Symmetric Multiprocessing (SMP) operating systems allow load balancing of
application workload across homogeneous processors present in such AMP SoCs, asymmetric
multiprocessing design paradigms are required to leverage parallelism from the heterogeneous
cores present in the system.

Increasingly, today’ s multicore applications require heterogeneous processing power.
Heterogeneous multicore SoCs often have one or more general purpose CPUs (for example,
dual ARM Cortex A9 cores on Xilinx Zynq) with DSPs and/or smaller CPUs and/or soft IP (on
SoCs such as Xilinx Zynq APSOC). These specialized CPUs, as compared to the general
purpose CPUs, are typicallyt dedicated for demand-driven offload of specialized application
functionality to achieve maximum system performance. Systems developed using these types of
SoCs, characterized by heterogeneity in both hardware and software, are generally termed as
AMP systems.

In AMP systems, it istypical for software running on a master to bring up software/firmware
contexts on a remote on a demand-driven basis and communicate with them using I1PC
mechanisms to offload work during run time. The participating master and remote processors
may be homogeneous or heterogeneous in nature.

A master is defined as the CPU/software that is booted first and is responsible for managing
other CPUs and their software contexts present in an AMP system. A remote is defined as the
CPU/software context managed by the master software context present.

Components and Capabilities

The OpenAMP Framework implementation provides the necessary API infrastructure required
to develop AMP systems.

1. Linux® is aregistered trademark of Linus Torvaldsin the U.S. and other countries.

8 OpemAMP Framework User Reference,

OpenAMP Framework Overview
Components and Capabilities

The key components and capabilities provided by the OpenAMP Framework include:

® remoteproc — This component allows for the Life Cycle Management (LCM) of
remote processors from software running on a master processor. The remoteproc API
provided by the OpenAMP Framework is compliant with the remoteproc infrastructure
present in upstream Linux 3.4.x kernel onward. The Linux remoteproc infrastructure
and API was first implemented by Texas Instruments.

* RPMsg-—The RPMsg APl enables Inter Processor Communications (IPC) between
independent software contexts running on homogeneous or heterogenous cores present
inan AMP system. This API is compliant with the RPMsg bus infrastructure present in
upstream Linux 3.4.x kernel onward. The Linux RPMsg bus and API infrastructure was
first implemented by Texas Instruments.

Texas Instruments’ remoteproc and RPMsg infrastructure available in the upstream Linux
kernel today enable the Linux applications running on a master processor to manage the life
cycle of remote processor/firmware and perform |PC with them. However, there is no open-
source API/software available that provides similar functionality and interfaces for other
possible software contexts (RTOS- or bare metal-based applications) running on the remote
processor to communicate with the Linux master. Also, AMP applications may require RTOS-
or bare metal-based applications to run on the master processor and be able to manage and
communicate with various software environments (RTOS, bare metal, or even Linux) on the
remote processor.

The OpenAMP Framework fills these gaps. It provides the required LCM and IPC
infrastructure from the RTOS and bare metal environments with the API conformity and
functional symmetry available in the upstream Linux kernel. Asin upstream Linux, the
OpenAMP Framework's remoteproc and RPM sg infrastructure uses virtio as the transport
layer/abstraction.

Figure 1-1 shows the various software environments/configurations supported by the
OpenAMP Framework. As shown in thisillustration, the OpenAMP Framework can be used
with RTOS or bare metal contexts on aremote processor to communicate with Linux
applications (in kernel space or user space) or other RTOS/bare metal-based applications
running on the master processor through the remoteproc and RPM sg components.

The OpenAMP Framework also serves as a stand-alone library that enables RTOS and bare
metal applications on amaster processor to manage the life cycle of remote processor/firmware
and communicate with them using RPM sg.

OpemAMP Framework User Reference, 9

OpenAMP Framework Overview
Components and Capabilities

Figure 1-1. Managing Remote Processes with the OpenAMP framework

rematepnoc remoteproc FEMMObEproe
r /-"r\ 1
Li PME] RTOS or RTOSor |Pmsg Linux RTOSor [|P™E]| RTOSor
Inux Bare Metal Bare metal o Bare metal "l Bare Metal
.~ a — —
remateproe e, femoteproc e
(L sromss DpensMP OpensMP : frpmsg] OpensMP OpenaMP |
e S - N .
Master Remote Master Remote Master Remote
Core Core) Core) L Core Core Core
Master Remote Master Remote Master Remote

In addition to providing a software framework/API for LCM and IPC, the OpenAMP
Framework supplies a proxy infrastructure that provides a transparent interface to remote
contexts from Linux user space applications running on the master processor. The proxy
application hides all the logisticsinvolved in bringing-up the remote software context and its
shutdown sequence. In addition, it supports RPM sg-based Remote Procedure Calls (RPCs)
from remote context. A retargeting API available from the remote context allows C library
system callssuchas” _open”," close"," read", and"_write" to be forwarded to the proxy
application on the master for service.

For more information on this infrastructure and its capabilities, see Figure 5-1 on page 60.

In addition to the core capabilities, the OpenAMP Framework contains abstraction layers
(porting layer) for migration to different software environments and new target
processors/platforms

10 OpemAMP Framework User Reference,

Chapter 2
System-Wide Considerations for Using
OpenAMP Framework

AMP systems could either be supervised (using a hypervisor to enforce isolation and resource
virtualization) or unsupervised (modifying each participating software context to ensure best-

effort isolation and cooperative usage of shared resources). With unsupervised AMP systems,

there is no strict isolation or supervision of shared resource usage.

Take the following system-wide considerations into account to develop unsupervised AMP
systems using the OpenAMP framework:

Note
Usage of OpenAMP Framework for supervised AMP systemsis not covered in this

document.

® Determine system architecture/topol ogy

The OpenAMP framework implicitly assumes master-slave (remote) system
architecture. The topology for the master-slave (remote) architecture should be
determined; either star, chain, or a combination. Figure 2-1 shows some simple use
cases.

o Casel— A single master software context on processor 1 controlling life cycle and
communicating with two independent remote software contexts on processors 2 and
3, in star topology,

o Case2 — Master software context 1 on processor 1 brings up remote software
context 1 on processor 2. This context acts as master software context 2 for remote
software context 2 on processor 3, in chain topology.

OpemAMP Framework User Reference, 11

System-Wide Considerations for Using OpenAMP Framework

Figure 2-1. System Topology Types

Master managing two remote contexts in star topology Two master contexts managing

Two remote contexts in chain topology
@ Processor 2
Frocessor 3 i
Pracessor 1

Processor 1 Processor 2 Processor 3

Determine system and 1O resource partitioning

Various OSs, RTOSs, and bare metal environments have their own preferred
mechanisms for discovering platform-specific information such as available RAM
memory, available peripheral 10 resources (their memory-mapped 10 region), clocks,
interrupt resources, and so forth.

For example, the Linux kernel uses device trees and bare metal environment typically
define platform-specific device information in headers or dedicated data structures that
would be compiled into the application.

To ensure mutually-exclusive usage of unshared system (memory) and 10 resources
(peripherals) between the participating software environmentsin an AMP system, you
arerequired to partition the resources so that each software environment is only aware of
the resources that are available to it. Thiswould involve, for example, removing unused
resource nodes and modifying the available memory definitions from the device tree
sources, platform definition files, headers, and so forth, to ensure best-effort partitioning
of system resources.

Determine memory layout

For the purpose of this description, assume you are using the Zyng SOC used in AMP
system architecture with SMP Linux running on the dual Cortex A9 cores, and aRTOS
on one instance of Microblaze soft core, and bare metal on another instance of
Microblaze soft core in the fabric.

To develop an AMP system using the OpenAMP Framework, it isimportant to
determine the memory regions that would be owned and shared between each of the
participating software environmentsin the AMP system. For example, in aconfiguration
such as this, the memory address ranges owned (for code/data/bss/heap) by each
participating OS or bare metal context, and the shared memory regions to be used by
IPC mechanisms (virtio rings and memory for data buffers) needs to be determined.
Memory alignment requirements should be taken into consideration while making this
determination.

12

OpemAMP Framework User Reference,

System-Wide Considerations for Using OpenAMP Framework

Figure 2-2 illustrates the memory layout for Linux master/Nucleus RTOS-based remote
application, and Nucleus RTOS-based master/bare metal-based remote application in
chain configuration. After the memory layout is determined, update the platform
specific data accessible using the Hardware Interface Layer (HIL) to reflect the memory
layout of choice.

Figure 2-2. Determining the Memory Layout in an AMP System

Application I
Lirux
rprad Platfarm rpmisg kernal
driver driver | Code/Data/BSS/Heap
FEMOLEPro Fpmag |
Linux kernel T | Nucleus
Code/Data/BSS/Heap
Bare metal
Code/Data/B55/Heap
Ty and RX vrings
Application | Buffer memory Application
FEmMOLEpIoe fpmag I—]- rpmig remoteproe
Tx and Rx vrings -t
B tal
PUCS AR | Buffer memonry s

® Ensure cooperative usage of shared resources between software environmentsin the
AMP system

For the purpose of this discussion, assume you are using a Linux master/bare metal -
based remote system configuration.

The interrupt controller istypically a shared resource in multicore SoCs. It is genera
practice for OSsto reset and initialize (clear and disable al interrupts) the interrupt
controller during their boot sequence given the general assumption that the OS would
own the entire system. Thiswill not work in AMP systems; if an OS in remote software
context resets and initializes the interrupt controller, it would catastrophically break the
master software contexts run time since the master context could already be using the
interrupt controller to manage its interrupt resources. Therefore, remote software
environments should be patched such that they cooperatively use the interrupt controller
(for example, do not reset/clear/disable all interrupts blindly but initialize only the
interrupts that belong to the remote context). Ensure the timer peripheral used by the

OpemAMP Framework User Reference, 13

System-Wide Considerations for Using OpenAMP Framework

remote OS/RTOS context is different from the one used by the master software context
so the individual run-times do not interfere with each other.

14 OpemAMP Framework User Reference,

Chapter 3
The remoteproc Component

The remoteproc APIs provided by the OpenAMP Framework allow software applications
running on the master processor to manage the life cycle of aremote processor and its software
context. A complete description of the remoteproc workflow and APIs are provided.

Concepts

The remoteproc APIs provide life cycle management of remote processors by performing five
essential functions.

® Allow the master software applications to load the code and data sections of the remote
firmware image to appropriate locations in memory for in-place execution

® Release the remote processor from reset to start execution of the remote firmware

® Establish RPMsg communication channels for run-time communications with the
remote context

¢ Shut down the remote software context and processor when its services are not needed

®* Provide an API for use in the remote application context that allows the remote
applications to seamlessly initialize the remoteproc system on the remote side and
establish communication channels with the master context

Note

D The remoteproc infrastructure provided by the OpenAMP framework is for use with
RTOS and bare metal environments only in master or remote configurations. If the AMP
use case requires Linux OS as the master, use the upstream Linux remoteproc
infrastructure. Refer to Figure 1-1 on page 10.

The remoteproc component currently supports Executable and Linkable Format (ELF) for the
remote firmware; however, the framework can be easily extended to support other image
formats. The remote firmware image publishes the system resources it requires to remoteproc
on the master using a statically linked resource table data structure. The resource table data
structure contains entries that define the system resources required by the remote firmware (for
example, contiguous memory carve-outs required by remote firmware’ s code and data
sections), and features/functionality supported by the remote firmware (like virtio devices and
their configuration information required for RPM sg-based | PC).

OpemAMP Framework User Reference, 15

The remoteproc Component
Concepts

The remoteproc APIs on the master processor use the information published through the
firmware resource table to allocate appropriate system resources and to create virtio devices for
I PC with the remote software context. Figure 3-1 illustrates the resource table usage.

Figure 3-1. remoteproc Conceptual Diagram

Master /—-\ \ Remote
— Application Firmware
Application calls ti f ~
remoteproc_init API — creation
W /% BM or RTOS boot sequence
r a
Decode firmware elf image e, \ ~
and obtain resource table RTOS or BM Jy
i ™\
~ v / Application calls
- \ remoteproc_resource_init
Carve-out memory for API
: “ v
firmware txt and data Tsedto publish ¥
~ 4 remote’s ' ™
* resource 5
4 N requirements to Creates memory mappings
Create rpmsg/rproc (Linux) libopen_amp.a master based on rsc table contents
VirtlO device on master for \ v,
comms with remote *

e &
Create rpmsg VirtlO device
and rpmsg channels for

N
(Appllcatlon calls > remote
t boot API
sz erC S Resource Table % d

Resource Table

Memory /carve-out for firmware code

Load txt and data for

Advertise remote channels
remote firmware

to master

s’

rpmsg virtio device, TX and RX
VirgQueue info

Start remote processor] \ /
< rpmsg comms >

When the application on the master calls to the remoteproc_init AP, it performs the following:

® Causes remoteproc to fetch the firmware ELF image and decode it
® Obtainsthe resource table and parses it to handle entries

® Carvesout memory for remote firmware before creating virtio devices for
communications with remote context

The master application then performs the following actions:

1. Callstheremoteproc_boot API to boot the remote context
2. Locates the code and data sections of the remote firmware image

3. Releases the remote processor to start execution of the remote firmware.

16 OpemAMP Framework User Reference,

The remoteproc Component
Concepts

After the remote application is running on the remote processor, the remote application callsthe
remoteproc_resource _init API to create the virtio/RPM sg devices required for IPC with the
master context. Invocation of this API causes remoteproc on the remote context to use the
rpmsg name service announcement feature to advertise the rpmsg channels served by the remote
application.

The master receives the advertisement messages and performs the following tasks:

1. Invokesthe channel created callback registered by the master application
2. Responds to remote context with a name service acknowledgement message

After the acknowledgement is received from master, remoteproc on the remote side invokes the
RPMsg channel-created callback registered by the remote application. The RPMsg channel is
established at this point. All RPMsg APIs can be used subsequently on both sides for run time
communications between the master and remote software contexts.

To shut down the remote processor/firmware, the remoteproc_shutdown APl isto be used from
the master context. Invoking this API with the desired remoteproc instance handle
asynchronously shuts down the remote processor. Using this API directly does not allow for
graceful shutdown of remote context.

For gracefully bringing down the remote context, the following steps can be performed:

1. The master application sends an application-specific shutdown message to the remote
context

2. Theremote application cleans up application resources, sends a shutdown acknowledge
to master, and invokes remoteproc_resource_deinit API to deinitialize remoteproc on
the remote side.

3. On receiving the shutdown acknowledge message, the master application invokes the
remoteproc_shutdown API to shut down the remote processor and deinitialize
remoteproc using remoteproc_deinit on its side.

OpemAMP Framework User Reference, 17

The remoteproc Component
Creation and Boot of Remote Firmware Using remoteproc

Creation and Boot of Remote Firmware Using
remoteproc

Y ou can create and boot remote firmware for Linux, RTOS, and bare metal-based remote
applications using remoteproc. The following procedure provides general steps for creating and
executing remote firmware on a supported platform.

Figure 3-2 illustrates the remote firmware creation process.

Figure 3-2. The Remote Firmware Creation Process

Remote firmware creation process for RTOS or Baremetal
as remote firmware

Resource Table “
1

v

[Application]'ﬂ:‘[RTOS or BM lib]4}[openamp.lib]

Remote
firmware
ELF image

Remote firmware creation process for Linux as remote
firmware

Workflow tocreate
bootable Linux FIT image as

supported by PetaLinux
Image

$ Linux FIT image
Tree

DTB I >

Bootstrap +
libFDT +

ELF image consists

= Linux FIT image

= Resource table

= Bootstrap + libFDT + zlib

Linux kernel +

initramfs

Create
Flattened

Compile
and link

Provided

Zlib+
Resource table thi

OpenAMP

Defining the Resource Table and Creating the
Remote ELF Image

Creating aremote image through remoteproc begins by defining the resource table and creating
the remote ELF image.
Procedure

1. Definetheresourcetable structure in the application. The resource table must minimally
contain carve-out and VirtlO device information for IPC.

18 OpemAMP Framework User Reference,

The remoteproc Component
Creation and Boot of Remote Firmware Using remoteproc

As an example, please refer to the resource table defined in the bare metal remote echo
test application at <open_amp>/apps/tests/remote/baremetal/echo_test/rsc_table.c. The
resource table contains entries for memory carve-out and virtio device resources. The
memory carve-out entry contains info like firmware ELF image start address and size.
The virtio device resource contains virtio device features, vring addresses, size, and
alignment information. The resource table data structure is placed in the resource table
section of remote firmware ELF image using compiler directives.

2. After defining the resource table and creating the OpenAMP Framework library, link the
remote application with the RTOS or bare metal library and the OpenAMP Framework
library to create a remote firmware ELF image capable of in-place execution from its
pre-determined memory region. (The pre-determined memory region is determined
according to guidelines provided by section.)

3. For remote Linux, step 1 describes modifications to be made to the resource table.
Figure 3-2 on page 18 shows the high level stepsinvolved in creation of the remote
Linux firmware image. The flow leverages supported Petalinux workflows to create a
Linux FIT image that encapsul ates the Linux kernel image, Device Tree Blob (DTB),
and initramfs.

The user applications and kernel drivers required on the remote Linux context could be
built into the initramfs using supported Petalinux workflows or moved to the remote
root file system as needed after boot. The FIT imageis linked along with a boot strap
package provided within the OpenAMP Framework. The bootstrap implements the
functionality required to decode the FIT image (using libfdt), uncompress the Linux
kernel image (using zlib) and locate the kernel image, initramfs, and DTB in RAM. It
can also set up the ARM general purpose registers with arguments to boot Linux, and
transfer control to the Linux entry point.

Making Remote Firmware Accessible to the Master

After creating the remote firmware's ELF image, you need to make it accessible to remoteproc
in the master context.
Procedure

1. If the RTOS- or bare metal-based master software context has afile system, place this
firmware ELF image in the file system.

2. Implement the get_firmware API in config.c (in the OPENAMP/porting/config/
directory) to fetch the remote firmware image by name from the file system.

3. For AMP use cases with Linux as master, place the firmware application in the root file
system for use by Linux remoteproc platform drivers.

OpemAMP Framework User Reference, 19

The remoteproc Component
remoteproc APl Usage

In the OpenAMP Framework reference port to Zynq ZC702EVK, the bare metal library used by
the master software applications do not include a file system. Therefore, the remote imageis
packaged along with the master ELF image. The remote ELF image is converted to an object
file using “objcpy” available in the “GCC bin-utils’. This object fileis further linked with the
master ELF image.

The remoteproc component on the master uses the start and end symbols from the remote object
filesto get the remote EL F image base and size. Since the logistics used by the master to obtain
aremote firmware image is deployment specific, the config_get_firmware API in config.c of
the OPENAMP/porting/config/ directory implements all the logistics described in this
procedure to enable the OpenAMP Framework remoteproc on the master to obtain the remote
firmware image.

Y ou can now use the remoteproc APIs.

remoteproc APl Usage

The following sections assumes a simple application for description.

® The application software on the master processor uses remoteproc to load and execute a
remote application (remote firmware) on the remote processor

® After the remote application is running, an rpmsg channel is established between the
remote and master applications

* TheRPMsg APIsare used for IPC

This simple example should serve as areference for most typical use cases — where the master
software context would bring up the remote context, establish communication channel with it,
and start the 1PC to offload the computation to the remote context.

Using remoteproc APIs From the Master Software
Context

Using OpenAMP framework on a software application on the master processor involves
bringing up aremote software context and communicating with it. The following steps describe
the general procedure.

Procedure

1. Initialize the remoteproc using the remoteproc_init API and provide callback functions
for rpmsg channel creation, rpmsg channel destruction, and rpmsg rx callbacks.

2. Boot the image using remoteproc_boot API.

3. Provide implementation of rpmsg_channel _created, rpmsg_channel _destroyed, and
rpmsg_rx_cb functions. The functions are listed as follows:

20 OpemAMP Framework User Reference,

The remoteproc Component
remoteproc APl Usage

void rpmsg_channel_ created (struct rpmsg_ channel *rp_chnl)

void rpmsg_channel_destroyed(struct rpmsg_channel *rp_chnl)

void rpmsg_rx_cb(struct rpmsg_channel *rp_chnl, void *data, int
len, void * priv, unsigned long src)

When using the RPM SG framework from the master software context, the application calls
remoteproc _init API to bring up the remote software context. When the remote application
boots up on the remote processor, acall to remoteproc_resource_init API initializes remoteproc
and rpmsg on the remote side, triggering the RPM SG framework on the remote side to send the
rpmsg name service message to advertise itself to the master context.

This announcement causes the RPM SG framework on the master to call the rpmsg channel -
created callback registered during initialization. The application is notified from the channel-
created callback (using methods that make send for the environment) of the availability of alive
rpmsg channel to remote context. The application isfreeto use rpmsg APIsfor IPC with remote
context from this point onward.

Examples

The code snippet that follows showcases a sample master application that brings up aremote
application that echoes all incoming messages back to the sender.

Example 3-1. Master Application With Echoes to Sender

#include "open_amp.h"

/* Application provided callbacks */

void rpmsg_channel_created(struct rpmsg channel *rp_chnl);

void rpmsg_channel_deleted(struct rpmsg channel *rp_chnl);

void rpmsg_rx_cb_t (struct rpmsg_channel *rp_chnl , void *data ,
int len , void * priv , unsigned long src);

/* Globals */
char remote_fw _name[]= "remote_firmware";

int main(int argc, void *argv) {

struct remote_proc *proc;
int idx ,1,ret;

/* Initialize Remoteproc */
ret = remoteproc_init((void *) remote_fw_name, rpmsg_channel_created,
rpmsg_channel_deleted, rpmsg rx_cb_t, &proc);

/* Boot remote firmware */
if(!'ret && (proc))
ret = remoteproc_boot (proc) ;

if (!ret)
{
/* Block waiting for invocation of rpmsg channel created callback.
*/
/* In RTOS environments control should block here
on a blocking primitive, for example, semaphore, which would be

OpemAMP Framework User Reference, 21

The remoteproc Component
remoteproc APl Usage

released by the rpmsg channel created callback */

/* In bare metal environments control should block here
For example, by spinning on a flag to be released by the rpmsg
channel created callback */

wait()/* This is pseudo-code */

/* rpmsg APIs can be used for IPC from this point onward */
}

/* To shut down the remote processor

asynchronously and de-initialize the system */
remoteproc_shutdown (proc) ;
remoteproc_deinit (proc) ;

}
void rpmsg_channel_ created(struct rpmsg channel *rp_chnl) {

/* Release the context blocked on rpmsg channel creation callback
invocation */

}
void rpmsg_channel_deleted(struct rpmsg channel *rp_chnl) {

/* Clean up application resources used by rpmsg */

}

void rpmsg_rx_cb_t (struct rpmsg_channel *rp_chnl, void *data, int len,
void * priv, unsigned long src) {

/* Copy received data to application buffer */
/* Release the context blocked on rpmsg rx callback invocation */

Using remoteproc APIs From Remote Software Context

Software applications using the OpenAMP framework on aremote processor must initialize the
remoteproc and establish communications with the master software context. The steps that
follow describe the general procedure.

Procedure

1. Initialize the remoteproc using the remoteproc_resource _init APl and provide callback
functions for RPMsg channel creation, RPMsg channel destruction, and RPMsg rx
callbacks.

int remoteproc_resource_init (struct rsc_table_info *rsc_info,
rpmsg_chnl_cb_t channel_ created,
rpmsg_chnl_cb_t channel_destroyed,
rpmsg_rx_cb_t default_cb,
struct remote_proc** rproc_handle)

2. Provide implementation of RPMsg channel created, RPMsg channel destroyed, and
RPMsg rx callback functions. The functions are listed as follows:

22 OpemAMP Framework User Reference,

The remoteproc Component
remoteproc APl Usage

void rpmsg_channel_ created (struct rpmsg_ channel *rp_chnl)

void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl)

void rpmsg_rx_cb_t (struct rpmsg_channel *rp_chnl, void *data, int
len, void * pric, unsigned long src)

When the remote application callsthe remoteproc_resource _init API, the remoteproc and rpmsg
components are initialized on the remote side. On receiving a name service acknowledgement
message from the master, the OpenAMP framework on the remote application calls the
rpmsg_chnl_cb_t callback. From the channel_created callback, the remote application is
notified of the availability of alive RPMsg channel to the master context. The remote
application is free to start communications with the master context from this point onward.

Examples

The code snippet below shows a simple echo remote application the uses the OpenAMP
framework APIs to echo back data received from the master.

Example 3-2. Remote Application with Echoes to Master
#include "open_amp.h"

/* Internal functions */

static void rpmsg_channel_created(struct rpmsg_channel *rp_chnl);
static void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl);
static void rpmsg_rx_cb_t(struct rpmsg_channel *, void *, int, void *,
unsigned long) ;

/* Globals */

static struct remote_proc *proc = NULL;

static struct rsc_table info rsc_info;

extern const struct remote_resource_table resources;

/* Application entry point */

int main() {
int ret;
rsc_info.rsc_tab = (struct resource_table *)&resources;
rsc_info.size = sizeof (resources) ;

/* Application specific initialization

Ry

/* Initialize remoteproc on the remote side */

ret = remoteproc_resource_init(&rsc_info, rpmsg_channel_created,
rpmsg_channel_deleted, rpmsg rx_cb_t,
&proc) ;

if (ret) {
printf ("Error during initialization\r\n");

}

/* Block waiting for invocation of rpmsg channel created callback. */

OpemAMP Framework User Reference, 23

The remoteproc Component
remoteproc APl Functions

/* In RTOS environments control should block here on a blocking
primitive, for example, semaphore, which would be released by the
rpmsg channel created callback */

/* In bare metal environments control should block here
For example, by spinning on a flag to be released by the rpmsg
channel created callback */

wait()/* This is pseudo-code */

/* rpmsg APIs can be used for IPC from this point onward */

return O;

}

static void rpmsg_channel_created(struct rpmsg_channel *rp_chnl)

{

/* New channel created, save its handle for subsequent reference */

}

static void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl)

{

/* perform any clean up required */

}
static void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl, void *data,
int len,

void * priv, unsigned long src)

/* Echo data back to master*/
rpmsg_send (rp_chnl, data, len);

remoteproc API Functions

The OpenAMP framework provides the following functions for using the remoteproc API.

® remoteproc_init

® remoteproc_deinit

®* remoteproc_boot

® remoteproc_shutdown

® remoteproc_resource init

® remoteproc_resource deinit

24 OpemAMP Framework User Reference,

The remoteproc Component
remoteproc_init

remoteproc_init

Target Files:
® Prototype definition — open_amp/remoteproc/remoteproc.h

® Function definition — open_amp/remotepr oc/remoteproc.c

The remoteproc_init APl is meant to be used on the master processor. It is a non-blocking call
that returns a status and handle to remoteproc instance on successful execution.

Usage
int remoteproc_init (char *fw_name,

rpmsg_chnl_cb_t channel_ created,
rpmsg_chnl_cb_t channel_destroyed,
rpmsg_rx_cb_t default_cb,
struct remote_proc** rproc_handle) ;

Arguments

* fw_name

IN direction — The name of the firmware to load

¢ channel_created
IN direction — The RPMsg channel creation callback

¢ channel_destroyed
IN direction — The RPMsg channel deletion callback

® default cb
IN direction — The default rx callback for the RPMsg channel

® rproc_handle
OUT direction — The pointer to a new remoteproc instance

Return Values
®* RPROC_SUCCESS
The initialization completed successfully.
* RPROC_ERR NO RSC TABLE
The resource table is not present in the ELF file.
* RPROC_ERR CPU_ID
The CPU does not exist for the given firmware name.
* RPROC ERR NO MEM

An out-of-memory error occurred.

OpemAMP Framework User Reference, 25

The remoteproc Component
remoteproc_init

Description

This call performs the following operations:
® ConsultsHIL and identifies the firmware definition
® Populates the platform data structure with relevant HIL parameters
® Parsesfirmware and obtains resource table
® Reserves memory required for firmware based on resource table entries
Related Topics

remoteproc APl Functions

26 OpemAMP Framework User Reference,

The remoteproc Component
remoteproc_deinit

remoteproc_deinit

Target Files:
® Prototype definition — open_amp/remoteproc/remoteproc.h

® Function definition — open_amp/remotepr oc/remoteproc.c

This API is meant to be used on the master processor. It is anon-blocking call that returns a
status.

Usage

int remoteproc_deinit (struct remote_proc *rproc);

Arguments
® rproc
IN direction — The pointer to a remoteproc instance to deinitialize

Return Values
* RPROC_SUCCESS

The deinitialization completed successfully.

Description
This API performs the following operations:

® Free up memory reserved for firmware
® Reclaim memory allocated for hw_proc and remote_proc data structures
Related Topics

remoteproc APl Functions

OpemAMP Framework User Reference, 27

The remoteproc Component
remoteproc_boot

remoteproc_boot

Target Files:
® Prototype definition — open_amp/remoteproc/remoteproc.h

® Function definition — open_amp/remotepr oc/remoteproc.c

The API is meant to be used on the master processor. It is anon-blocking call that returns a
status.

Usage

int remoteproc_boot (struct remote_proc *rproc);
Arguments
® rproc
IN direction — The pointer to the remoteproc instance to boot
Return Values
®* RPROC_SUCCESS
Theinitiaization completed successfully.
e RPROC_ERR PARAM
Aninvalid parameter was passed.
e RPROC_ERR LOADER
An error occurred while loading the ELF image.

Description
This call performs the following operations:

® Copiesthe firmware image stext and data sections to memory carved out for firmware
sections by remoteproc _init

® Releases the remote processor from reset

® Createsthe rpmsg_virtio_device for the master node
Related Topics

remoteproc APl Functions

28 OpemAMP Framework User Reference,

The remoteproc Component
remoteproc_shutdown

remoteproc_shutdown

Target Files:
® Prototype definition — open_amp/remoteproc/remoteproc.h

® Function definition — open_amp/remotepr oc/remoteproc.c

This APl is meant to be used on the master processor to shut down the remote processor. It isa
non-blocking call that returns a status.

Usage

int remoteproc_shutdown (struct remote_proc *rproc) ;

Arguments
® rproc
IN direction — The pointer to the remoteproc instance to shut down

Return Values
* RPROC_SUCCESS

The shutdown completed successfully.

Description
This call performs the following operations:

® Powers down the remote processor
® Reclaims resources
Related Topics

remoteproc APl Functions

OpemAMP Framework User Reference, 29

The remoteproc Component
remoteproc_resource_init

remoteproc_resource_init
Target Files:

® Prototype definition — open_amp/remoteproc/remoteproc.h

® Function definition — open_amp/remotepr oc/remoteproc.c

This APl is meant to be used on the remote processor. It is a non-blocking call that returns a
status.

Usage

int remoteproc_resource_init (struct rsc_table_info *rsc_info,
rpmsg_chnl_cb_t channel_ created,
rpmsg_chnl_cb_t channel_destroyed,
rpmsg_rx_cb_t default_cb,
struct remote_proc** rproc_handle) ;

Arguments

rsc_info

IN direction - pointer to resource table info control block
channel _created

IN direction — The RPMsg channel creation callback
channel_destroyed

IN direction — The RPMsg channel deletion callback
default_cb

IN direction — The default rx callback for the RPMsg channel
rproc_handle

OUT direction — The pointer to a new remoteproc instance

Return Values

®* RPROC_SUCCESS

The initialization completed successfully.
* RPROC_ERR NO RSC TABLE

The resource table is not present in the ELF file.
* RPROC_ERR CPU_ID

Aninvalid CPU ID was received from the HIL.
* RPROC ERR NO MEM

An out-of-memory error occurred.

e RPROC_ERR PARAM

30

OpemAMP Framework User Reference,

The remoteproc Component
remoteproc_resource_init

Aninvalid parameter was passed.

Description

This call performs the following operations:

Consults HIL and identifies the CPU ID from the platform definition
Popul ates the platform data structure with relevant HIL parameters
Creates and initializes the RPM sg remote device on the remote side

Parses firmware and obtains the resource table to make requested MM IO mappings
(optional step)

Creates, initializes, and provides the rproc handle to the application

Related Topics

remoteproc APl Functions

OpemAMP Framework User Reference, 31

The remoteproc Component
remoteproc_resource_deinit

remoteproc_resource_deinit

Target Files:
® Prototype definition — open_amp/remoteproc/remoteproc.h

® Function definition — open_amp/remotepr oc/remoteproc.c

This APl is meant to be used on the remote processor for deinitializing the remoteproc
resources used by the remote firmware. It is a non-blocking call that returns a status.

Usage

int remoteproc_deinit (struct remote_proc *rproc) ;

Arguments
® Rproc
IN direction — The pointer to the remoteproc instance to deinitialize

Return Values
* RPROC_SUCCESS

The deinitialization completed successfully.

Description
This call performs the following operations:

® Reclaims memory allocated for hw_proc, rproc, and remote_device data structures
Related Topics

remoteproc APl Functions

remoteproc Configurable Options

Some remoteproc parameters allow you to configure certain options through their
corresponding header files.

RPROC_BOOT_DELAY

File: open_amp\remoteproc\remoteproc.h

Thisisthe timein milliseconds defined for remotproc on the master to wait to allow the remote
context to boot and initialize remoteproc. This parameter is required to make sure that the
RPMsg isinitialized on the remote application, otherwise the notification from the master islost
and the remote does not send the name service announcement.

32 OpemAMP Framework User Reference,

The remoteproc Component
remoteproc_resource_deinit

Related Topics

remoteproc APl Functions

OpemAMP Framework User Reference, 33

The remoteproc Component
remoteproc_resource_deinit

34 OpemAMP Framework User Reference,

Chapter 4
The RPMsg Component

The RPmsg APIs provided by the OpenAMP Framework allow RTOS, or bare metal-based
applications/drivers running on master and/or remote processors, to perform IPC inan AMP
configuration. The RPMsg component only implements the end-user facing APIs and defines
the protocol (message header format) component for inter processor communications. The
OpenAMP Framework implements a VirtlO-based transport abstraction on which RPMsg
performs shared memory based |PC. For VirtlO details please refer to “Virtio Concepts and
RPMsg Usage” on page 71.

RPMsg Channel

Every remote core in RPMsg component is represented by RPM sg device that provides a
communication channel between master and remote, hence RPM sg devices are also known as
channels.

RPMsg channel isidentified by the textual name and local (source) and destination address. The
RPMsg framework keeps track of channels using their names.

RPMsg Endpoint

RPMsg endpoints provide logical connections on top of RPMsg channel. It allows the user to
bind multiple rx callbacks on the same channel.

Every RPMsg endpoint has a unique src address and associated call back function. When an
application creates an endpoint with the local address, all the further inbound messages with the
destination address equal to local address of endpoint are routed to that callback function. Every
channel has a default endpoint which enables applications to communicate without even
creating new endpoints.

OpemAMP Framework User Reference, 35

The RPMsg Component
RPMsg Header

Figure 4-1. RPMsg Endpoints

Application
Endpoints
src=1,dst=2
RPMSG RPMSG PKT
channel channel
Data
a N 1 e
Master (P1)
2 dst
Application
Application
=
Endpoints dst 1 —_
<\ orc 2 Endpoint src=2,dst=1
Data
RPMSG PKT RPMSG
channel channel
Remote (P2) Remote (P3)

RPMsg Header

Every RPMsg transfer starts with the RPM sg header, which contains addresses of Source and
Destination endpoints and payload information.

The RPMsg driver routes the message using the destination address. The header is provided
below:

struct rpmsg_hdr {
unsigned long src;
unsigned long dst;
unsigned long reserved;
unsigned short len;
unsigned short flags;
unsigned char datal[0];

} __attribute_ ((packed));

The RPM sg channel and endpoint concept is depicted in Figure 4-1. The example considers a
hypothetical multicore system with core IDs P1, P2 and P3. P1 is the master and P2 and P3 are

36 OpemAMP Framework User Reference,

The RPMsg Component
OpenAMP Framework RPMsg Driver

remotes. The RPMsg packet transmitted from Master contains src address of Remote (P3)
endpoint as destination. Whereas the message from remote contains src address of Master in its
destination field. The RPMsg stack on respective cores routes the message to application based
on the destination address.

OpenAMP Framework RPMsg Driver

Next Figure shows major components present in the OpenAMP Framework RPMsg driver.
Communicating coresin the system are represented by the remote device. The remote device
encapsulates VirtlO device that provides transport services for RPMsg driver. Moreover, it
contains reference to RPM sg channels and endpoints associated with the channels. RPMsg
endpoints provide logical connections to remote cores on top of RPMsg channel. A default
endpoint is created during initialization and user provided callback isbound to it.
remoteproc_init API allows user to bind callbacksto default endpoint. The remoteproc_init API
internally uses rpmsg_init function to achieve callback binding. Users are allowed to create
additional endpoints for the given channel using romsg_create ept API.

Figure 4-2. RPMsg Driver Components

endpoints \ /
]

.

Channel

Master Application

il) Remote Application

4 | i

channel channel
‘ Motification Notification
= router router
pmsg
remote
deviee
rpm
pmsg pmsg
virtio S
Memany ™ R
manager (e WOURLE
for buffers
OpemAMP Framework User Reference, 37

The RPMsg Component
RPMsg API Usage

Applications use APIs provided by the RPMsg driver to communicate with the RPM sg
channels. When datais received from the application, RPM sg copiesit to internal memory after
appending RPM sg header. It then searches the corresponding VirtlO device and places message
pointer in virtqueue, followed by a notification. rpmsg_send API is used to send data over
default endpoint. rpmsg_sendto, and rpmsg_send_offchannel APIs are used for directing
messages to any given application created endpoint.

RPMsg driver generates notifications for applications using callbacks for incoming messages.
The natification handling mechanism in RPMsg driver directs the message to applications
based on its destination address. There are two types of notifications events. Rx completion and
Channel Creation/Deletion events. Rx completion event is generated when dataisreceived from
the communication counterpart. The channel creation/del etion events are triggered when Name
Service (NS) isreceived from the remote. Application binds callback to RPMsg driver using
rpmsg_create ept API. A default callback is bound to the RPMsg channel during initialization.

RPMsg API Usage

RPMsg APl usage isillustrated using a ssmple echo application.
The assumptions are as follows:

® The application software on the master processor uses remoteproc to load and execute
an echo application (remote firmware) on the remote processor

® After the remote application is running, an rpmsg channel is established between the
remote and master applications

* Any message sent by the master application to the remote application using rpmsg APIs
is echoed back to the master application

This example should serve as areference for most typical use cases—where the master software
context would bring up the remote context, establish communication channel with it, and start
the I PC to offload the computation to the remote context.

RPMsg APl Usage From the Master Software
Context

After bringing up the remote context, the user application isfreeto use rpmsg APIsfor IPC with
remote context from that point onward.

Instructions for bringing up the remote context are present in “remoteproc APl Usage” on
page 20.

The code snippet in Example 4-1 on page 39 showcases a sample master application that sends
messages to aremote, using the rpmsg_send API, then waits for an echo from the remote.

38 OpemAMP Framework User Reference,

The RPMsg Component
RPMsg API Usage

Example 4-1. Master Application With Echoes to Sender

#include "open_amp.h"

/* Application provided callbacks */
void rpmsg_channel_created(struct rpmsg_channel *rp_chnl);
void rpmsg_channel_deleted(struct rpmsg_ channel *rp_chnl);
void rpmsg_rx_cb_t(struct rpmsg channel *rp_chnl,
void *data,
int len,
void * priv,
unsigned long src);

/* Globals */

struct rpmsg_channel *app_rp_chnl;

char remote_fw name []= "remote_firmware";
char s_buff[256];

char r_buff[256];

int main(int argc , void *argv) {

struct remote_proc *proc;
int idx ,1,ret;

/* Initialize Remoteproc */
ret = remoteproc_init((void *) remote_fw_name,
rpmsg_channel_ created,
rpmsg_channel_deleted,
rpmsg_rx_cb_t, &proc);

/* Boot remote firmware */
if(!ret && (proc))
ret = remoteproc_boot (proc) ;

if (!ret)

{
/* Block waiting for invocation of rpmsg channel created callback.
*/

/* In RTOS environments control should block here
on a blocking primitive, for example, semaphore, which would be
released by the rpmsg channel created callback */

/* In bare metal environments, control should block here
by spinning on a flag to be released by the rpmsg channel
created callback */

/* This is pseudo-code */
wait ()

/* Setup the buffer with a pattern */
memset (s_buff, 0xA5, sizeof (s_buff));

/* Send data to remote side. */
rpmsg_send (app_rp_chnl, s_buff, sizeof(s_buff));

OpemAMP Framework User Reference, 39

The RPMsg Component
RPMsg API Usage

/* Block waiting for invocation of rpmsg rx callback. */
/* This is pseudo-code */
wait ()