
OpenAMP Framework User Reference

© 2010-2014 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT LICENSE RIGHTS: The software and documentation were developed entirely at
private expense and are commercial computer software and commercial computer software
documentation within the meaning of the applicable acquisition regulations. Accordingly, pursuant to
FAR 48 CFR 12.212 and DFARS 48 CFR 227.7202, use, duplication and disclosure by or for the U.S.
Government or a U.S. Government subcontractor is subject solely to the terms and conditions set forth in
the license agreement provided with the software, except for provisions which are contrary to applicable
mandatory federal laws.

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other parties. No one is permitted to use these Marks without the prior
written consent of Mentor Graphics or the owner of the Mark, as applicable. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/trademarks.

The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of
Linus Torvalds, owner of the mark on a world-wide basis.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777

Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210

Website: www.mentor.com
SupportNet: supportnet.mentor.com/

Send Feedback on Documentation: supportnet.mentor.com/doc_feedback_form

http://www.mentor.com/trademarks
http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form

OpemAMP Framework User Reference, 3

Table of Contents

Chapter 1
OpenAMP Framework Overview . 7

Abbreviations, Terminology, and Definitions . 7
Overview . 8
Components and Capabilities . 8

Chapter 2
System-Wide Considerations for Using OpenAMP Framework . 11

Chapter 3
The remoteproc Component . 15

Concepts. 15
Creation and Boot of Remote Firmware Using remoteproc . 18

Defining the Resource Table and Creating the Remote ELF Image 18
Making Remote Firmware Accessible to the Master . 19

remoteproc API Usage. 20
remoteproc API Functions . 24

remoteproc_init . 25
remoteproc_deinit . 27
remoteproc_boot . 28
remoteproc_shutdown. 29
remoteproc_resource_init . 30
remoteproc_resource_deinit . 32
remoteproc Configurable Options. 32

Chapter 4
The RPMsg Component . 35

RPMsg Channel . 35
RPMsg Endpoint . 35
RPMsg Header . 36
OpenAMP Framework RPMsg Driver . 37
RPMsg API Usage . 38

RPMsg API Usage From the Master Software Context . 38
RPMsg API Usage From Remote Software Context . 40

RPMsg API Functions . 42
rpmsg_send . 43
rpmsg_sendto . 44
rpmsg_send_offchannel . 46
rpmsg_trysend. 48
rpmsg_trysendto . 49
rpmsg_trysendoffchannel . 51
rpmsg_get_buffer_size . 53

Table of Contents

4 OpemAMP Framework User Reference,

rpmsg_create_ept . 54
rpmsg_destroy_ept . 55
rpmsg_chnl_cb_t. 56
rpmsg_rx_cb_t . 57
RPMsg Configurable Options. 57

Chapter 5
Proxy Infrastructure. 59

Proxy Infrastructure Overview . 59
Usage of Proxy Infrastructure on Master. 60
Usage of Proxy Infrastructure on Remote . 61

Chapter 6
OpenAMP Framework Porting Guidelines . 63

Platform Porting Overview . 64
Platform-Specific APIs . 65
Configuration Porting . 68
Environment Porting . 68

Appendix A
Virtio Concepts and RPMsg Usage . 71

Third-Party Information

Embedded Software and Hardware License Agreement

OpemAMP Framework User Reference, 5

List of Figures

Figure 1-1. Managing Remote Processes with the OpenAMP framework 10
Figure 2-1. System Topology Types . 12
Figure 2-2. Determining the Memory Layout in an AMP System . 13
Figure 3-1. remoteproc Conceptual Diagram . 16
Figure 3-2. The Remote Firmware Creation Process. 18
Figure 4-1. RPMsg Endpoints . 36
Figure 4-2. RPMsg Driver Components . 37
Figure 5-1. The Proxy Infrastructure . 60
Figure A-1. Virtio Concepts . 71
Figure A-2. The Virtqueue and Vring . 73

6 OpemAMP Framework User Reference,

List of Tables

Table 1-1. Abbreviations and Terminology . 7
Table 6-1. OpenAMP Framework Porting Layers . 63
Table 6-2. OpenAMP HIL Files . 63
Table 6-3. HIL File Changes . 64
Table 6-4. Environment Porting APIs . 69

OpemAMP Framework User Reference, 7

Chapter 1
OpenAMP Framework Overview

Open Asymmetric Multi Processing (OpenAMP) Framework provides software components
that enable development of software applications for Asymmetric Multiprocessing (AMP)
systems.

Abbreviations, Terminology, and Definitions
The following abbreviations and terminology appear throughout the document.

Table 1-1. Abbreviations and Terminology

Abbreviations and Terminology Definition

OpenAMP Framework Open Asymmetric Multi Processing Framework

AMP Asymmetric Multi Processing

LCM Life Cycle Management

IPC Inter Processor Communication

RTOS Real Time Operating System

BM or BME Bare Metal or Bare Metal Environment

HIL Hardware Interface Layer

IPI Inter-Processor Interrupt

Master The CPU/software context that comes up first
and manages other CPUs/software contexts
present in the AMP system.

Remote The CPU/software context that is brought up by
the master CPUs/software context present in the
AMP system.

Master processor A Master CPU in a multicore SoC.

Remote processor A Remote CPU in a multicore SoC.

Master software context Any software context that can run on a master
processor. This software context could be Linux
or other OS, RTOS, or bare-metal environment
based.

OpemAMP Framework User Reference,8

OpenAMP Framework Overview
Overview

Overview
An AMP system is characterized by multiple homogeneous and/or heterogeneous processing
cores (for example, the Texas Instruments TI OMAP (System on Chips) SoCs have dual ARM
Cortex A15, dual ARM Cortex M4, and C64 DSP cores). These cores typically run independent
instances of homogeneous and/or heterogeneous software environments, such as Linux1,
RTOS, and Bare Metal that work together to achieve the design goals of the end application.
While Symmetric Multiprocessing (SMP) operating systems allow load balancing of
application workload across homogeneous processors present in such AMP SoCs, asymmetric
multiprocessing design paradigms are required to leverage parallelism from the heterogeneous
cores present in the system.

Increasingly, today’s multicore applications require heterogeneous processing power.
Heterogeneous multicore SoCs often have one or more general purpose CPUs (for example,
dual ARM Cortex A9 cores on Xilinx Zynq) with DSPs and/or smaller CPUs and/or soft IP (on
SoCs such as Xilinx Zynq APSOC). These specialized CPUs, as compared to the general
purpose CPUs, are typicallyt dedicated for demand-driven offload of specialized application
functionality to achieve maximum system performance. Systems developed using these types of
SoCs, characterized by heterogeneity in both hardware and software, are generally termed as
AMP systems.

In AMP systems, it is typical for software running on a master to bring up software/firmware
contexts on a remote on a demand-driven basis and communicate with them using IPC
mechanisms to offload work during run time. The participating master and remote processors
may be homogeneous or heterogeneous in nature.

A master is defined as the CPU/software that is booted first and is responsible for managing
other CPUs and their software contexts present in an AMP system. A remote is defined as the
CPU/software context managed by the master software context present.

Components and Capabilities
The OpenAMP Framework implementation provides the necessary API infrastructure required
to develop AMP systems.

Remote software context Any software context that can run on a remote
processor. This software context could be Linux
or other OS, RTOS, or bare-metal environment
based.

Environment or software environment Refers to the underlying software environment
which could be OS, RTOS, or bare-metal based.

1. Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

Table 1-1. Abbreviations and Terminology (cont.)

OpenAMP Framework Overview
Components and Capabilities

OpemAMP Framework User Reference, 9

The key components and capabilities provided by the OpenAMP Framework include:

• remoteproc — This component allows for the Life Cycle Management (LCM) of
remote processors from software running on a master processor. The remoteproc API
provided by the OpenAMP Framework is compliant with the remoteproc infrastructure
present in upstream Linux 3.4.x kernel onward. The Linux remoteproc infrastructure
and API was first implemented by Texas Instruments.

• RPMsg – The RPMsg API enables Inter Processor Communications (IPC) between
independent software contexts running on homogeneous or heterogenous cores present
in an AMP system. This API is compliant with the RPMsg bus infrastructure present in
upstream Linux 3.4.x kernel onward. The Linux RPMsg bus and API infrastructure was
first implemented by Texas Instruments.

Texas Instruments’ remoteproc and RPMsg infrastructure available in the upstream Linux
kernel today enable the Linux applications running on a master processor to manage the life
cycle of remote processor/firmware and perform IPC with them. However, there is no open-
source API/software available that provides similar functionality and interfaces for other
possible software contexts (RTOS- or bare metal-based applications) running on the remote
processor to communicate with the Linux master. Also, AMP applications may require RTOS-
or bare metal-based applications to run on the master processor and be able to manage and
communicate with various software environments (RTOS, bare metal, or even Linux) on the
remote processor.

The OpenAMP Framework fills these gaps. It provides the required LCM and IPC
infrastructure from the RTOS and bare-metal environments with the API conformity and
functional symmetry available in the upstream Linux kernel. As in upstream Linux, the
OpenAMP Framework's remoteproc and RPMsg infrastructure uses virtio as the transport
layer/abstraction.

Figure 1-1 shows the various software environments/configurations supported by the
OpenAMP Framework. As shown in this illustration, the OpenAMP Framework can be used
with RTOS or bare metal contexts on a remote processor to communicate with Linux
applications (in kernel space or user space) or other RTOS/bare metal-based applications
running on the master processor through the remoteproc and RPMsg components.

The OpenAMP Framework also serves as a stand-alone library that enables RTOS and bare-
metal applications on a master processor to manage the life cycle of remote processor/firmware
and communicate with them using RPMsg.

OpemAMP Framework User Reference,10

OpenAMP Framework Overview
Components and Capabilities

Figure 1-1. Managing Remote Processes with the OpenAMP framework

In addition to providing a software framework/API for LCM and IPC, the OpenAMP
Framework supplies a proxy infrastructure that provides a transparent interface to remote
contexts from Linux user space applications running on the master processor. The proxy
application hides all the logistics involved in bringing-up the remote software context and its
shutdown sequence. In addition, it supports RPMsg-based Remote Procedure Calls (RPCs)
from remote context. A retargeting API available from the remote context allows C library
system calls such as "_open", "_close", "_read", and "_write" to be forwarded to the proxy
application on the master for service.

For more information on this infrastructure and its capabilities, see Figure 5-1 on page 60.

In addition to the core capabilities, the OpenAMP Framework contains abstraction layers
(porting layer) for migration to different software environments and new target
processors/platforms

OpemAMP Framework User Reference, 11

Chapter 2
System-Wide Considerations for Using

OpenAMP Framework

AMP systems could either be supervised (using a hypervisor to enforce isolation and resource
virtualization) or unsupervised (modifying each participating software context to ensure best-
effort isolation and cooperative usage of shared resources). With unsupervised AMP systems,
there is no strict isolation or supervision of shared resource usage.

Take the following system-wide considerations into account to develop unsupervised AMP
systems using the OpenAMP framework:

Note
Usage of OpenAMP Framework for supervised AMP systems is not covered in this
document.

• Determine system architecture/topology

The OpenAMP framework implicitly assumes master-slave (remote) system
architecture. The topology for the master-slave (remote) architecture should be
determined; either star, chain, or a combination. Figure 2-1 shows some simple use
cases.

o Case 1 — A single master software context on processor 1 controlling life cycle and
communicating with two independent remote software contexts on processors 2 and
3, in star topology,

o Case 2 — Master software context 1 on processor 1 brings up remote software
context 1 on processor 2. This context acts as master software context 2 for remote
software context 2 on processor 3, in chain topology.

OpemAMP Framework User Reference,12

System-Wide Considerations for Using OpenAMP Framework

Figure 2-1. System Topology Types

• Determine system and IO resource partitioning

Various OSs, RTOSs, and bare-metal environments have their own preferred
mechanisms for discovering platform-specific information such as available RAM
memory, available peripheral IO resources (their memory-mapped IO region), clocks,
interrupt resources, and so forth.

For example, the Linux kernel uses device trees, Nucleus RTOS supports a proprietary
Platform Definition File based approach (and supports device trees as well), and bare-
metal environment typically define platform-specific device information in headers or
dedicated data structures that would be compiled into the application.

To ensure mutually-exclusive usage of unshared system (memory) and IO resources
(peripherals) between the participating software environments in an AMP system, you
are required to partition the resources so that each software environment is only aware of
the resources that are available to it. This would involve, for example, removing unused
resource nodes and modifying the available memory definitions from the device tree
sources, platform definition files, headers, and so forth, to ensure best-effort partitioning
of system resources.

• Determine memory layout

For the purpose of this description, assume you are using the Zynq SOC used in AMP
system architecture with SMP Linux running on the dual Cortex A9 cores, and a RTOS
on one instance of Microblaze soft core, and bare metal on another instance of
Microblaze soft core in the fabric.

To develop an AMP system using the OpenAMP Framework, it is important to
determine the memory regions that would be owned and shared between each of the
participating software environments in the AMP system. For example, in a configuration
such as this, the memory address ranges owned (for code/data/bss/heap) by each
participating OS or bare-metal context, and the shared memory regions to be used by
IPC mechanisms (virtio rings and memory for data buffers) needs to be determined.

System-Wide Considerations for Using OpenAMP Framework

OpemAMP Framework User Reference, 13

Memory alignment requirements should be taken into consideration while making this
determination.

Figure 2-2 illustrates the memory layout for Linux master/Nucleus RTOS-based remote
application, and Nucleus RTOS-based master/bare metal-based remote application in
chain configuration. After the memory layout is determined, update the platform
specific data accessible using the Hardware Interface Layer (HIL) to reflect the memory
layout of choice.

Figure 2-2. Determining the Memory Layout in an AMP System

• Ensure cooperative usage of shared resources between software environments in the
AMP system

For the purpose of this discussion, assume you are using a Linux master/Nucleus RTOS-
based remote system configuration.

The interrupt controller is typically a shared resource in multicore SoCs. It is general
practice for OSs to reset and initialize (clear and disable all interrupts) the interrupt
controller during their boot sequence given the general assumption that the OS would
own the entire system. This will not work in AMP systems; if an OS in remote software
context resets and initializes the interrupt controller, it would catastrophically break the
master software contexts run time since the master context could already be using the
interrupt controller to manage its interrupt resources. Therefore, remote software
environments should be patched such that they cooperatively use the interrupt controller

OpemAMP Framework User Reference,14

System-Wide Considerations for Using OpenAMP Framework

(for example, do not reset/clear/disable all interrupts blindly but initialize only the
interrupts that belong to the remote context). Ensure the timer peripheral used by the
remote OS/RTOS context is different from the one used by the master software context
so the individual run-times do not interfere with each other.

OpemAMP Framework User Reference, 15

Chapter 3
The remoteproc Component

The remoteproc APIs provided by the OpenAMP Framework allow software applications
running on the master processor to manage the life cycle of a remote processor and its software
context. A complete description of the remoteproc workflow and APIs are provided.

Concepts
The remoteproc APIs provide life cycle management of remote processors by performing five
essential functions.

• Allow the master software applications to load the code and data sections of the remote
firmware image to appropriate locations in memory for in-place execution

• Release the remote processor from reset to start execution of the remote firmware

• Establish RPMsg communication channels for run-time communications with the
remote context

• Shut down the remote software context and processor when its services are not needed

• Provide an API for use in the remote application context that allows the remote
applications to seamlessly initialize the remoteproc system on the remote side and
establish communication channels with the master context

Note
The remoteproc infrastructure provided by the OpenAMP framework is for use with
RTOS and bare-metal environments only in master or remote configurations. If the AMP
use case requires Linux OS as the master, use the upstream Linux remoteproc
infrastructure. Refer to Figure 1-1 on page 10.

The remoteproc component currently supports Executable and Linkable Format (ELF) for the
remote firmware; however, the framework can be easily extended to support other image
formats. The remote firmware image publishes the system resources it requires to remoteproc
on the master using a statically linked resource table data structure. The resource table data
structure contains entries that define the system resources required by the remote firmware (for
example, contiguous memory carve-outs required by remote firmware’s code and data
sections), and features/functionality supported by the remote firmware (like virtio devices and
their configuration information required for RPMsg-based IPC).

OpemAMP Framework User Reference,16

The remoteproc Component
Concepts

The remoteproc APIs on the master processor use the information published through the
firmware resource table to allocate appropriate system resources and to create virtio devices for
IPC with the remote software context. Figure 3-1 illustrates the resource table usage.

Figure 3-1. remoteproc Conceptual Diagram

When the application on the master calls to the remoteproc_init API, it performs the following:

• Causes remoteproc to fetch the firmware ELF image and decode it

• Obtains the resource table and parses it to handle entries

• Carves out memory for remote firmware before creating virtio devices for
communications with remote context

The master application then performs the following actions:

1. Calls the remoteproc_boot API to boot the remote context

2. Locates the code and data sections of the remote firmware image

3. Releases the remote processor to start execution of the remote firmware.

The remoteproc Component
Concepts

OpemAMP Framework User Reference, 17

After the remote application is running on the remote processor, the remote application calls the
remoteproc_resource_init API to create the virtio/RPMsg devices required for IPC with the
master context. Invocation of this API causes remoteproc on the remote context to use the
rpmsg name service announcement feature to advertise the rpmsg channels served by the remote
application.

The master receives the advertisement messages and performs the following tasks:

1. Invokes the channel created callback registered by the master application

2. Responds to remote context with a name service acknowledgement message

After the acknowledgement is received from master, remoteproc on the remote side invokes the
RPMsg channel-created callback registered by the remote application. The RPMsg channel is
established at this point. All RPMsg APIs can be used subsequently on both sides for run time
communications between the master and remote software contexts.

To shut down the remote processor/firmware, the remoteproc_shutdown API is to be used from
the master context. Invoking this API with the desired remoteproc instance handle
asynchronously shuts down the remote processor. Using this API directly does not allow for
graceful shutdown of remote context.

For gracefully bringing down the remote context, the following steps can be performed:

1. The master application sends an application-specific shutdown message to the remote
context

2. The remote application cleans up application resources, sends a shutdown acknowledge
to master, and invokes remoteproc_resource_deinit API to deinitialize remoteproc on
the remote side.

3. On receiving the shutdown acknowledge message, the master application invokes the
remoteproc_shutdown API to shut down the remote processor and deinitialize
remoteproc using remoteproc_deinit on its side.

OpemAMP Framework User Reference,18

The remoteproc Component
Creation and Boot of Remote Firmware Using remoteproc

Creation and Boot of Remote Firmware Using
remoteproc

You can create and boot remote firmware for Linux, RTOS, and bare metal-based remote
applications using remoteproc. The following procedure provides general steps for creating and
executing remote firmware on a supported platform.

Figure 3-2 illustrates the remote firmware creation process.

Figure 3-2. The Remote Firmware Creation Process

Defining the Resource Table and Creating the
Remote ELF Image

Creating a remote image through remoteproc begins by defining the resource table and creating
the remote ELF image.

Procedure

1. Define the resource table structure in the application. The resource table must minimally
contain carve-out and VirtIO device information for IPC.

The remoteproc Component
Creation and Boot of Remote Firmware Using remoteproc

OpemAMP Framework User Reference, 19

As an example, please refer to the resource table defined in the baremetal remote echo
test application at <open_amp>/apps/tests/remote/baremetal/echo_test/rsc_table.c. The
resource table contains entries for memory carve-out and virtio device resources. The
memory carve-out entry contains info like firmware ELF image start address and size.
The virtio device resource contains virtio device features, vring addresses, size, and
alignment information. The resource table data structure is placed in the resource table
section of remote firmware ELF image using compiler directives.

2. After defining the resource table and creating the OpenAMP Framework library, link the
remote application with the RTOS or bare metal library and the OpenAMP Framework
library to create a remote firmware ELF image capable of in-place execution from its
pre-determined memory region. (The pre-determined memory region is determined
according to guidelines provided by section.)

3. For remote Linux, step 1 describes modifications to be made to the resource table.
Figure 3-2 on page 18 shows the high level steps involved in creation of the remote
Linux firmware image. The flow leverages supported Petalinux workflows to create a
Linux FIT image that encapsulates the Linux kernel image, Device Tree Blob (DTB),
and initramfs.

The user applications and kernel drivers required on the remote Linux context could be
built into the initramfs using supported Petalinux workflows or moved to the remote
root file system as needed after boot. The FIT image is linked along with a boot strap
package provided within the OpenAMP Framework. The bootstrap implements the
functionality required to decode the FIT image (using libfdt), uncompress the Linux
kernel image (using zlib) and locate the kernel image, initramfs, and DTB in RAM. It
can also set up the ARM general purpose registers with arguments to boot Linux, and
transfer control to the Linux entry point.

Making Remote Firmware Accessible to the Master
After creating the remote firmware’s ELF image, you need to make it accessible to remoteproc
in the master context.

Procedure

1. If the RTOS- or bare metal-based master software context has a file system, place this
firmware ELF image in the file system.

2. Implement the get_firmware API in config.c (in the OPENAMP/porting/config/
directory) to fetch the remote firmware image by name from the file system.

3. For AMP use cases with Linux as master, place the firmware application in the root file
system for use by Linux remoteproc platform drivers.

OpemAMP Framework User Reference,20

The remoteproc Component
remoteproc API Usage

In the OpenAMP Framework reference port to Zynq ZC702EVK, the Nucleus RTOS and bare
metal libraries used by the master software applications do not include a file system. Therefore,
the remote image is packaged along with the master ELF image. The remote ELF image is
converted to an object file using “objcpy” available in the “GCC bin-utils”. This object file is
further linked with the master ELF image.

The remoteproc component on the master uses the start and end symbols from the remote object
files to get the remote ELF image base and size. Since the logistics used by the master to obtain
a remote firmware image is deployment specific, the config_get_firmware API in config.c of
the OPENAMP/porting/config/ directory implements all the logistics described in this
procedure to enable the OpenAMP Framework remoteproc on the master to obtain the remote
firmware image.

You can now use the remoteproc APIs.

remoteproc API Usage
The following sections assumes a simple application for description.

• The application software on the master processor uses remoteproc to load and execute a
remote application (remote firmware) on the remote processor

• After the remote application is running, an rpmsg channel is established between the
remote and master applications

• The RPMsg APIs are used for IPC

This simple example should serve as a reference for most typical use cases – where the master
software context would bring up the remote context, establish communication channel with it,
and start the IPC to offload the computation to the remote context.

Using remoteproc APIs From the Master Software
Context

Using OpenAMP framework on a software application on the master processor involves
bringing up a remote software context and communicating with it. The following steps describe
the general procedure.

Procedure

1. Initialize the remoteproc using the remoteproc_init API and provide callback functions
for rpmsg channel creation, rpmsg channel destruction, and rpmsg rx callbacks.

2. Boot the image using remoteproc_boot API.

3. Provide implementation of rpmsg_channel_created, rpmsg_channel_destroyed, and
rpmsg_rx_cb functions. The functions are listed as follows:

The remoteproc Component
remoteproc API Usage

OpemAMP Framework User Reference, 21

void rpmsg_channel_created (struct rpmsg_channel *rp_chnl)
void rpmsg_channel_destroyed(struct rpmsg_channel *rp_chnl)
void rpmsg_rx_cb(struct rpmsg_channel *rp_chnl, void *data, int

len, void * priv, unsigned long src)

When using the RPMSG framework from the master software context, the application calls
remoteproc_init API to bring up the remote software context. When the remote application
boots up on the remote processor, a call to remoteproc_resource_init API initializes remoteproc
and rpmsg on the remote side, triggering the RPMSG framework on the remote side to send the
rpmsg name service message to advertise itself to the master context.

This announcement causes the RPMSG framework on the master to call the rpmsg channel-
created callback registered during initialization. The application is notified from the channel-
created callback (using methods that make send for the environment) of the availability of a live
rpmsg channel to remote context. The application is free to use rpmsg APIs for IPC with remote
context from this point onward.

Examples

The code snippet that follows showcases a sample master application that brings up a remote
application that echoes all incoming messages back to the sender.

Example 3-1. Master Application With Echoes to Sender

#include "open_amp.h"
/* Application provided callbacks */
void rpmsg_channel_created(struct rpmsg_channel *rp_chnl);
void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl);
void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl , void *data ,
 int len , void * priv , unsigned long src);

/* Globals */
char remote_fw_name[]= "remote_firmware";

int main(int argc, void *argv) {

 struct remote_proc *proc;
 int idx ,i,ret;

 /* Initialize Remoteproc */
 ret = remoteproc_init((void *) remote_fw_name, rpmsg_channel_created,
 rpmsg_channel_deleted, rpmsg_rx_cb_t, &proc);

 /* Boot remote firmware */
 if(!ret && (proc))
 ret = remoteproc_boot(proc);

 if(!ret)
 {
 /* Block waiting for invocation of rpmsg channel created callback.

 */
 /* In RTOS environments control should block here

 on a blocking primitive, for example, semaphore, which would be

OpemAMP Framework User Reference,22

The remoteproc Component
remoteproc API Usage

 released by the rpmsg channel created callback */
 /* In Bare metal environments control should block here
 For example, by spinning on a flag to be released by the rpmsg

 channel created callback */
 wait()/* This is pseudo-code */

 /* rpmsg APIs can be used for IPC from this point onward */

 }

 /* To shut down the remote processor
 asynchronously and de-initialize the system */
 remoteproc_shutdown(proc);
 remoteproc_deinit(proc);
}

void rpmsg_channel_created(struct rpmsg_channel *rp_chnl) {

 /* Release the context blocked on rpmsg channel creation callback
invocation */
}

void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl) {

 /* Clean up application resources used by rpmsg */
}

void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl, void *data, int len,
 void * priv, unsigned long src) {

 /* Copy received data to application buffer */
 /* Release the context blocked on rpmsg rx callback invocation */
}

Using remoteproc APIs From Remote Software Context
Software applications using the OpenAMP framework on a remote processor must initialize the
remoteproc and establish communications with the master software context. The steps that
follow describe the general procedure.

Procedure

1. Initialize the remoteproc using the remoteproc_resource_init API and provide callback
functions for RPMsg channel creation, RPMsg channel destruction, and RPMsg rx
callbacks.

int remoteproc_resource_init(struct rsc_table_info *rsc_info,
 rpmsg_chnl_cb_t channel_created,
 rpmsg_chnl_cb_t channel_destroyed,
 rpmsg_rx_cb_t default_cb,
 struct remote_proc** rproc_handle)

2. Provide implementation of RPMsg channel created, RPMsg channel destroyed, and
RPMsg rx callback functions. The functions are listed as follows:

The remoteproc Component
remoteproc API Usage

OpemAMP Framework User Reference, 23

void rpmsg_channel_created (struct rpmsg_channel *rp_chnl)
void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl)
void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl, void *data, int
 len, void * pric, unsigned long src)

When the remote application calls the remoteproc_resource_init API, the remoteproc and rpmsg
components are initialized on the remote side. On receiving a name service acknowledgement
message from the master, the OpenAMP framework on the remote application calls the
rpmsg_chnl_cb_t callback. From the channel_created callback, the remote application is
notified of the availability of a live RPMsg channel to the master context. The remote
application is free to start communications with the master context from this point onward.

Examples

The code snippet below shows a simple echo remote application the uses the OpenAMP
framework APIs to echo back data received from the master.

Example 3-2. Remote Application with Echoes to Master

#include "open_amp.h"

/* Internal functions */
static void rpmsg_channel_created(struct rpmsg_channel *rp_chnl);
static void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl);
static void rpmsg_rx_cb_t(struct rpmsg_channel *, void *, int, void *,
unsigned long);

/* Globals */
static struct remote_proc *proc = NULL;
static struct rsc_table_info rsc_info;
extern const struct remote_resource_table resources;

/* Application entry point */
int main() {

 int ret;
 rsc_info.rsc_tab = (struct resource_table *)&resources;
 rsc_info.size = sizeof(resources);

 /* Application specific initialization
 .
 .
 .*/

 /* Initialize remoteproc on the remote side */
 ret = remoteproc_resource_init(&rsc_info, rpmsg_channel_created,
 rpmsg_channel_deleted, rpmsg_rx_cb_t,

 &proc);
 if (ret) {
 printf("Error during initialization\r\n");
 }

 /* Block waiting for invocation of rpmsg channel created callback. */

OpemAMP Framework User Reference,24

The remoteproc Component
remoteproc API Functions

 /* In RTOS environments control should block here on a blocking
 primitive, for example, semaphore, which would be released by the
 rpmsg channel created callback */

 /* In Bare metal environments control should block here
 For example, by spinning on a flag to be released by the rpmsg

 channel created callback */
 wait()/* This is pseudo-code */

 /* rpmsg APIs can be used for IPC from this point onward */

 return 0;
}

static void rpmsg_channel_created(struct rpmsg_channel *rp_chnl)
{

 /* New channel created, save its handle for subsequent reference */
}

static void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl)
{

 /* perform any clean up required */
}

static void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl, void *data,
 int len,
 void * priv, unsigned long src)

{
/* Echo data back to master*/

 rpmsg_send(rp_chnl, data, len);
}

remoteproc API Functions
The OpenAMP framework provides the following functions for using the remoteproc API.

• remoteproc_init

• remoteproc_deinit

• remoteproc_boot

• remoteproc_shutdown

• remoteproc_resource_init

• remoteproc_resource_deinit

The remoteproc Component
remoteproc_init

OpemAMP Framework User Reference, 25

remoteproc_init
Target Files:

• Prototype definition — open_amp/remoteproc/remoteproc.h

• Function definition — open_amp/remoteproc/remoteproc.c

The remoteproc_init API is meant to be used on the master processor. It is a non-blocking call
that returns a status and handle to remoteproc instance on successful execution.

Usage
int remoteproc_init(char *fw_name,

 rpmsg_chnl_cb_t channel_created,
 rpmsg_chnl_cb_t channel_destroyed,
 rpmsg_rx_cb_t default_cb,
 struct remote_proc** rproc_handle);

Arguments
• fw_name

IN direction — The name of the firmware to load

• channel_created

IN direction — The RPMsg channel creation callback

• channel_destroyed

IN direction — The RPMsg channel deletion callback

• default_cb

IN direction — The default rx callback for the RPMsg channel

• rproc_handle

OUT direction — The pointer to a new remoteproc instance

Return Values
• RPROC_SUCCESS

The initialization completed successfully.

• RPROC_ERR_NO_RSC_TABLE

The resource table is not present in the ELF file.

• RPROC_ERR_CPU_ID

The CPU does not exist for the given firmware name.

• RPROC_ERR_NO_MEM

An out-of-memory error occurred.

OpemAMP Framework User Reference,26

The remoteproc Component
remoteproc_init

Description
This call performs the following operations:

• Consults HIL and identifies the firmware definition

• Populates the platform data structure with relevant HIL parameters

• Parses firmware and obtains resource table

• Reserves memory required for firmware based on resource table entries

Related Topics

remoteproc API Functions

The remoteproc Component
remoteproc_deinit

OpemAMP Framework User Reference, 27

remoteproc_deinit
Target Files:

• Prototype definition — open_amp/remoteproc/remoteproc.h

• Function definition — open_amp/remoteproc/remoteproc.c

This API is meant to be used on the master processor. It is a non-blocking call that returns a
status.

Usage
int remoteproc_deinit (struct remote_proc *rproc);

Arguments
• rproc

IN direction — The pointer to a remoteproc instance to deinitialize

Return Values
• RPROC_SUCCESS

The deinitialization completed successfully.

Description
This API performs the following operations:

• Free up memory reserved for firmware

• Reclaim memory allocated for hw_proc and remote_proc data structures

Related Topics

remoteproc API Functions

OpemAMP Framework User Reference,28

The remoteproc Component
remoteproc_boot

remoteproc_boot
Target Files:

• Prototype definition — open_amp/remoteproc/remoteproc.h

• Function definition — open_amp/remoteproc/remoteproc.c

The API is meant to be used on the master processor. It is a non-blocking call that returns a
status.

Usage
int remoteproc_boot(struct remote_proc *rproc);

Arguments
• rproc

IN direction — The pointer to the remoteproc instance to boot

Return Values
• RPROC_SUCCESS

The initialization completed successfully.

• RPROC_ERR_PARAM

An invalid parameter was passed.

• RPROC_ERR_LOADER

An error occurred while loading the ELF image.

Description
This call performs the following operations:

• Copies the firmware image’s text and data sections to memory carved out for firmware
sections by remoteproc_init

• Releases the remote processor from reset

• Creates the rpmsg_virtio_device for the master node

Related Topics

remoteproc API Functions

The remoteproc Component
remoteproc_shutdown

OpemAMP Framework User Reference, 29

remoteproc_shutdown
Target Files:

• Prototype definition — open_amp/remoteproc/remoteproc.h

• Function definition — open_amp/remoteproc/remoteproc.c

This API is meant to be used on the master processor to shut down the remote processor. It is a
non-blocking call that returns a status.

Usage
int remoteproc_shutdown(struct remote_proc *rproc);

Arguments
• rproc

IN direction — The pointer to the remoteproc instance to shut down

Return Values
• RPROC_SUCCESS

The shutdown completed successfully.

Description
This call performs the following operations:

• Powers down the remote processor

• Reclaims resources

Related Topics

remoteproc API Functions

OpemAMP Framework User Reference,30

The remoteproc Component
remoteproc_resource_init

remoteproc_resource_init
Target Files:

• Prototype definition — open_amp/remoteproc/remoteproc.h

• Function definition — open_amp/remoteproc/remoteproc.c

This API is meant to be used on the remote processor. It is a non-blocking call that returns a
status.

Usage
int remoteproc_resource_init(struct rsc_table_info *rsc_info,

 rpmsg_chnl_cb_t channel_created,
 rpmsg_chnl_cb_t channel_destroyed,
 rpmsg_rx_cb_t default_cb,
 struct remote_proc** rproc_handle);

Arguments
• rsc_info

IN direction - pointer to resource table info control block

• channel_created

IN direction — The RPMsg channel creation callback

• channel_destroyed

IN direction — The RPMsg channel deletion callback

• default_cb

IN direction — The default rx callback for the RPMsg channel

• rproc_handle

OUT direction — The pointer to a new remoteproc instance

Return Values
• RPROC_SUCCESS

The initialization completed successfully.

• RPROC_ERR_NO_RSC_TABLE

The resource table is not present in the ELF file.

• RPROC_ERR_CPU_ID

An invalid CPU ID was received from the HIL.

• RPROC_ERR_NO_MEM

An out-of-memory error occurred.

• RPROC_ERR_PARAM

The remoteproc Component
remoteproc_resource_init

OpemAMP Framework User Reference, 31

An invalid parameter was passed.

Description
This call performs the following operations:

• Consults HIL and identifies the CPU ID from the platform definition

• Populates the platform data structure with relevant HIL parameters

• Creates and initializes the RPMsg remote device on the remote side

• Parses firmware and obtains the resource table to make requested MMIO mappings
(optional step)

• Creates, initializes, and provides the rproc handle to the application

Related Topics

remoteproc API Functions

OpemAMP Framework User Reference,32

The remoteproc Component
remoteproc_resource_deinit

remoteproc_resource_deinit
Target Files:

• Prototype definition — open_amp/remoteproc/remoteproc.h

• Function definition — open_amp/remoteproc/remoteproc.c

This API is meant to be used on the remote processor for deinitializing the remoteproc
resources used by the remote firmware. It is a non-blocking call that returns a status.

Usage
int remoteproc_deinit(struct remote_proc *rproc);

Arguments
• Rproc

IN direction — The pointer to the remoteproc instance to deinitialize

Return Values
• RPROC_SUCCESS

The deinitialization completed successfully.

Description
This call performs the following operations:

• Reclaims memory allocated for hw_proc, rproc, and remote_device data structures

Related Topics

remoteproc Configurable Options
Some remoteproc parameters allow you to configure certain options through their
corresponding header files.

RPROC_BOOT_DELAY

File: open_amp\remoteproc\remoteproc.h

This is the time in milliseconds defined for remotproc on the master to wait to allow the remote
context to boot and initialize remoteproc. This parameter is required to make sure that the
RPMsg is initialized on the remote application, otherwise the notification from the master is lost
and the remote does not send the name service announcement.

remoteproc API Functions

The remoteproc Component
remoteproc_resource_deinit

OpemAMP Framework User Reference, 33

Related Topics

remoteproc API Functions

OpemAMP Framework User Reference,34

The remoteproc Component
remoteproc_resource_deinit

OpemAMP Framework User Reference, 35

Chapter 4
The RPMsg Component

The RPmsg APIs provided by the OpenAMP Framework allow RTOS, or bare metal-based
applications/drivers running on master and/or remote processors, to perform IPC in an AMP
configuration. The RPMsg component only implements the end-user facing APIs and defines
the protocol (message header format) component for inter processor communications. The
OpenAMP Framework implements a VirtIO-based transport abstraction on which RPMsg
performs shared memory based IPC. For VirtIO details please refer to “Virtio Concepts and
RPMsg Usage” on page 71.

RPMsg Channel
Every remote core in RPMsg component is represented by RPMsg device that provides a
communication channel between master and remote, hence RPMsg devices are also known as
channels.

RPMsg channel is identified by the textual name and local (source) and destination address. The
RPMsg framework keeps track of channels using their names.

RPMsg Endpoint
RPMsg endpoints provide logical connections on top of RPMsg channel. It allows the user to
bind multiple rx callbacks on the same channel.

Every RPMsg endpoint has a unique src address and associated call back function. When an
application creates an endpoint with the local address, all the further inbound messages with the
destination address equal to local address of endpoint are routed to that callback function. Every
channel has a default endpoint which enables applications to communicate without even
creating new endpoints.

OpemAMP Framework User Reference,36

The RPMsg Component
RPMsg Header

Figure 4-1. RPMsg Endpoints

RPMsg Header
Every RPMsg transfer starts with the RPMsg header, which contains addresses of Source and
Destination endpoints and payload information.

The RPMsg driver routes the message using the destination address. The header is provided
below:

struct rpmsg_hdr {
unsigned long src;
unsigned long dst;
unsigned long reserved;
unsigned short len;
unsigned short flags;
unsigned char data[0];

} __attribute__((packed));

The RPMsg channel and endpoint concept is depicted in Figure 4-1. The example considers a
hypothetical multicore system with core IDs P1, P2 and P3. P1 is the master and P2 and P3 are

The RPMsg Component
OpenAMP Framework RPMsg Driver

OpemAMP Framework User Reference, 37

remotes. The RPMsg packet transmitted from Master contains src address of Remote (P3)
endpoint as destination. Whereas the message from remote contains src address of Master in its
destination field. The RPMsg stack on respective cores routes the message to application based
on the destination address.

OpenAMP Framework RPMsg Driver
Next Figure shows major components present in the OpenAMP Framework RPMsg driver.
Communicating cores in the system are represented by the remote device. The remote device
encapsulates VirtIO device that provides transport services for RPMsg driver. Moreover, it
contains reference to RPMsg channels and endpoints associated with the channels. RPMsg
endpoints provide logical connections to remote cores on top of RPMsg channel. A default
endpoint is created during initialization and user provided callback is bound to it.
remoteproc_init API allows user to bind callbacks to default endpoint. The remoteproc_init API
internally uses rpmsg_init function to achieve callback binding. Users are allowed to create
additional endpoints for the given channel using rpmsg_create_ept API.

Figure 4-2. RPMsg Driver Components

OpemAMP Framework User Reference,38

The RPMsg Component
RPMsg API Usage

Applications use APIs provided by the RPMsg driver to communicate with the RPMsg
channels. When data is received from the application, RPMsg copies it to internal memory after
appending RPMsg header. It then searches the corresponding VirtIO device and places message
pointer in virtqueue, followed by a notification. rpmsg_send API is used to send data over
default endpoint. rpmsg_sendto, and rpmsg_send_offchannel APIs are used for directing
messages to any given application created endpoint.

RPMsg driver generates notifications for applications using callbacks for incoming messages.
The notification handling mechanism in RPMsg driver directs the message to applications
based on its destination address. There are two types of notifications events: Rx completion and
Channel Creation/Deletion events. Rx completion event is generated when data is received from
the communication counterpart. The channel creation/deletion events are triggered when Name
Service (NS) is received from the remote. Application binds callback to RPMsg driver using
rpmsg_create_ept API. A default callback is bound to the RPMsg channel during initialization.

RPMsg API Usage
RPMsg API usage is illustrated using a simple echo application.

The assumptions are as follows:

• The application software on the master processor uses remoteproc to load and execute
an echo application (remote firmware) on the remote processor

• After the remote application is running, an rpmsg channel is established between the
remote and master applications

• Any message sent by the master application to the remote application using rpmsg APIs
is echoed back to the master application

This example should serve as a reference for most typical use cases – where the master software
context would bring up the remote context, establish communication channel with it, and start
the IPC to offload the computation to the remote context.

RPMsg API Usage From the Master Software
Context

After bringing up the remote context, the user application is free to use rpmsg APIs for IPC with
remote context from that point onward.

Instructions for bringing up the remote context are present in “remoteproc API Usage” on
page 20.

The code snippet in Example 4-1 on page 39 showcases a sample master application that sends
messages to a remote, using the rpmsg_send API, then waits for an echo from the remote.

The RPMsg Component
RPMsg API Usage

OpemAMP Framework User Reference, 39

Example 4-1. Master Application With Echoes to Sender

#include "open_amp.h"

/* Application provided callbacks */
void rpmsg_channel_created(struct rpmsg_channel *rp_chnl);
void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl);
void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl,

void *data,
 int len,

void * priv,
unsigned long src);

/* Globals */
struct rpmsg_channel *app_rp_chnl;
char remote_fw_name []= "remote_firmware";
char s_buff[256];
char r_buff[256];

int main(int argc , void *argv) {

 struct remote_proc *proc;
 int idx ,i,ret;

 /* Initialize Remoteproc */
 ret = remoteproc_init((void *) remote_fw_name,

 rpmsg_channel_created,
 rpmsg_channel_deleted,

 rpmsg_rx_cb_t, &proc);

 /* Boot remote firmware */
 if(!ret && (proc))
 ret = remoteproc_boot(proc);

 if(!ret)
 {
 /* Block waiting for invocation of rpmsg channel created callback.

 */

 /* In RTOS environments control should block here
 on a blocking primitive, for example, semaphore, which would be
 released by the rpmsg channel created callback */

 /* In bare-metal environments, control should block here
 by spinning on a flag to be released by the rpmsg channel

 created callback */

 /* This is pseudo-code */
 wait()

 /* Setup the buffer with a pattern */
 memset(s_buff, 0xA5, sizeof(s_buff));

 /* Send data to remote side. */

 rpmsg_send(app_rp_chnl, s_buff, sizeof(s_buff));

OpemAMP Framework User Reference,40

The RPMsg Component
RPMsg API Usage

 /* Block waiting for invocation of rpmsg rx callback. */
 /* This is pseudo-code */
 wait();

 /* Verify the data received in r_buff */
 }

 /* Shut down the remote processor and de-initialize the system */
 remoteproc_shutdown(proc);
 remoteproc_deinit(proc);
}

void rpmsg_channel_created(struct rpmsg_channel *rp_chnl) {

 app_rp_chnl = rp_chnl;

 /* Release the context blocked on rpmsg channel creation callback
 invocation */

}

void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl) {

 /* Clean up application resources used by rpmsg */
}

void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl,
 void *data,
 int len,
 void * priv,
 unsigned long src) {

 /* Copy received data to application buffer */
 memcpy(r_buff,data,len);

 /* Release the context blocked on rpmsg rx callback invocation */
}

RPMsg API Usage From Remote Software Context
After the remote image is up and running, the user application waits for the channel creation
callback. The remote application is free to start communications with the master context from
that point onward.

Instructions for bringing up the remote context are present in “remoteproc API Usage” on
page 20.

The code example below shows an echo remote application that uses the RPMsg APIs to echo
data received from the master.

#include "open_amp.h"

/* Internal functions */
static void rpmsg_channel_created(struct rpmsg_channel *rp_chnl);
static void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl);

The RPMsg Component
RPMsg API Usage

OpemAMP Framework User Reference, 41

static void rpmsg_rx_cb_t(struct rpmsg_channel *, void *, int, void *,
unsigned long);

/* Globals */
static struct rpmsg_channel *app_rp_chnl;
static struct remote_proc *proc = NULL;
static struct rsc_table_info rsc_info;
extern const struct remote_resource_table resources;

/* Application entry point */
int main()
{
 int ret;

 rsc_info.rsc_tab = (struct resource_table *)&resources;
 rsc_info.size = sizeof(resources);

 /* Application specific initialization
 .
 .
 .*/

 /* Initialize remoteproc on the remote side */
 ret = remoteproc_resource_init(&rsc_info, rpmsg_channel_created,
 rpmsg_channel_deleted, rpmsg_rx_cb_t,

 &proc);

 if (ret)
 {

 printf("Error during initialization\r\n");
 }

 /* Wait in infinite loop – echo functionality is provided by callback
 functions*/

 while(1)
 {

 sleep(100);
 }

 return 0;
}

static void rpmsg_channel_created(struct rpmsg_channel *rp_chnl)
{
 /* New channel created, save its handle for subsequent reference */
 app_rp_chnl = rp_chnl;
}

static void rpmsg_channel_deleted(struct rpmsg_channel *rp_chnl)
{

/* perform any clean up required */
}

static void rpmsg_rx_cb_t(struct rpmsg_channel *rp_chnl, void *data,
 int len, void * priv, unsigned long src)

{
 /* Echo data back to master*/
 rpmsg_send(rp_chnl, data, len);
}

OpemAMP Framework User Reference,42

The RPMsg Component
RPMsg API Functions

RPMsg API Functions
The RPMSG framework provides following RPMsg APIs for messaging:

• rpmsg_send

• rpmsg_sendto

• rpmsg_send_offchannel

• rpmsg_trysend

• rpmsg_trysendto

• rpmsg_trysendoffchannel

• rpmsg_get_buffer_size

• rpmsg_create_ept

• rpmsg_destroy_ept

• rpmsg_chnl_cb_t

• rpmsg_rx_cb_t

The RPMsg Component
rpmsg_send

OpemAMP Framework User Reference, 43

rpmsg_send
Target Files:

• Function definition — open_amp/rpmsg/rpmsg.h

This function sends user provided data of specified size to the default endpoint associated with
the RPMsg channel. If no TX buffers are available, the API will either block until one becomes
available or a timeout of 15 seconds elapses. This function copies the data in its internal buffer
so the caller can reclaim the buffer once this call has been returned.

Usage
static inline int rpmsg_send(struct rpmsg_channel *rpdev,

 void *data,
 int len);

Arguments
• rpdev

IN direction — The pointer to the RPMsg device

• data

IN direction — The pointer to the buffer containing data

• len

IN direction — The size of the data, in bytes, to transmit

Return Values
• RPMSG_SUCCESS

The operation completed successfully.

• RPMSG_ERR_PARAM

An invalid parameter was received.

• RPMSG_ERR_DEV_STATE

The remote device is in an invalid state. The device is not in a ready state yet.

• RPMSG_ERR_NO_MEM

An out-of-memory error was received.

• RPMSG_ERR_NO_BUFF

No buffer is present in the virtqueue.

Related Topics

RPMsg API Functions

OpemAMP Framework User Reference,44

The RPMsg Component
rpmsg_sendto

rpmsg_sendto
Target Files:

• Function definition — open_amp/rpmsg/rpmsg.h

This function sends user provided data of specified size to the RPMsg device endpoint with
specfied destination address. In case there are no TX buffers available, the API will block until
one becomes available, or a timeout of 15 seconds elapses. This function copies the data in its
internal buffer so the caller can reclaim the buffer once this call has been returned.

Usage
static inline int rpmsg_sendto(struct rpmsg_channel *rpdev,

 void *data,
 int len,
 unsigned long dst);

Arguments
• rpdev

IN direction — The pointer to the RPMsg device

• data

IN direction — The pointer to the buffer containing data

• len

IN direction — The size of the data, in bytes, to transmit

• dst

IN direction — The destination address of the message

Return Values
• RPMSG_SUCCESS

The operation completed successfully.

• RPMSG_ERR_PARAM

An invalid parameter was received.

• RPMSG_ERR_DEV_STATE

The remote device is in an invalid state. The device is not in a ready state yet.

• RPMSG_ERR_NO_MEM

An out-of-memory error was received.

• RPMSG_ERR_NO_BUFF

No buffer is present in the virtqueue.

The RPMsg Component
rpmsg_sendto

OpemAMP Framework User Reference, 45

Related Topics

RPMsg API Functions

OpemAMP Framework User Reference,46

The RPMsg Component
rpmsg_send_offchannel

rpmsg_send_offchannel
Target Files:

• Function definition — open_amp/rpmsg/rpmsg.h

This function sends a message using explicit src/dst addresses. In case there are no TX buffers
available, the API will block until one becomes available, or a timeout of 15 seconds elapses.
This function copies the data in its internal buffer so the caller can reclaim the buffer once this
call has been returned.

Usage
static inline int rpmsg_send_offchannel(struct rpmsg_channel *rpdev,

 unsigned long src,
 unsigned long dst,
 void *data,
 int len);

Arguments
• rpdev

IN direction — The pointer to the RPMsg device

• src

IN direction — The source address of the message

• dst

IN direction — The destination address of the message

• data

IN direction — The pointer to the buffer containing data

• len

IN direction — The size of the data, in bytes, to transmit

Return Values
• RPMSG_SUCCESS

The operation completed successfully.

• RPMSG_ERR_PARAM

An invalid parameter was received.

• RPMSG_ERR_DEV_STATE

The remote device is in an invalid state. The device is not in a ready state yet.

• RPMSG_ERR_NO_MEM

An out-of-memory error was received.

The RPMsg Component
rpmsg_send_offchannel

OpemAMP Framework User Reference, 47

• RPMSG_ERR_NO_BUFF

No buffer is present in the virtqueue.

Related Topics

RPMsg API Functions

OpemAMP Framework User Reference,48

The RPMsg Component
rpmsg_trysend

rpmsg_trysend
Target Files:

• Function definition — open_amp/rpmsg/rpmsg.h

This function sends user-provided data of specified size to the default endpoint associated with
the RPMsg channel. The src and the dst address are that of the RPMsg channel itself. In case
there are no TX buffers available, the API will immediately return with an error code. This
function copies the data in its internal buffer so the caller can reclaim the buffer once this
function has been returned.

Usage
static inline int rpmsg_trysend(struct rpmsg_channel *rpdev,

 void *data,
 int len);

Arguments
• rpdev

IN direction — The pointer to the RPMsg device

• data

IN direction — The pointer to the buffer containing data

• len

IN direction — The size of the data, in bytes, to transmit

Return Values
• RPMSG_SUCCESS

The operation completed successfully.

• RPMSG_ERR_PARAM

An invalid parameter was received.

• RPMSG_ERR_DEV_STATE

The remote device is in an invalid state. The device is not in a ready state yet.

• RPMSG_ERR_NO_MEM

An out-of-memory error was received.

• RPMSG_ERR_NO_BUFF

No buffer is present in the virtqueue.

Related Topics

RPMsg API Functions

The RPMsg Component
rpmsg_trysendto

OpemAMP Framework User Reference, 49

rpmsg_trysendto
Target Files:

• Function definition — open_amp/rpmsg/rpmsg.h

This function sends user-provided data of specified size to the RPMsg device endpoint with the
specfied destination address. In case there are no TX buffers available, the API will
immeditately return with an error code. This function copies the data in its internal buffer so the
caller can reclaim the buffer once this call has been returned.

Usage
static inline int rpmsg_trysendto(struct rpmsg_channel *rpdev,

 void *data,
 int len,
 unsigned long dst);

Arguments
• rpdev

IN direction — The pointer to the RPMsg channel

• data

IN direction — The pointer to the buffer containing data

• len

IN direction — The size of the data, in bytes, to transmit

• dst

IN direction — The destination address of the message

Return Values
• RPMSG_SUCCESS

The operation completed successfully.

• RPMSG_ERR_PARAM

An invalid parameter was received.

• RPMSG_ERR_DEV_STATE

The remote device is in an invalid state. The device is not in a ready state yet.

• RPMSG_ERR_NO_MEM

An out-of-memory error was received.

• RPMSG_ERR_NO_BUFF

No buffer is present in the virtqueue.

OpemAMP Framework User Reference,50

The RPMsg Component
rpmsg_trysendto

Related Topics

RPMsg API Functions

The RPMsg Component
rpmsg_trysendoffchannel

OpemAMP Framework User Reference, 51

rpmsg_trysendoffchannel
Target Files:

• Prototype definition — open_amp/rpmsg/rpmsg.h

• Function definition — open_amp/rpmsg/rpmsg.c

This function sends messages to the default endpoint associated with the RPMsg channel. In
case there are no TX buffers available, the API will immediately return with an error code. This
function copies the data in its internal buffer so the caller can reclaim the buffer once this call
has been returned.

Usage
int rpmsg_trysendoffchannel(struct rpmsg_channel *rp_chnl,

 unsigned long src,
 unsigned long dst,
 char *data,
 int len);

Arguments
• rp_chnl

IN direction — The pointer to the RPMsg channel

• src

IN direction — The source address of the message

• dst

IN direction — The destination address of the message

• data

IN direction — The pointer to the buffer containing data

• len

IN direction — The size of the data, in bytes, to transmit

Return Values
• RPMSG_SUCCESS

The operation completed successfully.

• RPMSG_ERR_PARAM

An invalid parameter was received.

• RPMSG_ERR_DEV_STATE

The remote device is in an invalid state. The device is not in a ready state yet.

• RPMSG_ERR_NO_MEM

OpemAMP Framework User Reference,52

The RPMsg Component
rpmsg_trysendoffchannel

An out-of-memory error was received.

• RPMSG_ERR_NO_BUFF

No buffer is present in the virtqueue.

Related Topics

RPMsg API Functions

The RPMsg Component
rpmsg_get_buffer_size

OpemAMP Framework User Reference, 53

rpmsg_get_buffer_size
Target Files:

• Prototype definition — open_amp/rpmsg/rpmsg.h

• Function definition — open_amp/rpmsg/rpmsg.c

This function returns the size of the buffer that is available for sending messages.

Usage
int rpmsg_get_buffer_size(struct rpmsg_channel *rp_chnl);

Arguments
• rp_chnl

IN direction — The pointer to the RPMsg channel

Return Values
• RPMSG_SUCCESS

The operation completed successfully.

• RPMSG_ERR_PARAM

An invalid parameter was passed.

• RPMSG_ERR_DEV_STATE

The remote device is in an invalid state. The device is not in a ready state yet.

Related Topics

RPMsg API Functions

OpemAMP Framework User Reference,54

The RPMsg Component
rpmsg_create_ept

rpmsg_create_ept
Target Files:

• Prototype definition — open_amp/rpmsg/rpmsg.h

• Function definition — open_amp/rpmsg/rpmsg.c

This function creates a new endpoint for a given RPMsg channel and returns it to the caller.

Usage
struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_channel *rp_chnl,

 rpmsg_rx_cb_t cb,
 void *priv,
 unsigned long addr);

Arguments
• rp_chnl

IN direction — The pointer to the RPMsg channel.

• cb

IN direction — The rx callback function for the endpoint.

• priv

IN direction — Any private data; provided as a parameter in the callback.

• addr

IN direction — The local (src) address of the endpoint. If RPMSG_ADDR_ANY is passed
as an address, the RPMsg driver chooses the address itself.

Return Values
• RPMSG_NULL

This value returns only if an error occurs; otherwise, a valid pointer returns.

Related Topics

RPMsg API Functions

The RPMsg Component
rpmsg_destroy_ept

OpemAMP Framework User Reference, 55

rpmsg_destroy_ept
Target Files:

• Prototype definition — open_amp/rpmsg/rpmsg.h

• Function definition — open_amp/rpmsg/rpmsg.c

This function deletes the RPMsg endpoint and reclaims resources.

Usage
void rpmsg_destroy_ept(struct rpmsg_endpoint *rp_ept);

Arguments
• rp_ept

IN direction — The pointer to the RPMsg endpoint to deinitialize

Return Values
None.

Related Topics

RPMsg API Functions

OpemAMP Framework User Reference,56

The RPMsg Component
rpmsg_chnl_cb_t

rpmsg_chnl_cb_t
This is a typdef for channel creation/deletion callback that an application registers with the
rpmsg driver during calls to remoteproc_init and remoteproc_resource_init functions.

An example channel creation callback function declaration is provided under Usage.

Usage
void rpmsg_chnl_cb_t(struct rpmsg_channel *rp_chnl);

Arguments
• rp_chnl

IN direction — The pointer to the created RPMsg channel

Related Topics

RPMsg API Functions

The RPMsg Component
rpmsg_rx_cb_t

OpemAMP Framework User Reference, 57

rpmsg_rx_cb_t
Target Files:

• Function definition — open_amp/rpmsg/rpmsg_core.h

This is a typedef for the data rx completion callback function that an application must provide
during calls to remoteproc_init and rpmsg_create_ept functions. This callback is invoked by
the RPMsg driver when data is received. The application must copy the data to the local buffer
before returning this callback fucnction.

An example rx callback function declaration is provided under Usage.

Usage
void rpmsg_rx_complete (struct rpmsg_channel *rp_chnl,

 void *data,
 int len,
 void *priv,
 unsigned long src);

Arguments
• rp_chnl

IN direction — The pointer to the RPMsg channel on which data is received.

• data

IN direction — The buffer containing received data.

• len

IN direction — The size of data received, in bytes

• priv

IN direction — Any private data provided during endpoint creation

• src

IN direction — The address of the endpoint from which data is received

Related Topics

RPMsg Configurable Options
Some RPMsg parameters allow you to configure certain options through their corresponding
header files.

RPMSG_BUFFER_SIZE

File : open_amp/rpmsg/rpmsg_core.h

RPMsg API Functions

OpemAMP Framework User Reference,58

The RPMsg Component
rpmsg_rx_cb_t

Buffer size supported by the RPMsg driver. To transmit data size greater than this value, you
will have to split it into buffer size blocks.

RPMSG_MAX_VQ_PER_RDEV

File : open_amp/rpmsg/rpmsg_core.h

Maximum virtual queues (“virtqueues”) per remote device. Currently only two virtqueues are
supported.

RPMSG_NS_EPT_ADDR

File : open_amp/rpmsg/rpmsg_core.h

Address of name service endpoint. It can be changed safely for a Nucleus-Nucleus and Nucleus-
bare metal configuration, but for Linux master, the address must be same as that defined by the
Linux RPMsg bus driver.

RPMSG_ADDR_BMP_SIZE

File : open_amp/rpmsg/rpmsg_core.h

Size of the bitmap array used to keep track of free and used endpoint addresses.

Related Topics

RPMsg API Functions

OpemAMP Framework User Reference, 59

Chapter 5
Proxy Infrastructure

The OpenAmp Framework provides a proxy infrastructure that provides a transparent interface
to RTOS and bare metal-based remote contexts from Linux user space applications running on
the master processor. Read the following sections for a description of this infrastructure.

Proxy Infrastructure Overview
The proxy application essentially hides all the logistics involved in bringing-up the remote
software context and its shutdown sequence. In addition, it supports RPCs from remote context
using system calls such as “_open”, “_close”, “_read”, and “_write”. In remote context, these
system calls are retargeted to proxy applications running on the master over rpmsg for service.

The proxy infrastructure consists of the following:

• A proxy application running as a Linux user space application on the master processor

• An rpmsg-retargeting API available for use from RTOS or bare metal contexts running
on the remote processor

The rpmsg-retargeting API allows C library calls from the remote software context to be
retargeted over rpmsg-based IPC (as an RPC) to the dedicated proxy application running as a
user space Linux application on the master processor. The proxy application handles the remote
procedure calls, allowing the remote context to perform useful operations like printf, scanf, and
fileIO to STDIO and file handles available on the Linux master. For example, a printf() call
from the remote software application context would print the message to the STDOUT
(console) of the proxy application running on Linux on the master processor; similarly for
scanf, and file IO as well. This capability can be very useful for development and debugging of
remote applications.

Figure 5-1 illustrates the proxy infrastructure.

OpemAMP Framework User Reference,60

Proxy Infrastructure
Usage of Proxy Infrastructure on Master

Figure 5-1. The Proxy Infrastructure

Usage of Proxy Infrastructure on Master
On the master Linux OS, the proxy application is to be executed with the path to the remote
firmware image.

>proxy_app –f <path_to_remote_firmware>

For more information on creating a firmware image, see “Creation and Boot of Remote
Firmware Using remoteproc” on page 18.

The proxy app performs all logistics required to do the following:

• Load the necessary kernel drivers

• Load and execute the remote firmware application

• Establish rpmsg channel and system endpoint connections with remote context.

After the proxy application is running, system calls such as “_open”, “_close”, “_read”, and
“_write” on the remote side are forwarded to the proxy application for service, enabling the

Proxy Infrastructure
Usage of Proxy Infrastructure on Remote

OpemAMP Framework User Reference, 61

remote context to access the STDIO and file handles available on the master. To terminate the
remote context, you can either end the proxy application (SIGTERM), interrupt the application
using CTRL + C (SIGINT), or close the console (SIGHUP). This causes the proxy application
on master to perform the following:

• Transmit a shutdown request to the remote

• Unload relevant kernel drivers

• Bring the system back to a pristine state

The proxy user space application running on the master requires the rpmsg_proxy_dev_driver
kernel driver, which creates the rpmsg_proxy device and exposes the rpmsg proxy services to
the proxy application in user space. Along with this, other user developed rpmsg kernel drivers
can create application specific character devices to expose rpmsg based IPC services to user
space. User space applications access these application-specific rpmsg devices to realize the
application IPC needs. The proxy app merely serves as a Linux user space application that hides
the logistics of managing the remote firmware from the user and enables debugging of remote
applications.

Usage of Proxy Infrastructure on Remote
On the remote side, the proxy infrastructure provides an rpmsg_retarget API. Once the rpmsg
channel is established with the master (by invocation of channel creation callback), the
application can invoke the rpmsg_retarget_init API. This latter API creates a new rpmsg
endpoint (address 127) dedicated to be the system endpoint to forward remote procedure calls to
the proxy on the master and process RPC response from the master.

When the RX callback registered with the system endpoint receives a shutdown request from
the master, the remote application should invoke the rpmsg_retarget_deinit API, which destroys
the system endpoint and shuts down the rpmsg-based retargeting infrastructure used for RPC.
The reference implementation provides a sample implementation that showcases the usage of
this API.

OpemAMP Framework User Reference,62

Proxy Infrastructure
Usage of Proxy Infrastructure on Remote

OpemAMP Framework User Reference, 63

Chapter 6
OpenAMP Framework Porting Guidelines

The OpenAMP Framework provides abstractions that allow for porting of the OpenAMP
Framework to various software environments (operating systems and bare-metal environments)
and hardware platforms (processors/platforms). The source code for porting components reside
in the OPENAMP/porting/ directory.

Table 6-1 shows the the OpenAMP Framework porting layer information.

The high level components, such as RPMSG and Remoteproc, use abstractions provided by the
HIL component present in the OPENAMP/common/hil directory to access the platform and
configuration porting pieces. The environment abstractions are directly used by the high level
components.

The description of various files present in the HIL component is provided in the Table 6-2.

Table 6-1. OpenAMP Framework Porting Layers

Directory Description

OPENAMP/porting/config System level configuration options

OPENAMP/porting/<platform_name> Patform porting component

OPENAMP/porting/env Software environment interface layer that contains
abstractions for RTL functions and OS/BM
environment features

Table 6-2. OpenAMP HIL Files

Directory Description

OPENAMP/common/hil/hil.h This is generic code that will not require porting.
Exposes public interface of HIL to higher level
software modules (rpmsg, remoteproc). It also
defines interface for platform and config porting
components.

OPENAMP/common/hil/hil.c This is generic code that will not require porting.
Implements the HIL APIs that enable higher layers
to access the HIL data structures.

OpemAMP Framework User Reference,64

OpenAMP Framework Porting Guidelines
Platform Porting Overview

The description of various files present in the platform porting component is provided in
Table 6-3. Users are expected to provide definitions for porting functions in these files.

Platform Porting Overview
Platform porting consists of three general steps.

The steps for platform porting are as follows:

1. Implement mechanics for obtaining platform-specific info. This includes the CPU ID
and its associated configuration, shared memory regions, IPI, virtio device information,
rpmsg channel information, and so forth.

2. Implement platform specific code for enabling and triggering IPIs for rpmsg, defined by
hil_platform_ops (<open_amp>/common/hil/hil.h).

3. Implement platform specific code for booting and shutting down remote contexts for the
remoteproc, defined by hil_platform_ops.

Table 6-3. HIL File Changes

File Name Description

OPENAMP/porting/<platform_name>
/platform.h

This is a processor/platform-specific header. You
define platform-specific definitions for the new
processor/platform in this file.

OPENAMP/porting/<platform_name>
/platform.c

This is a processor/platform-specific file in which
you are expected to implement the functions defined
in the hil_platform_ops function table.

OPENAMP/porting/<platform_name>
/platform_info.c

This file consists of APIs that fetch platform-
specific information required by the OpenAMP
Framework. You are expected to define this
information and implement mechanics to obtain this
platform specific information based on software
environment and hardware platform to be used.

The reference implementation puts this file to use to
obtain platform-specific information for the
ZC702EVK platform, for both Nucleus RTOS and
bare metal-based software environments.

For reference, see
<$OPENAMP>/porting/zc702evk/platform_info.c.

OpenAMP Framework Porting Guidelines
Platform-Specific APIs

OpemAMP Framework User Reference, 65

Platform-Specific APIs
Platform information (CPU ID, shared memory, interrupts, and channels information) is
obtained during the call to the hil_create_proc API, which invokes platform porting APIs.

The following platform porting APIs are invoked by the hil_create_proc API:

• platform_get_processor_info

• platform_get_processor_for_fw

These APIs are invoked on a per-processor basis to obtain platform-specific information.
Ensure you provide implementation of these APIs for each new platform/configuration in the
platform_info.c file.

platform_get_processor_info

This function accepts a pointer to hil_proc structure and CPU ID as parameters. The successful
return from this function should populate all fields of the proc_shm, proc_intr, and proc_chnl
control blocks and CPU ID fields of the “hil_proc” data structure. The proc_chnl structure
elements are required to be populated only when the OpenAMP Framework is used with remote
software contexts. Moreover, for remote contexts, this function is called with the
HIL_RSVD_CPU_ID parameter to indicate that the platform information is requested for the
master.

Consider an example of platform information provided by bare-metal applications. The
application defines a hil_proc structure(example_node) and populates only the platform-
specific fields leaving rest of fields empty. The platform_get_processor_info function copies
the contents of this structure to hil_proc structure passed as a parameter. These nodes must be
defined for each core present in the system.

For example, if there is a system with three cores, then for the master context, two such nodes
would be defined corresponding to each remote. In the case of the remote, only one node is
required (for the master, since each remote can have one master only).

struct hil_proc example_node =
{
 /* CPU node for remote context */
 {
 /* CPU ID of master */
 MASTER_CPU_ID,
 /* Shared memory info - Last field is not used currently */
 {
 SHM_ADDR, SHM_SIZE, 0x00
 },
 /* VirtIO device info */
 {
 /* Leave these three fields empty as these are obtained from

rsc
 * table.
 */

OpemAMP Framework User Reference,66

OpenAMP Framework Porting Guidelines
Platform-Specific APIs

 0, 0, 0,
 /* Vring info */
 {
 {
 /* Provide only vring interrupts info here. Other

fields are
 * obtained from the resource table so leave them

empty.
 */
 NULL, NULL, 0, 0,
 {
 VRING0_IPI_VECT,IPI_PRIORITY,IPI_POLARITY,NULL
 }
 },
 {
 NULL, NULL, 0, 0,
 {
 VRING1_IPI_VECT, IPI_PRIORITY,IPI_POLARITY,NULL
 }
 }
 }
 },
 /* Number of RPMSG channels */
 1,
 /* RPMSG channel info */
 {
 {"rpmsg-openamp-demo-channel"}
 },
 /* HIL platform ops table. */
 NULL,
 /* Next three fields are for future use only */
 0,
 0,
 NULL
 }

int platform_get_processor_info(struct hil_proc *proc , int cpu_id) {
 int idx;
 for(idx = 0; idx < sizeof(proc_table)/sizeof(struct hil_proc); idx++)
{
 if((cpu_id == HIL_RSVD_CPU_ID) || (proc_table[idx].cpu_id ==
cpu_id)) {
 env_memcpy(proc,&proc_table[idx], sizeof(struct hil_proc));
 return 0;
 }
 }
 return -1;
}

The other option is to populate the required structures individually and copy them one by one to
the hil_proc structure in the platform_get_processor_info function. The following code
illustrates this scenario.

#define CPU_ID 1
#define NUM_CHANNELS 1

struct proc_shm ex_shm = {

OpenAMP Framework Porting Guidelines
Platform-Specific APIs

OpemAMP Framework User Reference, 67

 SHM_ADDR, SHM_SIZE, 0x00
 };

struct proc_chnl ex_chnl = {
 "rpmsg-openamp-demo-channel"};
};

struct proc_intr ex_intr = {
 VRING1_IPI_VECT, IPI_PRIORITY, IPI_POLARITY
};

int platform_get_processor_info(struct hil_proc *proc , int cpu_id) {
 emv_memcpy(&proc-> sh_buff , &ex_shm , sizeof(struct proc_shm));
 emv_memcpy(&proc-> chnls, &ex_chnl , sizeof(struct proc_chnl));
 emv_memcpy(&proc-> vdev.vring_info[0].intr_info, &ex_intr ,

 sizeof(struct proc_intr));
 emv_memcpy(&proc-> vdev.vring_info[1].intr_info, &ex_intr ,
 sizeof(struct proc_intr));

 return 0;
}

platform_get_processor_for_fw

This function returns the CPU ID for the given firmware name. The platform information is
expected to provide the necessary firmware bindings to CPU ID. This implementation is
required only when the OpenAMP Framework is used with master software contexts.

APIs to Implement to Provide Platform-Specific
Functionality

The hil_platform_ops data structure defines specific functions that you are required to
implement. The hil_platform_ops reference is saved in the hil_proc structure in the
platform_get_processor_info call. Implementation of these functions should be provided in the
platform.c file.

The following platform-specific functions need to be implemented.

enable_interrupt

This function enables APIs for virtio notification and registers the interrupt handler for them.

notify

This function triggers interrupts to let the other core know that there is data available for
processing.

get_status

This function is for future use.

OpemAMP Framework User Reference,68

OpenAMP Framework Porting Guidelines
Configuration Porting

set_status

This function is for future use.

boot_cpu

Boot the remote CPU specified by CPU ID at the load address passed in as parameter.

shutdown_cpu

Shuts down the remote CPU specified by CPU ID.

Configuration Porting
The configuration porting component provides system level configuration abstractions such as
obtaining firmware for the master and interrupts registery info.

Currently it requires users to implement only the config_get_firmware function for retrieving
remote firmware. The function signature is present in the <open_amp>/porting/config/config.h
file.

Environment Porting
The env directory contains the file env.h, which declares all the environment-specific APIs
required by the OpenAMP Framework. The OpenAMP Framework reference implementation
for Zynq ZC702EVK contains environmental API implementations/abstractions for Nucleus
RTOS, and simple bare metal execution environments. This reference implementation for Zynq
should serve as a good starting point for enabling other new environments.

Table 6-4 presents the key environment APIs and a brief description their expected
functionality/implementation.

OpenAMP Framework Porting Guidelines
Environment Porting

OpemAMP Framework User Reference, 69

Table 6-4. Environment Porting APIs

API Expected functionality

env_init, env_deinit Implements the OpenAMP Framework
required, environment-specific initialization
and deinitialization (for example, in the
reference implementation).

For Nucleus RTOS environments: init API
sets up the Nucleus kernel objects (Task,
Queue) required by the OpenAMP
Framework, and deinit cleans up the
resources initialized.

For bare-metal environments: These APIs
are stubs that do nothing.

env_allocate_memory, env_deallocate_memory Implements environment-specific dynamic
memory allocation and de-allocation
primitives.

env_memset, env_memcpy, env_strlen,
env_strcpy, env_strcmp, env_strncpy,
env_strncmp, env_print

Implements env-layer mapping for the
toolset and provides C library primitives
used by the OpenAMP Framework. You
can provide your own implementation of
these APIs to enable the OpenAMP
Framework to be used in embedded
environments that do not have toolset-
provided C libraries available.

env_map_vatopa, env_map_patova Implements environment-provided
primitives to convert physical address to
virtual address and the other way around as
well.

env_mb, env_rmb, env_wmb Implements memory barriers using
environment-provided primitives.

OpemAMP Framework User Reference,70

OpenAMP Framework Porting Guidelines
Environment Porting

env_create_mutex, env_lock_mutex,
env_unlock_mutex, env_delete_mutex

Implements protection mechanisms
depending on the software environment.
In the case of RTOS, this API can use
RTOS provided mutex or binary semaphore
primitives to provide env-layer abstractions
for protecting access to shared resources.

In the case of bare-metal environments
where threading capability is typically not
present, this API can disable interrupts
globally to protect access to shared
resources.

env_create_sync_lock, env_acquire_sync_lock,
env_release_sync_lock, env_delete_sync_lock

Implements synchronization mechanisms
depending on the software environment.
In the case of RTOS, this API can use
RTOS-provided blocking primitives like
semaphores to enable synchronization.

In the case of bare metal, this API can use
atomic spinlocks to enable synchronization.

env_disable_interrupts, env_restore_interrupts Implements global interrupt enablement and
disablement abstractions using
environment-provided primitives.

env_sleep_msec Implements timed sleep abstraction using
environment-provided primitives.

env_enable_interrupt, env_disable_interrupt,
env_register_isr

Implements environmental abstraction to
control processor interrupts on a per
interrupt basis using environment-provided
primitives.

env_map_memory Implements environment abstraction to
create a MMU tlb entry for a user-specified
memory region using environment-
provided primitives.

Table 6-4. Environment Porting APIs (cont.)

OpemAMP Framework User Reference, 71

Appendix A
Virtio Concepts and RPMsg Usage

The virtio transport abstraction was originally developed for para-virtualization of Linux-based
guests for lguest and KVM hypervisors. It serves as a standardized interface that lguest, KVM,
and Mentor Embedded Hypervisors provide for IO virtualization of system resources for the
guest operating systems like Linux and Nucleus RTOS. The Linux rpmsg bus driver leverages
the virtio implementation in the Linux kernel to enable IPC for Linux in master and remote
configurations.

Figure A-1. Virtio Concepts

The RPMsg framework’s virtio implementation is adopted from the FreeBSD kernel with the
addition of a couple of APIs. The rpmsg component uses virtio-provided interfaces to transmit
and receive data with its counterpart. As a transport abstraction, virtio provides two key
interfaces to upper level users (illustrated in Figure A-1):

OpemAMP Framework User Reference,72

Virtio Concepts and RPMsg Usage

• It provides a “virtio device” abstraction that allows a user driver to instantiate its own
instance of a virtio device. It also allows for negotiation of the features and functionality
supported by this user device (such as the rpmsg driver) by providing implementations
of functions in virtio device config operations.

• It provides a “virtqueue” API that allows user drivers to transmit and receive data with
the communicating counterpart using the virtqueue vring infrastructure.

The virtio implementation in the RPMsg framework (and in Linux) consists of the following:

• A buffer management component called “VRING,” which is a ring data structure to
manage buffer descriptors located in shared memory (Figure A-2)

• A notification mechanism to notify the communicating counterpart the availability of
data to processed in the associated VRING.

Inter-Processor Interrupts (IPIs) are normally used for notifications. The virtqueue is a user
abstraction that includes the VRING data structure with some supplemental fields, and APIs to
allow user drivers to transmit and receive shared memory buffers. Each rpmsg channel contains
two virtqueues associated with it: a tx virtqueue for master to uni-directionally transmit data to
remote, and a rx virtqueue for remote to uni-directionally transmit data to master.

During the initialization of rpmsg, the following tasks are performed:

• The master context creates both the TX and RX virtqueues, and initializes the
corresponding VRINGs with buffers from shared memory.

• A dedicated shared memory manager component within the RPMsg framework provides
fixed-size buffers from a predefined shared memory space defined in HIL.

• The master transmits data to the remote by obtaining buffers referenced by descriptors in
the TX virtqueue

• The master populates the virtque buffers with data, and notifies the corresponding
remote using notification mechanisms defined in the HIL.

Virtio Concepts and RPMsg Usage

OpemAMP Framework User Reference, 73

Figure A-2. The Virtqueue and Vring

The remote transmits data to master by obtaining buffers referenced by descriptors in RX
virtqueue, populating them with data, and notifying the master using notification mechanisms
defined in the HIL. On receiving data, virtio calls the rpmsg driver registered RX call back with
reference to data received. The data is further processed by the RPMsg driver for delivery to
application registered callbacks.

OpemAMP Framework User Reference,74

Virtio Concepts and RPMsg Usage

Third-Party Information

• Third-Party Software for Embedded Products

Embedded Software and Hardware License Agreement

The latest version of the Embedded Software and Hardware License Agreement is available on-line at:
www.mentor.com/eshla

EMBEDDED SOFTWARE AND HARDWARE LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Products (as defined in Section 1) between the company acquiring the
Products (“Customer”), and the Mentor Graphics entity that issued the corresponding quotation or, if no quotation was
issued, the applicable local Mentor Graphics entity (“Mentor Graphics”). Except for license agreements related to the
subject matter of this license agreement which are physically signed by Customer and an authorized representative of
Mentor Graphics, this Agreement and the applicable quotation contain the parties' entire understanding relating to the
subject matter and supersede all prior or contemporaneous agreements. If Customer does not agree to these terms and
conditions, promptly return or, in the case of Products received electronically, certify destruction of Products and all
accompanying items within five days after receipt of such Products and receive a full refund of any license fee paid.

1. Definitions. As used in this Agreement and any applicable quotation, supplement, attachment and/or addendum (“Addenda”),
these terms shall have the following meanings:

1.1. “Customer’s Product” means Customer’s end-user product identified by a unique SKU (including any Related SKUs) in
an applicable Addenda that is developed, manufactured, branded and shipped solely by Customer or an authorized
manufacturer or subcontractor on behalf of Customer to end-users or consumers;

1.2. “Developer” means a unique user, as identified by a unique user identification number, with access to Embedded
Software at an authorized Development Location. A unique user is an individual who works directly with the embedded
software in source code form, or creates, modifies or compiles software that ultimately links to the Embedded Software
in Object Code form and is embedded into Customer’s Product at the point of manufacture;

1.3. “Development Location” means the location where Products may be used as authorized in the applicable Addenda;

1.4. “Development Tools” means the software that may be used by Customer for building, editing, compiling, debugging or
prototyping Customer’s Product;

1.5. “Embedded Software” means Software that is embeddable;

1.6. “End-User” means Customer’s customer;

1.7. “Executable Code” means a compiled program translated into a machine-readable format that can be loaded into memory
and run by a certain processor;

1.8. “Hardware” means a physically tangible electro-mechanical system or sub-system and associated documentation;

1.9. “Linkable Object Code” or “Object Code” means linkable code resulting from the translation, processing, or compiling
of Source Code by a computer into machine-readable format;

1.10. “Mentor Embedded Linux” or “MEL” means Mentor Graphics' tools, source code, and recipes for building Linux
systems;

1.11. “Open Source Software” or “OSS” means software subject to an open source license which requires as a condition for
redistribution of such software, including modifications thereto, that the: (i) redistribution be in source code form or be
made available in source code form; (ii) redistributed software be licensed to allow the making of derivative works; or
(iii) redistribution be at no charge;

1.12. “Processor” means the specific microprocessor to be used with Software and implemented in Customer’s Product;

1.13. “Products” means Software, Term-Licensed Products and/or Hardware;

1.14. “Proprietary Components” means the components of the Products that are owned and/or licensed by Mentor Graphics
and are not subject to an Open Source Software license, as more fully set forth in the product documentation provided
with the Products;

IMPORTANT INFORMATION

USE OF ALL PRODUCTS IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE PRODUCTS. USE OF PRODUCTS INDICATES

CUSTOMER’S COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND
CONDITIONS SET FORTH IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE

ORDER TERMS AND CONDITIONS SHALL NOT APPLY.

http://www.mentor.com/eshla

1.15. “Redistributable Components” means those components that are intended to be incorporated or linked into Customer’s
Linkable Object Code developed with the Software, as more fully set forth in the documentation provided with the
Products;

1.16. “Related SKU” means two or more Customer Products identified by logically-related SKUs, where there is no difference
or change in the electrical hardware or software content between such Customer Products;

1.17. “Software” means software programs, Embedded Software and/or Development Tools, including any updates,
modifications, revisions, copies, documentation and design data that are licensed under this Agreement;

1.18. “Source Code” means software in a form in which the program logic is readily understandable by a human being;

1.19. “Sourcery CodeBench Software” means Mentor Graphics’ Development Tool for C/C++ embedded application
development;

1.20. “Sourcery VSIPL++” is Software providing C++ classes and functions for writing embedded signal processing
applications designed to run on one or more processors;

1.21. “Stock Keeping Unit” or “SKU” is a unique number or code used to identify each distinct product, item or service
available for purchase;

1.22. “Subsidiary” means any corporation more than 50% owned by Customer, excluding Mentor Graphics competitors.
Customer agrees to fulfill the obligations of such Subsidiary in the event of default. To the extent Mentor Graphics
authorizes any Subsidiary’s use of Products under this Agreement, Customer agrees to ensure such Subsidiary’s
compliance with the terms of this Agreement and will be liable for any breach by a Subsidiary; and

1.23. “Term-Licensed Products” means Products licensed to Customer for a limited time period (“Term”).

2. Orders, Fees and Payment.

2.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of
this Agreement and any applicable Addenda, whether or not these documents are referenced on the Order. Any additional
or conflicting terms and conditions appearing on an Order will not be effective unless agreed in writing by an authorized
representative of Customer and Mentor Graphics.

2.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. All invoices will be sent electronically to Customer on the date stated on the invoice unless otherwise specified
in an Addendum. Any past due invoices will be subject to the imposition of interest charges in the amount of one and
one-half percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include
freight, insurance, customs duties, taxes or other similar charges, which Mentor Graphics will state separately in the
applicable invoice(s). Unless timely provided with a valid certificate of exemption or other evidence that items are not
taxable, Mentor Graphics will invoice Customer for all applicable taxes including, but not limited to, VAT, GST, sales
tax, consumption tax and service tax. Customer will make all payments free and clear of, and without reduction for, any
withholding or other taxes; any such taxes imposed on payments by Customer hereunder will be Customer’s sole
responsibility. If Customer appoints a third party to place purchase orders and/or make payments on Customer’s behalf,
Customer shall be liable for payment under Orders placed by such third party in the event of default.

2.3. All Products are delivered FCA factory (Incoterms 2010), freight prepaid and invoiced to Customer, except Software
delivered electronically, which shall be deemed delivered when made available to Customer for download. Mentor
Graphics’ delivery of Software by electronic means is subject to Customer’s provision of both a primary and an alternate
e-mail address.

3. Grant of License.

3.1. The Products installed, downloaded, or otherwise acquired by Customer under this Agreement constitute or contain
copyrighted, trade secret, proprietary and confidential information of Mentor Graphics or its licensors, who maintain
exclusive title to all Software and retain all rights not expressly granted by this Agreement. Mentor Graphics grants to
Customer, subject to payment of applicable license fees, a nontransferable, nonexclusive license to use Software as
described in the applicable Addenda. The limited licenses granted under the applicable Addenda shall continue until the
expiration date of Term-Licensed Products or termination in accordance with Section 12 below, whichever occurs first.
Mentor Graphics does NOT grant Customer any right to (a) sublicense or (b) use Software beyond the scope of
this Section without first signing a separate agreement or Addenda with Mentor Graphics for such purpose.

3.2. License Type. The license type shall be identified in the applicable Addenda.

3.2.1. Development License: During the Term, if any, Customer may modify, compile, assemble and convert the
applicable Embedded Software Source Code into Linkable Object Code and/or Executable Code form by the
number of Developers specified, for the Processor(s), Customer’s Product(s) and at the Development Location(s)
identified in the applicable Addenda.

3.2.2. End-User Product License: During the Term, if any, and unless otherwise specified in the applicable Addenda,
Customer may incorporate or embed an Executable Code version of the Embedded Software into the specified
number of copies of Customer’s Product(s), using the Processor Unit(s), and at the Development Location(s)
identified in the applicable Addenda. Customer may manufacture, brand and distribute such Customer’s Product(s)
worldwide to its End-Users.

3.2.3. Internal Tool License: During the Term, if any, Customer may use the Development Tools solely: (a) for internal
business purposes and (b) on the specified number of computer work stations and sites. Development Tools are
licensed on a per-seat or floating basis, as specified in the applicable Addenda, and shall not be distributed to
others or delivered in Customer’s Product(s) unless specifically authorized in an applicable Addenda.

3.2.4. Sourcery CodeBench Professional Edition License: During the Term specified in the applicable Addenda,
Customer may (a) install and use the Proprietary Components of the Software (i) if the license is a node-locked
license, by a single user who uses the Software on up to two machines provided that only one copy of the Software
is in use at any one time, or (ii) if the license is a floating license, by the authorized number of concurrent users on
one or more machines provided that only the authorized number of copies of the Software are in use at any one
time, and (b) distribute the Redistributable Components of the Software in Executable Code form only and only as
part of Customer’s Object Code developed with the Software that provides substantially different functionality
than the Redistributable Component(s) alone.

3.2.5. Sourcery CodeBench Standard Edition License: During the Term specified in the applicable Addenda, Customer
may (a) install and use the Proprietary Components of the Software by a single user who uses the Software on up to
two machines provided that only one copy of the Software is in use at any one time, and (b) distribute the
Redistributable Component(s) of the Software in Executable Code form only and only as part of Customer’s
Object Code developed with the Software that provides substantially different functionality than the
Redistributable Component(s) alone.

3.2.6. Sourcery CodeBench Personal Edition License: During the Term specified in the applicable Addenda, Customer
may (a) install and use the Proprietary Components of the Software by a single user who uses the Software on one
machine, and (b) distribute the Redistributable Component(s) of the Software in Executable Code form only and
only as part of Customer Object Code developed with the Software that provides substantially different
functionality than the Redistributable Component(s) alone.

3.2.7. Sourcery CodeBench Academic Edition License: During the Term specified in the applicable Addenda, Customer
may (a) install and use the Proprietary Components of the Software for non-commercial, academic purposes only
by a single user who uses the Software on one machine, and (b) distribute the Redistributable Component(s) of the
Software in Executable Code form only and only as part of Customer Object Code developed with the Software
that provides substantially different functionality than the Redistributable Component(s) alone.

3.3. Mentor Graphics may from time to time, in its sole discretion, lend Products to Customer. For each loan, Mentor
Graphics will identify in writing the quantity and description of Software loaned, the authorized location and the Term of
the loan. Mentor Graphics will grant to Customer a temporary license to use the loaned Software solely for Customer’s
internal evaluation in a non-production environment. Customer shall return to Mentor Graphics or delete and destroy
loaned Software on or before the expiration of the loan Term. Customer will sign a certification of such deletion or
destruction if requested by Mentor Graphics.

4. Beta Code.

4.1. Portions or all of certain Products may contain code for experimental testing and evaluation (“Beta Code”), which may
not be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics
grants to Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta
Code without charge for a limited period of time specified by Mentor Graphics. This grant and Customer’s use of the
Beta Code shall not be construed as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may
choose not to release commercially in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during
Customer’s use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of
Customer’s evaluation and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code,
including its strengths, weaknesses and recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods
and concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to
perform beta testing. Customer agrees that any written evaluations and all inventions, product improvements,
modifications or developments that Mentor Graphics conceived or made during or subsequent to this Agreement,
including those based partly or wholly on Customer’s feedback, will be the exclusive property of Mentor Graphics.
Mentor Graphics will have exclusive rights, title and interest in all such property. The provisions of this Subsection 4.3
shall survive termination of this Agreement.

5. Restrictions on Use.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use, including archival and backup
purposes. Each copy must include all notices and legends embedded in Software and affixed to its medium and container
as received from Mentor Graphics. All copies shall remain the property of Mentor Graphics or its licensors. Except where
embedded in Executable Code form in Customer’s Product, Customer shall maintain a record of the number and location
of all copies of Software, including copies merged with other software and products, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Products available in any form to any person other
than Customer’s employees, authorized manufacturers or authorized contractors, excluding Mentor Graphics
competitors, whose job performance requires access and who are under obligations of confidentiality. Customer shall
take appropriate action to protect the confidentiality of Products and ensure that any person permitted access does not
disclose or use Products except as permitted by this Agreement. Customer shall give Mentor Graphics immediate written
notice of any unauthorized disclosure or use of the Products as soon as Customer learns or becomes aware of such
unauthorized disclosure or use.

5.2. Customer acknowledges that the Products provided hereunder may contain Source Code which is proprietary and its
confidentiality is of the highest importance and value to Mentor Graphics. Customer acknowledges that Mentor Graphics
may be seriously harmed if such Source Code is disclosed in violation of this Agreement. Except as otherwise permitted
for purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive any Source Code from Products that are not provided in Source
Code form. Except as embedded in Executable Code in Customer’s Product and distributed in the ordinary course of
business, in no event shall Customer provide Products to Mentor Graphics competitors. Log files, data files, rule files and
script files generated by or for the Software (collectively “Files”) constitute and/or include confidential information of
Mentor Graphics. Customer may share Files with third parties, excluding Mentor Graphics competitors, provided that the
confidentiality of such Files is protected by written agreement at least as well as Customer protects other information of a
similar nature or importance, but in any case with at least reasonable care. Under no circumstances shall Customer use
Products or allow their use for the purpose of developing, enhancing or marketing any product that is in any way
competitive with Products, or disclose to any third party the results of, or information pertaining to, any benchmark.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense or otherwise transfer the
Products, whether by operation of law or otherwise (“Attempted Transfer”), without Mentor Graphics’ prior written
consent, which shall not be unreasonably withheld, and payment of Mentor Graphics’ then-current applicable relocation
and/or transfer fees. Any Attempted Transfer without Mentor Graphics’ prior written consent shall be a material breach
of this Agreement and may, at Mentor Graphics’ option, result in the immediate termination of the Agreement and/or the
licenses granted under this Agreement. The terms of this Agreement, including without limitation the licensing and
assignment provisions, shall be binding upon Customer’s permitted successors in interest and assigns.

5.4. Notwithstanding any provision in an OSS license agreement applicable to a component of the Sourcery CodeBench
Software that permits the redistribution of such component to a third party in Source Code or binary form, Customer may
not use any Mentor Graphics trademark, whether registered or unregistered, in connection with such distribution, and
may not recompile the Open Source Software components with the --with-pkgversion or --with-bugurl configuration
options that embed Mentor Graphics’ trademarks in the resulting binary.

5.5. The provisions of this Section 5 shall survive the termination of this Agreement.

6. Support Services.

6.1. Except as described in Sections 6.2, 6.3 and 6.4 below, and unless otherwise specified in any applicable Addenda to this
Agreement, to the extent Customer purchases support services, Mentor Graphics will provide Customer updates and
technical support for the number of Developers at the Development Location(s) for which support is purchased in
acco rdance w i th Men to r Graph i c s ’ t hen -cu r r en t End -Use r So f twa re Suppor t Te rms l oca t ed a t
http://supportnet.mentor.com/about/legal/.

6.2. To the extent Customer purchases support services for Sourcery CodeBench Software, support will be provided solely in
accordance with the provisions of this Section 6.2. Mentor Graphics shall provide updates and technical support to
Customer as described herein only on the condition that Customer uses the Executable Code form of the Sourcery
CodeBench Software for internal use only and/or distributes the Redistributable Components in Executable Code form
only (except as provided in a separate redistribution agreement with Mentor Graphics or as required by the applicable
Open Source license). Any other distribution by Customer of the Sourcery CodeBench Software (or any component
thereof) in any form, including distribution permitted by the applicable Open Source license, shall automatically
terminate any remaining support term. Subject to the foregoing and the payment of support fees, Mentor Graphics will
provide Customer updates and technical support for the number of Developers at the Development Location(s) for which
support is purchased in accordance with Mentor Graphics’ then-current Sourcery CodeBench Software Support Terms
located at http://www.mentor.com/codebench-support-legal.

6.3. To the extent Customer purchases support services for Sourcery VSIPL++, Mentor Graphics will provide Customer
updates and technical support for the number of Developers at the Development Location(s) for which support is
purchased solely in accordance with Mentor Graphics’ then-current Sourcery VSIPL++ Support Terms located at
http://www.mentor.com/vsipl-support-legal.

6.4. To the extent Customer purchases support services for Mentor Embedded Linux, Mentor Graphics will provide Customer
updates and technical support for the number of Developers at the Development Location(s) for which support is
purchased solely in accordance with Mentor Graphics’ then-current Mentor Embedded Linux Support Terms located at
http://www.mentor.com/mel-support-legal.

http://supportnet.mentor.com/about/legal/
http://www.mentor.com/codebench-support-legal
http://www.mentor.com/vsipl-support-legal
http://www.mentor.com/mel-support-legal

7. Third Party and Open Source Software. Products may contain Open Source Software or code distributed under a proprietary
third party license agreement. Please see applicable Products documentation, including but not limited to license notice files,
header files or source code for further details. Please see the applicable Open Source Software license(s) for additional rights
and obligations governing your use and distribution of Open Source Software. Customer agrees that it shall not subject any
Product provided by Mentor Graphics under this Agreement to any Open Source Software license that does not otherwise apply
to such Product. In the event of conflict between the terms of this Agreement, any Addenda and an applicable OSS or
proprietary third party agreement, the OSS or proprietary third party agreement will control solely with respect to the OSS or
proprietary third party software component. The provisions of this Section 7 shall survive the termination of this Agreement.

8. Limited Warranty.

8.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual and/or
specification. Mentor Graphics does not warrant that Products will meet Customer’s requirements or that operation of
Products will be uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon
installation, whichever first occurs. Customer must notify Mentor Graphics in writing of any nonconformity within the
warranty period. For the avoidance of doubt, this warranty applies only to the initial shipment of Products under an Order
and does not renew or reset, for example, with the delivery of (a) Software updates or (b) authorization codes. This
warranty shall not be valid if Products have been subject to misuse, unauthorized modification or improper installation.
MENTOR GRAPHICS’ ENTIRE LIABILITY AND CUSTOMER’S EXCLUSIVE REMEDY SHALL BE, AT
MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF THE
PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF THE PRODUCTS THAT
DO NOT MEET THIS LIMITED WARRANTY, PROVIDED CUSTOMER HAS OTHERWISE COMPLIED WITH
THIS AGREEMENT. MENTOR GRAPHICS MAKES NO WARRANTIES WITH RESPECT TO: (A) SERVICES; OR
(B) PRODUCTS PROVIDED AT NO CHARGE, WHICH ARE PROVIDED “AS IS” UNLESS OTHERWISE
AGREED IN WRITING.

8.2. THE WARRANTIES SET FORTH IN THIS SECTION 8 ARE EXCLUSIVE TO CUSTOMER AND DO NOT APPLY
TO ANY END-USER. NEITHER MENTOR GRAPHICS NOR ITS LICENSORS MAKE ANY OTHER
WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO PRODUCTS OR OTHER
MATERIAL PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS
SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

9. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, AND EXCEPT FOR EITHER PARTY’S BREACH OF ITS
CONFIDENTIALITY OBLIGATIONS, CUSTOMER’S BREACH OF LICENSING TERMS OR CUSTOMER’S
OBLIGATIONS UNDER SECTION 10, IN NO EVENT SHALL: (A) EITHER PARTY OR ITS RESPECTIVE LICENSORS
BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING LOST
PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN IF
SUCH PARTY OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES; AND (B)
EITHER PARTY OR ITS RESPECTIVE LICENSORS’ LIABILITY UNDER THIS AGREEMENT, INCLUDING, FOR THE
AVOIDANCE OF DOUBT, LIABILITY FOR ATTORNEYS’ FEES OR COSTS, EXCEED THE GREATER OF THE FEES
PAID OR OWING TO MENTOR GRAPHICS FOR THE PRODUCT OR SERVICE GIVING RISE TO THE CLAIM OR
$500,000 (FIVE HUNDRED THOUSAND U.S. DOLLARS). NOTWITHSTANDING THE FOREGOING, IN THE CASE
WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR
ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 9 SHALL SURVIVE THE TERMINATION OF
THIS AGREEMENT.

10. Hazardous Applications.

10.1. Customer agrees that Mentor Graphics has no control over Customer’s testing or the specific applications and use that
Customer will make of Products. Mentor Graphics Products are not specifically designed for use in the operation of
nuclear facilities, aircraft navigation or communications systems, air traffic control, life support systems, medical devices
or other applications in which the failure of Mentor Graphics Products could lead to death, personal injury, or severe
physical or environmental damage (“Hazardous Applications”).

10.2. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING PRODUCTS USED IN
HAZARDOUS APPLICATIONS AND SHALL BE SOLELY LIABLE FOR ANY DAMAGES RESULTING FROM
SUCH USE. NEITHER MENTOR GRAPHICS NOR ITS LICENSORS SHALL BE LIABLE FOR ANY DAMAGES
RESULTING FROM OR IN CONNECTION WITH THE USE OF PRODUCTS IN ANY HAZARDOUS
APPLICATIONS.

10.3. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND ITS LICENSORS
FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING REASONABLE
ATTORNEYS’ FEES, ARISING OUT OF OR IN CONNECTION WITH THE USE OF PRODUCTS AS DESCRIBED
IN SECTION 10.1.

10.4. THE PROVISIONS OF THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

11. Infringement.

11.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United
States, Canada, Japan, or member state of the European Union which alleges that any standard, generally supported
Product acquired by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such
jurisdiction. Mentor Graphics will pay any costs and damages finally awarded against Customer that are attributable to
the action. Customer understands and agrees that as conditions to Mentor Graphics’ obligations under this section
Customer must: (a) notify Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable
information and assistance to settle or defend the action; and (c) grant Mentor Graphics sole authority and control of the
defense or settlement of the action.

11.2. If a claim is made under Subsection 11.1 Mentor Graphics may, at its option and expense, and in addition to its
obligations under Section 11.1, either (a) replace or modify the Product so that it becomes noninfringing; or (b) procure
for Customer the right to continue using the Product. If Mentor Graphics determines that neither of those alternatives is
financially practical or otherwise reasonably available, Mentor Graphics may require the return of the Product and refund
to Customer any purchase price or license fee(s) paid.

11.3. Mentor Graphics has no liability to Customer if the claim is based upon: (a) the combination of the Product with any
product not furnished by Mentor Graphics, where the Product itself is not infringing; (b) the modification of the Product
other than by Mentor Graphics or as directed by Mentor Graphics, where the unmodified Product would not infringe; (c)
the use of the infringing Product when Mentor Graphics has provided Customer with a current unaltered release of a non-
infringing Product of substantially similar functionality in accordance with Subsection 11.2(a); (d) the use of the Product
as part of an infringing process; (e) a product that Customer makes, uses, or sells, where the Product itself is not
infringing; (f) any Product provided at no charge; (g) any software provided by Mentor Graphics’ licensors who do not
provide such indemnification to Mentor Graphics’ customers; (h) Open Source Software, except to the extent that the
infringement is directly caused by Mentor Graphics’ modifications to such Open Source Software; or (i) infringement by
Customer that is deemed willful. In the case of (i), Customer shall reimburse Mentor Graphics for its reasonable
attorneys’ fees and other costs related to the action.

11.4. THIS SECTION 11 IS SUBJECT TO SECTION 9 ABOVE AND STATES: (A) THE ENTIRE LIABILITY OF
MENTOR GRAPHICS AND ITS LICENSORS AND (B) CUSTOMER’S SOLE AND EXCLUSIVE REMEDY, WITH
RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR TRADE SECRET
MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

12. Termination and Effect of Termination. If a Software license was provided for limited term use, such license will
automatically terminate at the end of the authorized Term.

12.1. Termination for Breach. This Agreement shall remain in effect until terminated in accordance with its terms. Mentor
Graphics may terminate this Agreement and/or any licenses granted under this Agreement, and Customer will
immediately discontinue use and distribution of Products, if Customer (a) commits any material breach of any provision
of this Agreement and fails to cure such breach upon 30-days prior written notice; or (b) becomes insolvent, files a
bankruptcy petition, institutes proceedings for liquidation or winding up or enters into an agreement to assign its assets
for the benefit of creditors. Termination of this Agreement or any license granted hereunder will not affect Customer’s
obligation to pay for Products shipped or licenses granted prior to the termination, which amounts shall be payable
immediately upon the date of termination. For the avoidance of doubt, nothing in this Section 12 shall be construed to
prevent Mentor Graphics from seeking immediate injunctive relief in the event of any threatened or actual breach of
Customer’s obligations hereunder.

12.2. Effect of Termination. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as
expressly set forth in this Agreement. Upon termination or expiration of the Term, Customer will discontinue use and/or
distribution of Products, and shall return Hardware and either return to Mentor Graphics or destroy Software in
Customer’s possession, including all copies and documentation, and certify in writing to Mentor Graphics within ten
business days of the termination date that Customer no longer possesses any of the affected Products or copies of
Software in any form, except to the extent an Open Source Software license conflicts with this Section 12.2 and permits
Customer’s continued use of any Open Source Software portion or component of a Product. Upon termination for
Customer’s breach, an End-User may continue its use and/or distribution of Customer’s Product so long as: (a) the End-
User was licensed according to the terms of this Agreement, if applicable to such End-User, and (b) such End-User is not
in breach of its agreement, if applicable, nor a party to Customer’s breach.

13. Export. The Products provided hereunder are subject to regulation by local laws and United States government agencies, which
prohibit export or diversion of certain products, information about the products, and direct or indirect products thereof, to certain
countries and certain persons. Customer agrees that it will not export Products in any manner without first obtaining all
necessary approval from appropriate local and United States government agencies. Customer acknowledges that the regulation
of product export is in continuous modification by local governments and/or the United States Congress and administrative
agencies. Customer agrees to complete all documents and to meet all requirements arising out of such modifications.

14. U.S. Government License Rights. Software was developed entirely at private expense. All Software is commercial computer
software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR 12.212 and
DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or a U.S. Government
subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which are contrary
to applicable mandatory federal laws.

15. Third Party Beneficiary. For any Products licensed under this Agreement and provided by Customer to End-Users, Mentor
Graphics or the applicable licensor is a third party beneficiary of the agreement between Customer and End-User. Mentor

Graphics Corporation, Mentor Graphics (Ireland) Limited, and other licensors may be third party beneficiaries of this
Agreement with the right to enforce the obligations set forth herein.

16. Review of License Usage. Customer will monitor the access to and use of Software. With prior written notice, during
Customer’s normal business hours, and no more frequently than once per calendar year, Mentor Graphics may engage an
internationally recognized accounting firm to review Customer’s software monitoring system, records, accounts and
sublicensing documents deemed relevant by the internationally recognized accounting firm to confirm Customer’s compliance
with the terms of this Agreement or U.S. or other local export laws. Such review may include FlexNet (or successor product)
report log files that Customer shall capture and provide at Mentor Graphics’ request. Customer shall make records available in
electronic format and shall fully cooperate with data gathering to support the license review. Mentor Graphics shall bear the
expense of any such review unless a material non-compliance is revealed. Mentor Graphics shall treat as confidential
information all Customer information gained as a result of any request or review and shall only use or disclose such information
as required by law or to enforce its rights under this Agreement. Such license review shall be at Mentor Graphics’ expense
unless it reveals a material underpayment of fees of five percent or more, in which case Customer shall reimburse Mentor
Graphics for the costs of such license review. Customer shall promptly pay any such fees. If the license review reveals that
Customer has made an overpayment, Mentor Graphics has the option to either provide the Customer with a refund or credit the
amount overpaid to Customer’s next payment. The provisions of this Section 16 shall survive the termination of this Agreement.

17. Controlling Law, Jurisdiction and Dispute Resolution. This Agreement shall be governed by and construed under the laws of
the State of California, USA, excluding choice of law rules. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of the state and federal courts of California, USA. Nothing in this section shall restrict
Mentor Graphics’ right to bring an action (including for example a motion for injunctive relief) against Customer or its
Subsidiary in the jurisdiction where Customer’s or its Subsidiary’s place of business is located. The United Nations Convention
on Contracts for the International Sale of Goods does not apply to this Agreement.

18. Severability. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid, unenforceable
or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full force and effect.

19. Miscellaneous. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all prior
or contemporaneous agreements, including but not limited to any purchase order terms and conditions. This Agreement may
only be modified in writing, signed by an authorized representative of each party. Waiver of terms or excuse of breach must be
in writing and shall not constitute subsequent consent, waiver or excuse.

Rev. 120305, Part No. 252061

	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 OpenAMP Framework Overview
	Abbreviations, Terminology, and Definitions
	Overview
	Components and Capabilities

	Chapter 2 System-Wide Considerations for Using OpenAMP Framework
	Chapter 3 The remoteproc Component
	Concepts
	Creation and Boot of Remote Firmware Using remoteproc
	Defining the Resource Table and Creating the Remote ELF Image
	Making Remote Firmware Accessible to the Master

	remoteproc API Usage
	Using remoteproc APIs From the Master Software Context
	Using remoteproc APIs From Remote Software Context

	remoteproc API Functions
	remoteproc_init
	remoteproc_deinit
	remoteproc_boot
	remoteproc_shutdown
	remoteproc_resource_init
	remoteproc_resource_deinit
	remoteproc Configurable Options

	Chapter 4 The RPMsg Component
	RPMsg Channel
	RPMsg Endpoint
	RPMsg Header
	OpenAMP Framework RPMsg Driver
	RPMsg API Usage
	RPMsg API Usage From the Master Software Context
	RPMsg API Usage From Remote Software Context

	RPMsg API Functions
	rpmsg_send
	rpmsg_sendto
	rpmsg_send_offchannel
	rpmsg_trysend
	rpmsg_trysendto
	rpmsg_trysendoffchannel
	rpmsg_get_buffer_size
	rpmsg_create_ept
	rpmsg_destroy_ept
	rpmsg_chnl_cb_t
	rpmsg_rx_cb_t
	RPMsg Configurable Options

	Chapter 5 Proxy Infrastructure
	Proxy Infrastructure Overview
	Usage of Proxy Infrastructure on Master
	Usage of Proxy Infrastructure on Remote

	Chapter 6 OpenAMP Framework Porting Guidelines
	Platform Porting Overview
	Platform-Specific APIs
	APIs to Implement to Provide Platform-Specific Functionality

	Configuration Porting
	Environment Porting

	Appendix A Virtio Concepts and RPMsg Usage
	Third-Party Information
	Embedded Software and Hardware License Agreement
	Documentation Feedback

