
Texas Instruments Incorporated Software Design Document

Revision 1.3

20450 Century Boulevard
Germantown, MD 20874

EMAC Low Level Driver

Software Design Document

Revision 1.3

September 6, 2019

Texas Instruments Incorporated Software Design Document

Revision 1.3

Document License

This work is licensed under the Creative Commons Attribution-Share Alike 3.0

United States License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative

Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2010-2019 Texas Instruments Incorporated - http://www.ti.com/

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.ti.com/

Texas Instruments Incorporated Software Design Document

Revision 1.3

 Revision Record

Document Title: Software Design Specification

Date

Revision

Description of Change

04-04-2017 0.1 Initial Release

04-10-2017 0.2 Added feature list

07-07-2017 0.3 Addressed all the peer review comments

06-13-2018 0.3 Added feature list for AM65XX

07-13-2018 0.4 Added driver details for AM65xx

10-04-2018 0.5 Added document license for Creative Commons

10-05-2018 0.6 WIP draft Incorporated subset of review comments

11-27-2018 0.7 Added sections for IOCTL commands, driver

initialization , TX Time Stamp, TX Software Descriptor

Return Queue Processing, RX Time Stamp

02-21-2019 0.8 Incorporate follow up comments from customer

3-28-2019 0.9 Incorporate additional follow up comments from

customer

4-2-2019 .95 Additional IOCTL updates

5-08-2019 1.0 Updates to error types, Clarification of each IOCTL

type to be either synchronous versus asynchronous,

adding details for

EMAC_IOCTL_INTERFACE_MAC_CONFIG

5-15-2019 1.1 IOCTL table updates.

Enhanced emac poll link status section.

Enhanced Packet RX section.

Miscellaneous updates.

5-31-2019 1.2 Added sections 7.4.2.1, 7.4.2.1.1 and 7.4.2.2

Added clarification to emac_poll_ctrl API and ring

bitmap.

Updated FDB ADD IOCTL details

9-6-2019 1.3 Section 7.4.3: Updated clarification of return codes to

application during emac_send

Section 7.4.5: Further clarification to TX timestamp

implementation

Section 7.4.6: Added details of how ring number is

returned in rx callback

TABLE OF CONTENTS

1. PURPOSE ... 1

2. FUNCTIONAL OVERVIEW ... 1

3. ASSUMPTIONS ... 1

4. DEFINITIONS, ABBREVIATIONS, ACRONYMS... 1

5. REFERENCES ... 1

6. DESIGN CONSTRAINTS ... 2

6.1 EXTERNAL CONSTRAINTS / FEATURES ... 2
6.2 EXTERNAL CONSTRAINTS / SYSTEM PERFORMANCE .. 2
6.3 INTERNAL CONSTRAINTS / REQUIREMENTS .. 2

7. SYSTEM OVERVIEW .. 2

7.1 SYSTEM CONTEXT .. 2
7.2 FUNCTIONAL DESCRIPTION .. 3
7.3 CPPI BASED IP DRIVER: IP VERSION 0/1/4.. 4

7.3.1 EMAC Peripheral configuration .. 4
7.3.2 Queue Management ... 5
7.3.3 Packet Descriptor .. 5
7.3.4 Packet TX ... 5
7.3.5 Packet RX... 6
7.3.6 Single Critical Section ... 6
7.3.7 Multi-core Critical section ... 6
7.3.8 Interrupts ... 7

7.4 UDMA/NAVSS BASED IP DRIVER: IP VERSION 5 ... 7
7.4.1 Memory .. 8
7.4.2 EMAC Driver Initialization configuration ... 9

7.4.2.1 EMAC Open Configuration Details. ... 10
7.4.2.2 ICSSG Port Queue Configuration ... 15

7.4.3 Packet TX ... 15
7.4.4 TX Software Descriptor Return Queue Processing ... 16
7.4.5 TX Time Stamp ... 17
7.4.6 Packet RX... 18
7.4.7 RX Time Stamp .. 18
7.4.8 New APIs ... 19
7.4.9 IOCTL API Details .. 21

14.4.9.1 Switch use case ... 23
14.4.9.2 DUAL MAC Use Case (Single Instance ICSS FW).. 30
14.4.9.3 DUAL MAC Use Case (Interposer Instance ICSS FW) .. 32

Placeholder for future development. .. 32
7.4.10 Platform Specific functions/configuration .. 32
7.4.11 Interrupts... 32
7.4.12 Multi- Core Support .. 32
7.4.13 Interposer Card Support ... 32

14.4.9.4 Switch Use Use Case (Switch F/W for Interposer Card) ... 33
14.4.9.5 Dual MAC Use Case (Interposer Card with Standalone Dual Mac F/W) ... 33

7.5 EMAC POLLING LINK STATUS .. 34
7.6 ERROR HANDLING ... 35

8. STANDARDS, CONVENTIONS AND PROCEDURES .. 36

8.1 DOCUMENTATION STANDARDS .. 36

8.2 NAMING CONVENTIONS .. 36
8.3 PROGRAMMING STANDARDS .. 36
8.4 SOFTWARE DEVELOPMENT TOOLS .. 36

9. IP FEATURE LIST COMPARISON ... 37

10. SYSTEM DESIGN ... 42

10.1 DESIGN APPROACH ... 42
10.2 DEPENDENCIES .. 42
10.3 DECOMPOSITION OF SYSTEM ... 43

10.3.1 Platform Independent APIs ... 43
10.3.2 Platform specific functions/configurations ... 43
10.3.3 Operating System Abstraction Layer (OSAL) ... 43
10.3.4 CSL Functional Layer ... 43
10.3.5 CSL Register Layer ... 44

11. OMAPL13X INTEGRATION .. 44

11.1 PLATFORM INDEPENDENT API .. 44
11.2 PLATFORM SPECIFIC FUNCTIONS/CONFIGURATION .. 44
11.3 OSAL.. 44
11.4 CSL ... 44
11.5 BUILD SETUP ... 44

1. Purpose

This document describes the functionality, architecture, and operation of the Ethernet Media

Access Controller (EMAC) Low Level Driver. Also the data types, data structures and

application programming interfaces (API) provided by the EMAC driver are explained in this

document.

2. Functional Overview

EMAC driver provides a well-defined API layer which allows applications to use the EMAC

peripheral to control the flow of packet data from the processor to the PHY and the MDIO

module to control PHY configuration and status monitoring.

3. Assumptions

NA

4. Definitions, Abbreviations, Acronyms

Term Description

API Application Programming Interface

CSL Chip Support Library

EMAC Ethernet Media Access Controller

LLD Low Level Driver Design

ISR Interrupt Service Routine

MDIO Managed Data Input Output

MMR Memory Mapped Registers

NDK Network Development Kit

NIMU Network Interface Management Unit

OSAL Operating System Adaptation Layer

PHY Physical layer

MGMT Management

FW Firmware

Table 1 : Abbreviations and acronyms

5. References

Following references are related to the features described in this document and shall be consulted as

necessary.

 TRM for SoCs being supported by EMAC LLD

 Migrating_Applications_from_EDMA_to_UDMA_using_TI-RTOS.pdf

(ti/drv/udma/docs)

6. Design Constraints

6.1 External Constraints / Features

 EMAC LLD should access OS components only through OSAL.

6.2 External Constraints / System Performance

EMAC LLD should allow applications to transfer and receive through Ethernet port and

communicate with the network devices at maximum possible speed as supported by HW.

6.3 Internal Constraints / Requirements

EMAC LLD should use CSL layer for register access to abstract the HW dependencies and

maintain portability across the platforms.

7. System Overview

7.1 System Context

EMAC LLD is designed to be functional as part of TI processor SDK driver package. There will

be several components in the processor SDK, apart from applications, which uses EMAC LLD.

Driver design ensures that it fits into system properly and provides suitable APIs for utilizing

EMAC HW functionality.

The following figure shows the architecture of processor SDK sub-system around the LLD

modules.

Figure 1 : Process SDK driver subsystem architecture

7.2 Functional Description

The EMAC driver is responsible for the following:-

• EMAC/MDIO configuration & Queue Management

• Providing a well-defined API to interface with the applications

• Well defined operating system adaptation layer API which supports single core and multiple

core critical section protection

The next couple of sections document each of the above mentioned responsibilities in greater

detail:

7.3 CPPI Based IP Driver: IP Version 0/1/4

7.3.1 EMAC Peripheral configuration

The EMAC driver test application provides a sample implementation sequence which initializes

and configures the EMAC IP block. This implementation is sample only and application

developers are recommended to modify it as deemed fit.

The initialization sequence is not a part of the EMAC driver library. This was done because the

EMAC initialization sequence has to be modified and customized by application developers.

The following figure shows the EMAC API the application can call to initialize the EMAC

peripheral:-

Figure 2 : EMAC configuration

Please note that the call flow dedicated above is basic illustration of how emac_open is handled

internally and may differ from amongst different IP versions of the driver. At the API level from

application point of view, it’s the same.

Refer to the EMAC_OPEN_CONFIG_INFO_T as defined in emac_drv.h for details of

configuration parameters passed into the driver at the time of emac_open API call.

When this API is called, the EMAC driver will first initialize common EMAC configurations

(e.g. loopback mode, MDIO enable, PHY address, packet size, etc.) which applies to all the

cores, and then initialize the core specific configurations (e.g. channel/MAC address

configuration, TX/RX packet descriptor queue size, call back functions, etc.). The driver may

EMAC

LLD
App

emac_open(port_num, &open_cfg)

emac_config(port_num, &emac_cfg)

CSL

EMAC_commonInit(port_num, &commonCfg, hEmac)

EMAC_coreDeInit(hEmac)

EMAC_coreInit(hEmac, hApp, &coreCfg, hCore)

CSL_semInit(&rx_sem_context)*

CSL_semInit(&tx_sem_context)*

SGMII_reset()**

SGMII_config(&SgmiiCfg)**

EMAC_setReceiveFilter(hEmac, rx_filter, master_chn)

EMAC_setMulticast(hEmac, mcast_cnt, &mcast_list)

Notes:

* Only called for C6474 device

** Only called for C6457 & C6474 devices

also need to do some device specific configurations (e.g. C6457 & C6474 have a SGMII

interface in the EMAC peripheral which need to be configured, and C6474 has a hardware

semaphore which also needs to be configured).

The emac_config() API passes the following configuration parameters to the EMAC driver:

 EMAC port number

 EMAC packet receive filter level

 Multicast configurations

NOTE: This API is currently only implemented for v0 version of the driver.

7.3.2 Queue Management

The EMAC driver manages one TX packet descriptor queue and one RX packet descriptor queue

per each EMAC port, the TX/RX queue size is initialized by the application. The driver pre-

allocates the packet buffer for each packet descriptor pushed to the RX queue when an EMAC

port is opened. The driver frees both TX/RX queues when an EMAC port is closed.

7.3.3 Packet Descriptor

By default, the EMAC driver uses CPPI RAM(8K-byte) for EMAC IP managed Packet

Descriptor memory. This internal 8K-byte memory is used to manage the buffer descriptors that

are 4-word(16-bytes) deep. The maximum number of descriptors that can be used for managing

the packets being transferred is 512. Application shall allocate the packet descriptors for TX, RX

and should pass the information to driver using EMAC_OPEN_CONFIG_INFO_T structure

during driver open.

7.3.4 Packet TX

The application can send a packet by calling emac_send () API, the application needs to allocate

an application managed packet descriptor from the application queue, copy the packet data and

convert it to the EMAC driver managed packet descriptor format.

The following figure shows the EMAC/CSL API for a packet sent:-

Figure 3 : EMAC TX function

EMAC
LLD

App

emac_send(port_num, &app_pkt_desc)

CSL

EMAC_sendPacket(hEmac, &csl_pkt_desc);

EMAC_txEoiWrite(EMAC_CORE_NUM)*
CSL_semHwControl(hTxSem, SEM_CMD_FREE_DIRECT, NULL)*

EMAC_TxServiceCheck(hEmac)
CSL_semGetHwStatus(hTxSem, SEM_QUERY_DIRECT,&resp)*

Notes :
* Only called for C6474 device

TX Interrupt
free_pkt_cb(port_num, &app_pkt_desc)

7.3.5 Packet RX

When a packet is received, the EMAC driver will convert the packet descriptor received to the

application managed packet descriptor format and pass it to the application by calling the

rx_pkt_cb() callback function.

The following figure shows the EMAC/CSL API for a packet received:-

Figure 4 : EMAC RX function

7.3.6 Single Critical Section

The EMAC driver maintains certain per core specific data structures. These data structures need

to be protected from access by multiple users running on the same core. Users are defined as

entities in the system which uses the EMAC Driver API’s. The critical section defined here

should also take into account the context of these users (Thread or Interrupt) and define the

critical sections appropriately.

For example: In the EMAC RX interrupt service routine, if RX interrupt is not disabled, a new

RX interrupt may pre-empt the existing RX ISR and cause data corruption in CSL CPPI packet

descriptors.

The EMAC driver uses the Emac_osalEnterSingleCoreCriticalSection() API to enter the single

core critical section and Emac_osalExitSingleCoreCriticalSection to exit the single core critical

section.

7.3.7 Multi-core Critical section

The EMAC driver supports multiple cores sharing the same EMAC port. The driver defines the

following common data structures that are shared by all the cores:

• EMAC_Device emac_comm_dev

• EMAC_COMMON_PCB_T emac_comm_pcb

EMAC

LLD
App CSL

EMAC_rxEoiWrite(EMAC_CORE_NUM)*

CSL_semHwControl(hRxSem, SEM_CMD_FREE_DIRECT, NULL)*

EMAC_RxServiceCheck(hEmac)

CSL_semGetHwStatus(hRxSem, SEM_QUERY_DIRECT,&resp)*

Notes:

* Only called for C6474 device

RX Interrupt

rx_pkt_cb(port_num, &app_pkt_desc)

emac_comm_dev contains common EMAC device instance information, it is defined in the

EMAC driver, but is managed by the EMAC CSL.

emac_comm_pcb contains common port control block information that is managed by the

EMAC driver.

The EMAC driver defines a pragma data section “emacComm” for these two data structures, the

application needs to put “emacComm” data section in the shared memory (either shared L2 data

if available or external memory)

The EMAC driver calls Emac_osalEnterMultipleCoreCriticalSection() and

Emac_osalExitMultipleCoreCriticalSection() API to enter and exit critical section to access

shared resource by multiple cores. The EMAC multicore test application shows an example how

to implement semaphore protection for shared resource access among multiple cores. C6472 uses

IPC GateMP module to implement a software semaphore, and C6474 uses CSL hardware

semaphore.

For shared memory access, the EMAC driver calls Emac_osalBeginMemAccess() and

Emac_osalEndMemAccess() to protect cache coherence when cache is enabled. The driver

always performs an invalidate cache operation before reading data and write back cache

operation after writing data. The start address of emac_comm_dev and emac_comm_pcb need to

be set aligned to the cache line size of the device by the application.

The following figure shows an example how the EMAC driver can access the shared resource:-

App
EMAC

LLD

Emac_osalEnterMultipleCoreCriticalSection(port_num)

Emac_osalBeginMemAccess(&emac_comm_dev, sizeof(EMAC_Device))

Emac_osalEndMemAccess(&emac_comm_dev, sizeof(EMAC_Device))

Emac_osalExitMultipleCoreCriticalSection(port_num)

Read/Write emac_comm_dev

Figure 5 : EMAC Critical section access

7.3.8 Interrupts

Interrupt configuration is specified in SOC’s init configuration and is provided to the EMAC

LLD at time of emac_open API. Interrupt registration is done within the LLD at time of

emac_open. Once interrupt is received, application provided callbacks are invoked.

7.4 UDMA/NavSS based IP Driver: IP Version 5

IP version 5 supports SOCs based on NavSS/UDMA based DMA interface eg:AM65XX. The

LLD provides a common set of APIs to service both CPSW and ICSS-G hardware IP ports. This

is possible due to the NavSS IP which groups together various different hardware IP blocks (in

this case CPSW/ICSS-G) and whose purpose is to support the efficient transfer of data between

various software, firmware and hardware entities via the use of channels.

A channel is a DMA instance/resource of which there are the following 2 types:

1. Receive (RX) Channel

a. RX Packet Channel: EMAC LLD receives packets from the network via ICSSG/CPSW subsystem

b. RX Management Channel EMAC LLD receives management packets (for example management

request responses or TX timestamp or PSI) from ICSSG subsystem.

ICSS Switch supports 4 RX channels distributed as follows:

 Physical port 0 data packets from network

 Management and related responses from firmware to EMAC LLD for Slice 0 (logical ‘half’ of an ICSS)

 Physical Port 1 data packets from network

 Management and related responses from firmware to EMAC LLD for Slice 1

Each RX channel can be “divided” into to N sub channels where each sub-channel can be

considered a distinct flow having each having its own free and completion ring pair. This allow

for “bining” packets of different types to be delivered to the EMAC LLD. ICSS-G f/w provides a

flow id as packet meta data that the DMA uses to determine the ultimate free/completion ring

pair to use. Note that when a channel is created using the UDMA driver, a flow is created by

“default” and is considered by the driver is the 1st sub-channel or flow. The remaining N-1 flows

are sequential.

Default SOC configuration as specified by the emac_soc.c file (see sub-sequent section for

overview) provides configuration for the LLD to create 1 RX Packet Channel with N sub-

channels and 1 RX Management Response Channel with M sub-channels per slice.

2. Transmit (TX) Channel: EMAC LLD transmits packets to the network via ICSSG/CPSW subsystem

Default SOC configuration as specified in the emac_soc.c file provides configuration for the

LLD to create 4 TX channels per physical port (slice). LLD provides the application the option

to choose which TX channel to transmit in the packet send function. More details about

transmitting packets in subsequent sections below. Note the highest priority TX channel (i.e.,

channel 3) is used to carry management messages to firmware as well.

7.4.1 Memory

There is no constraint on where Packet Descriptor, packet buffer, and Ring memory resides

except that the memory block/region must cache size aligned on cores which are not hardware

cache coherent such as the R5F (there may be performance impacts however). Application shall

allocate the packet descriptors for TX, RX and Ring memory and should pass the information to

LLD using EMAC_OPEN_CONFIG_INFO_T structure during driver open. See section 7.4.2.1

for details.

7.4.2 EMAC Driver Initialization configuration

The emac_open() API is used for driver initialization. Refer to the

EMAC_OPEN_CONFIG_INFO_T as defined in emac_drv.h for details of configuration

parameters passed into the driver at the time of emac_open API call.

The EMAC driver unit test application provides a sample implementation sequence which

initializes and configures the EMAC driver. This implementation is sample only and application

developers are recommended to modify it as deemed fit.

The following flow diagram illustrates a sample calling sequence of API calls that can be used as

a guideline for application development in addition to what is provided with the EMAC driver

unit test application.

APP
UDMA
DRIVER

PRUSS
DRIVER

EMAC
DRIVER

emac_open()

BOARD LIB

Board_init()

UdmaInitPrms_init()

Udma_init()

PRUICSS_pruDisable(pru)

PRUICSS_pruDisable(rtu)

PRUICSS_pruWriteMemory(pru)

PRUICSS_pruWriteMemory(rtu)

PRUICSS_pruEnable(pru)

PRUICSS_pruEnable(pru)

emac_poll_ctrl()

(EMAC_socGetInitCfg()

(EMAC_socSetInitCfg()

Update SOC specific
configuration required by

driver

Figure 6 API Call Flow Sequence

7.4.2.1 EMAC Open Configuration Details.

EMAC_OPEN_CONFIG_INFO_T is passed into the driver at time of emac_open() and is per

port. The following table describe each of the fields of this structure.

Field Description

master_core_flag Indicates core as master, used for multiple core

use case and legacy SOCs. For Maxwell, only

single core use case is currently supported, set

this to TRUE.

mdio_flag Note that this does not apply for Maxwell,

always set this to true required to poll for link

status

phy_addr Note that this does not apply for Maxwell, phy

address comes for SOC configuration

mentioned in below table.

num_of_tx_pkt_desc Total # of pkt desc initialized for all the TX

chans in TX queues/rings

num_of_rx_pkt_desc Total # of pkt desc initialized for all the RX

chans in RX queues/rings

max_pkt_size Maximum size of the packet in bytes

num_of_chans Total number of TX/RX channels configured

for this core, only applicable for

SOC_C6657,for Maxwell, channel

configuration comes from SOC configuration

mentioned in table below.

p_chan_mac_addr Note that this does not apply for Maxwell

switch use case.

Use

EMAC_IOCTL_INTERFACE_MAC_CONFIG

rx_pkt_cb EMAC RX call back function to receive

packets

alloc_pkt_cb EMAC allocate packet call back function, used

to setup RX channels/rings at startup and

replenish rx free channel/ring at time of packet

receive.

free_pkt_cb EMAC free packet call back function, used to

free packet packet to application during tx

completion event, and time of driver close(at

close for both rx and tx packets)

rx_mgmt_response_cb EMAC receive call back function for

management response from ICSSG FW

tx_ts_cb EMAC transmit timestamp response callback

function

hwAttrs Pointer to a driver specific hardware attributes

structure, see below table for details

appPrivate DEPRECATED: Application specific handle,

not used by driver

mode_of_operation DEPRECATED: should always be set to

EMAC_MODE_INTERRUPT, to poll the

driver for packets, use emac_poll_ctrl API.

udmaHandle Handle to UDMA driver

drv_trace_cb EMAC driver trace callback function

7.4.2.1.1 SOC Specific Configuration

At time of emac_open, the driver requires SOC specific configuration. This is passed to the

driver via hwAttrs field of EMAC_OPEN_CONFIG_INFO_T. Defaults for soc configuration are

in ti/drv/emac/soc/am65xx/emac_soc.c. Since the emac drivers supports many SOC types, the

hwAttrs field is passed in as a void * and then internally casted by the driver to that specific SOC

hw attributes structure. The hwAttrs struct defined for SOC_AM65XX is EMAC_HwAttrs_V5

The following is EMAC_HwAttrs_V5 declaration:

typedef struct EMAC_HwAttrs_V5_s {

 /*! Per Port configuration */

 EMAC_PER_PORT_CFG portCfg[EMAC_MAX_PORTS];

} EMAC_HwAttrs_V5;

This configuration consists of the following fields and is per port.

NOTE that unless stated, those fields should not be modified, fields which can be modified are in

bold:

Field Description

phyAddr PHY address (board specific)

nTxChans number of transmit channels

mdioRegsBaseAddr base address of MDIO sub-system

icssSharedRamBaseAddr base address of ICSSG shared memory, N/A for CPSW2G

icssgCfgRegBaseAddr base address of ICSSG configuration registers, N/A for

CPSW2G

icssDram0BaseAddr base address of ICSSG data ram 0 memory, N/A for

CPSW2G

txChannel[4]

of type

EMAC_PER_CHANNEL_

CFG_TX

configuration required to setup up to 4 transmit channels

which is to be provided by the application. This includes

chHandle :memory for Udma_ChObj

freeRingMem: pointer to memory for free UDMA ring,

sized to elementCount * size of uint64_t .

compRingMem: pointer to memory for UDMA

completion ring, sized to number of ring entries * size of

uint64_t .

NOTE: size should be the same as used for free ring mem.

hPdMem: pointer to memory for packet descriptors that

will be pushed to the TX free descriptor software ring

maintained by the driver. This needs to be sized by

num_of_tx_pkt_desc (field of

EMAC_OPEN_CONFIG_INFO_T) * 128.

eventHandle: placeholder for adding interrupt support at

ring level, currently not used.

elementCount: Set to queue depth of the ring/number of

ring elements (this can be modified, up to 128)

threadId: thread ID to connect cpdma to/from emac psi

rxChannel of type

EMAC_PER_CHANNEL_

CFG_RX

configuration required to setup upto a receive channel

which is to be provided by the application. This includes

chHandle : pointer to memory for Udma_ChObj

flowHandle: pointer to memory for Udma_FlowObj to

setup additional flows/rings in additional to default

flow/ring.

nsubChan: number of sub-channels or flows.

subChan: sub-channel specific configuration as specified

by

EMAC_RX_SUBCHAN which has the following fields:

nfreeRings: number of free rings associated with sub-

channel, for now set to 1 but can be upto4 to support

advanced features of flow.

Note: EMAC_MAX_FREE_RINGS_PER_SUBCHAN is

set to 1.

freeRingHandle[EMAC_MAX_FREE_RINGS_PER_SU

BCHAN]: pointer to memory for free UDMA ring handle

freeRingMem[EMAC_MAX_FREE_RINGS_PER_SUB

CHAN]: pointer to memory for free UDMA ring, sized to

elementCount * size of uint64_t .

compRingHandle: pointer to memory for free UDMA

completion handle

compRingMem: pointer to memory for UDMA

completion ring, sized to number of ring entries * size of

uint64_t ..

hPdMem[EMAC_MAX_FREE_RINGS_PER_SUBCHA

N]: memory for packet descriptors that will be pushed to

the rx free ring. This needs to be sized by

num_of_rx_pkt_desc (field of

EMAC_OPEN_CONFIG_INFO_T) * 128.

eventHandle: placeholder for adding interrupt support at

ring level, currently not used.

elementCountFree[EMAC_MAX_FREE_RINGS_PER_

SUBCHAN]: set to queue depth of the rx free ring

elementCountCompletion: set to queue depth of the rx

completion ring

threadId: thread ID to connect cpdma to/from emac psi

rxChannelCfgOverPSI See details above, this channel is used to provide

management responses from FW.

rxChannel2CfgOverPSI See details above, this channel is used to provide transmit

timestamp responses from FW.

getFwCfg Function pointer provided by the application and used by

the driver to get firmware specific configuration, required

to setup the environment for FW to operate. Must be set to

emacGetSwitchFwConfig or switch use case and

emacGetDualMacFwConfig for dual mac use case.

7.4.2.2 ICSSG Port Queue Configuration

The firmware configuration is directly tied to the ICSSG firmware and must not be modified

accept for addresses of application provided memory for ICSSG port queues. This memory must

be allocated from MSMC SRAM and128 byte aligned. The size of each port queue per ICSSG

instance is 144000 bytes for switch and 100352 bytes for dual mac.

The following sequence is an example illustration of how to accomplish this (NOTE the ports

used in this illustration are software logical port 0-4, not EMAC_SWITCH_PORT1/

EMAC_SWITCH_PORT2 and also shown only for ICSSG_0.

/* memory of port queue, from msmc memory, 128 byte aligned */

uint8_t icss_tx_port_queue_icssg0[1][144000] __attribute__ ((aligned (UDMA_CACHELINE_ALIGNMENT)))

__attribute__ ((section (".bss:emac_msmc_mem")));

EMAC_FW_APP_CONFIG *pFwAppCfg;

/* Get application part of init config */

emacGetSwitchFwAppInitCfg(port_num, &pFwAppCfg);

/* update the address lo/hi with address of port queue */

pFwAppCfg->txPortQueueLowAddr = 0xFFFFFFFF & ((uint32_t) &icss_tx_port_queue_icssg0[0][0]);

pFwAppCfg->txPortQueueHighAddr = 0;

/* set/store the addresses of the port queue*/

emacSetSwitchFwAppInitCfg(port_num, pFwAppCfg);

7.4.3 Packet TX

EMAC LLD for AM65XX will support UDMAP operations to transfer data between the host

processor and network peripherals. A valid port number and EMAC_PKT_DESC_T are required

arguments to the emac_send API.

For DUAL MAC use case, the port number is the physical port used to transmit the packet to the

network.

For switch use case, we will use virtual port concept for the port number when calling

emac_send. For directed packet to a specific physical port, use [virtual] port

EMAC_SWITCH_PORT1 to send on physical port 0 of the switch and use [virtual] port

EMAC_SWITCH_PORT2 to send on physical port 1 of the switch. For un-directed packets use

virtual port EMAC_SWITCH_PORT. In this case, the driver will take care of transmitting the

packet out on the switch port(s).

The transmit submit ring to be used for the transmission should be specified in the PktChannel

field of the EMAC_PKT_DESC_T passed in. In other words, the application decides on which

of the Transmit Channels(rings) to use. The driver will support configuration of up to 4 TX

channels per port (at time of emac_open) each associated with a transmit submit ring/completion

ring pair.

The TX port queue (0-7) inside ICSSG that is used to transmit the packet from the ICSSG

firmware to the PHY can be specified in the TxPktTc field of the EMAC_PKT_DESC_T passed

in in the emac_send API call. In other words, the application can select which TX port queue to

use.

Future Development: The application can set the TxPktTc field to 0xFF and in this case, the

firmware will determine which port queue to use based on the priority REGEN(remap) and

PORT PRIORITY mapping that is configured for the host port.

The following sequence occurs during emac_send API call:

1. LLD/driver maintains hardware TX descriptor free linked list (in software) setup at time

of emac_open

2. At time of emac_send API call, LLD will pop a free TX descriptor from free linked list

and populate free TX descriptor with packet length, pointer to packet buffer and any

META data that is passed in the application descriptor. This provides ZERO copy

transfer of data. ZERO copy is achieved by transferring ownership of the passed in

descriptor and linked packet buffer to the LLD which is directly “linked” to the TX

descriptor which is queued on the Transmit Submit ring. Note that no “memcpy” is

performed by the driver during emac_send API call.

3. LLD will push the TX descriptor using UDMA ring queue API to the specified transmit

submit ring associated with the port number passed into the API call.

4. The emac_send will return failure codes to the calling application based on the failure

encountered as follows:

a. Port is closed : EMAC_DRV_RESULT_SEND_ERR

b. Unable to submit the packet for transmission on the transmit ring due to the ring

being full (in this case the buffer ownership is returned to the application):

EMAC_DRV_RESULT_ERR_UDMA_RING_ENQUEUE

c. No free TX descriptor available:

EMAC_DRV_RESULT_ERR_NO_FREE_DESC

d. Invalid packet channel specified in EMAC_PKT_DESC:

EMAC_DRV_RESULT_ERR_INVALID_CHANNEL

NOTE: The DMA is used to move the packet from the host owned buffer to ICSSG

firmware, which then will copy the packet to the TX port queue. Thus the DMA for TX

packets in TX ring is controlled by firmware and firmware will not allow the DMA of the

packet if there is no room in TX port queue in ICSS. So packets will remain in the TX ring

in this event and firmware will service another TX channel.

7.4.4 TX Software Descriptor Return Queue Processing

Note that at the time of emac_send(), the software descriptor passed in’s ownership is given to

the driver and needs to returned back to the calling application as specified in the section above.

The following mean is provided by the driver to provide the software descriptor back to the

calling application.

1. emac_poll_ctrl() API will directly query the TX completion queue and invoke the TX callback if packet is

present in completion queue. emac_poll_ctrl() call will return to the user after packets in the desired rings

are serviced. When

7.4.5 TX Time Stamp

The emac_send() API will allow a packet to be marked as TX timestamp required and will allow

the application to provide a piece of opaque data (i.e. timestamp id) that can be used to associate

a TX timestamp with the packet when the TX timestamp is delivered later. Application will

need to register a callback at time of emac_open which driver will call to provide the timestamp.

The following is the prototype of the callback:

typedef void EMAC_TX_TS_CALLBACK_FN_T

(

 uint32_t port_num,

 /**< EMAC port number */

 uint32_t ts_id,

 /**< timestamp id to correlate TS response with TX request */

 uint64_t ts

 /**< 64 bit timestamp provided by ICSSG FW */

 bool isValid;

 /**< flag to indicate if packet was transmitted and timestamp is valid */

);

The callback to the application to free the TX descriptor is completely independent of the

callback to the application for TX timestamp response. There is no sycnronization between when

the TX packet descriptor is returned to the application via the packet free callback and when the

TX Timestamp response callback is issued.

The application should not re-use a TX packet descriptor which has a pending TX timestamp

request until it receives the TX timestamp response even though the TX packet descriptor has

been returned to the application via the packet free callback.

.

In order to request the TX timestamp, the application will need to update the following fields of

the EMAC_PKT_DESC_T when calling the emac_send API:

1. Update Flags field in EMAC_PKT_DESC_T with EMAC_PKT_FLAG_TX_TS_REQ

2. Update ts_id field in EMAC_PKT_FLAG_TX_TS_REQ with 32 bit id which will be returned with

timestamp and can be used by application to correlate TX timestamp request with response

In order to retrieve the timestamp, the application will need to use the emac_poll_ctrl API as

follows:

1. emac_poll_ctrl(port_num, rxPktRings, rxMgmtRings, txRings) where rxMgmtRings is a bitmap of RX

Management rings to poll and needs to have bit 2 set. If timestamp management packet is available,

registered TX timestamp callback will be invoked.

7.4.6 Packet RX

The driver supports multiple receive rings per port. In the case of ICSSG Switch, 9 receive rings

are supported. Currently, only 8 of the receive rings are used and packets are directed to the rings

based on the PCP to port queue mapping as specified by the following IOCTL:

EMAC_IOCTL_PORT_PRIO_MAPPING_CTRL. For ICSSG Dual MAC, 1 receive ring is

currently supported.

When a packet is received, the EMAC driver will convert the packet descriptor received to the

application managed packet descriptor format (EMAC_PKT_DESC_T) and pass it to the

application by calling the rx_pkt_cb() callback function. The receive ring the packet arrives on

will be updated in the PktChannel field of the application managed packet descriptor being

returned via the callback.

Registration of rx_pkt_cb() is done at time of emac_open() API call. For both mode of operation

specified below, rx_pkt_cb() will get called to provide the packet to the application.

For receive packets, the following 2 modes of operation are supported and can be configured at

time of emac_open() for specified port (note the default mode is INTERRUPT).

1. EMAC_MODE_INTERRUPT: emac_poll_pkt() API will PEND on a SEMAPHORE which is posted by

RX ISR(ISR registration/SEMAPHORE creation done at time of emac_open), invoke RX callback and

again PEND on SEMAHPORE. This is a blocking API call and will only return to user application if

PORT status is closed. Task context is required in INTERRUPT mode.

2. EMAC_MODE_POLL: emac_poll_ctrl() API will directly query the RX completion queue and invoke the

RX callback if packet is received. Will return to user application after each emac_poll_ctrl() call.

7.4.7 RX Time Stamp

The 64 bit RX timestamp can be extracted from the psinfo[] field of the EMAC_CPPI_DESC_T

hardware descriptor which is dequeued from the UDMA ring. psinfo[1] contains the upper 32

bits of timestamp and psinfo[0] contains lower 32 bits of timestamp.

The RxTimeStamp field of the EMAC_PKT_DESC_T will be updated with the 64 bit timestamp

from the hardware descriptor and provided for each packet received and provided to the calling

application via RX callback.

7.4.8 New APIs

API to retrieve ICSS-G hardware statistics (NOTE that some of the hardware stats saturates

much faster due to 16-bit counter in ICSS-G hardware):

1. EMAC_DRV_ERR_E emac_get_statistics_icssg(uint32_t port_num,

EMAC_STATISTICS_ICSS-G_T *p_stats, bool clear)

API to poll receive packet rings, receive management response rings and tx completion rings.

Note that a task context is required to make this call and this function does not return until all of

the rings per the configured bitmaps have been examined.

2. EMAC_DRV_ERR_E emac_poll_ctrl(uint32_t port_num, uint32_t rxPktRings,

uint32_t rxMgmtRings, uint32_t txRings)

rxPktRings is a bitmap of which packet completion rings to poll. Please refer to

EMAC_POLL_RX_PKT_RINGS enum for configuration values. To poll multiple rings,

these enum values can be “orred” together. First ring (EMAC_POLL_RX_PKT_RING1)

is not used by firmware, The assignment of packets to rings

EMAC_POLL_RX_PKT_RING2 - EMAC_POLL_RX_PKT_RING9 is based on

EMAC_IOCTL_PORT_PRIO_MAPPING_CTRL configuration.

rxgmtRings is a bitmap of which management rings to poll. Please refer to

EMAC_POLL_RX_MGMT_RINGS enum for configuration values. To poll multiple

rings, these enum values can be “orred” together. First ring

(EMAC_POLL_RX_MGMT_RING1) is not used by firmware, to receive mgmt response

from FW, use EMAC_POLL_RX_MGMT_RING2 and to receive transmit timestamp

response from FW, use EMAC_POLL_RX_MGMT_RING3.

txRings is a bitmap of which packet transmit completion rings to poll. Please refer to

EMAC_POLL_TX_COMPL_RINGS enum for configuration values. To poll multiple

rings, these enum values can be “orred” together.

EMAC_POLL_TX_COMPLETION_RING1 is the lowest priority TX channel and

EMAC_POLL_TX_COMPLETION_RING4 is the highest priority TX channel.

API for issuing IOCTL commands for ICSSG ports

3. EMAC_DRV_ERR_E emac_ioctl(uint32_t port_num, EMAC_IOCTL_CMD

emacIoctlCmd, EMAC_IOCTL_PARAMS *emacIoctlParams)

Callback API for receiving IOCTL command response from FW

4. EMAC_RX_MGMT_CALLBACK_FN_T

typedef void EMAC_RX_MGMT_CALLBACK_FN_T

(

 uint32_t port_num,

 /**< EMAC port number */

 EMAC_IOCTL_CMD_RESP_T* pCmdResp

 /**< Pointer to the IOCTL command reponse */

);

Application will need to register this callback function with driver at time of

emac_open() by populating rx_mgmt_response_cb of

EMAC_OPEN_CONFIG_INFO_T. The

7.4.9 IOCTL API Details

IOCTL can be classified into the following 2 types:

1. Application invokes IOCTL which results in driver issuing MMR update, non-blocking where IOCTL is

synchronous in nature and executes immediately with return code status.

2. Application invokes an IOCTL which results in driver issuing management (MGMT) message over PSIL

interface to firmware (FW) over TX channel, this does not complete until MGMT response is returned to

calling application via RX management channel. This is an asynchronous call. As part of the IOCTL, a

sequence number is used for each IOCTL which is returned to the calling application to correlate an IOCTL

request with a response. NOTE: At any given time, only 1 IOCTL request can be outstanding. If 1 IOCTL

request is in progress and application issues a 2
nd

 one, it will get rejected with error code

EMAC_DRV_RESULT_IOCTL_ERR. If the driver is able to issue the IOCTL request to the FW, it will

return EMAC_DRV_RESULT_IOCTL_IN_PROGRESS.

The result of the IOCTL call is made available to the calling application with

EMAC_RX_MGMT_CALLBACK_FN_T. This is a callback function the application is required to register

with the driver at time of emac_open(). Refer to the status field of EMAC_IOCTL_CMD_RESP_T

typedef void EMAC_RX_MGMT_CALLBACK_FN_T

(

 uint32_t port_num,

 /**< EMAC port number */

 EMAC_IOCTL_CMD_RESP_T* pCmdResp

 /**< Pointer to the IOCTL command reponse */

);

NOTE: IOCTL tables below will indicate IOCTL type to be either synchronous or asynchronous,

also provide details of the status field of EMAC_IOCTL_CMD_RESP_T.

Refer to the following ladder diagram for details of asynchronous IOCTL call flow.

emac_ioctl(port_num, ¶ms)

IOCTL req overPSIL I/F
using TX channel

IOCTL response over PSIL I/F
 using RX MGMT channel

rx_mgmt_response_cb(port_num,
 pCmdResp)

APP DRIVER FIRMWARE

emac_port_ctrl(port_num,
rxPktRings,

rxMgmtRings, txRings

PSIL I/F

Issue asynchronous
IOCTL call with e.g.
sequence Number

100

emac_poll_ctrl needs
to be called in a

context (e.g. task
context) in order to

poll the rx
management ring for

IOCTL response

Driver will poll
specified

UDMA rings as
specified in

emac_poll_ctrl
API

pCmdResp will
contain results of the
transaction such as
sequence number,

status,and optional
response parameters

Figure 7 Asynchronous IOCTL Call Flow

The tables below provide a list of IOCTLS currently supported for switch and dual mac use case.

14.4.9.1 Switch use case

The following virtual ports should be used when making IOCTL calls as indicated in the table

below:

#define EMAC_SWITCH_PORT0 ((uint32_t)9U) Host Port

#define EMAC_SWITCH_PORT1 ((uint32_t)10U) ETH0/SW0 configuration

#define EMAC_SWITCH_PORT2 ((uint32_t)11U) ETH1/SW1 configuration

#define EMAC_SWITCH_PORT ((uint32_t)12U) Switch centric configuration

IOCTL Command/Sub Command

Description IOCTL Parameters RETURN TYPE

EMAC_IOCTL_FDB_ENTRY_CTRL/

EMAC_IOCTL_FDB_ENTRY_ADD

Type: asynchronous IOCTL
MGMT message over PSI to FW, MGMT response

over PSI from FW via RX MGMT channel.

NOTE: To program FDB entry as a special

management multicast frame set the block and secure

bits in FID_C2. Please refer FID_C2 Bitfield in

AM654x_PROFINET_Switch_Non_Real_time_Interfa

ce_Design pdf.

fdbEntry field (also the FID_C2) is now an array of 2

and it’s possible to assign two values to the two

physical ports. Index 0 is for

EMAC_SWITCH_PORT1 and Index 1 is for

EMAC_SWITCH_PORT2.

Add forward data base

entry to internal ICSSG

memory.

PORT_NUM:

EMAC_SWITCH_PORT

EMAC_IOCTL_FDB_E

NTRY:

uint8_t mac[6]

int16_t vlanId

vlanId Range: 0 to 4095

uint8_t fdbEntry[2]

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR_INVALID_VLAN_ID

on vlanId out of range.

EMAC_DRV_RESULT_IOCT

L_ERR_SEND_MGMT_MSG

if unable to send MGMT

message over PSI as a result of

UDMA ring enqueue failure or

free TX descriptor not

available

Status field values returned via

EMAC_RX_MGMT_CALLB

ACK_FN_T :

0x1: returned on success.

0x3: returned if an ageable

FDB entry is removed in order

to ADD the new entry. Aged

out entry will be returned to the

in the 1st 2 bytes of the

respParams field of the

EMAC_IOCTL_CMD_RESP_

T.

0x10: returned on error (no free

entry available)

EMAC_IOCTL_FDB_ENTRY_CTRL/

EMAC_IOCTL_FDB_ENTRY_DEL

Type: asynchronous IOCTL

MGMT message over PSI to FW, MGMT response

over PSI from FW via RX MGMT channel

Delete forward data base

entry from internal

ICSSG memory

PORT_NUM:

EMAC_SWITCH_PORT

EMAC_IOCTL_FDB_E

NTRY:

uint8_t mac[6]

int16_t vlanId

vlanId Range: 0 to 4095

uint8_t fdbEntry

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR_INVALID_VLAN_ID

on vlanId out of range.

EMAC_DRV_RESULT_IOCT

L_ERR_SEND_MGMT_MSG

if unable to send MGMT msg

over PSI as a result of UDMA

Note: No need to populate

fdb_entry field

ring enqueue failure or TX

descriptor not available.

Status field values returned via

EMAC_RX_MGMT_CALLB

ACK_FN_T :

0x1: returned on success.

0x10: returned on error (entry

to delete not found)

EMAC_IOCTL_FDB_ENTRY_CTRL/

EMAC_IOCTL_FDB_ENTRY_DELETE_ALL or

EMAC_IOCTL_FDB_ENTRY_AGEABLE

Type: asynchronous IOCTL

MGMT message over PSI to FW, MGMT response

over PSI from FW via RX MGMT channel.

For future deliverable, subject to change.

Delete all forward data

base entries from internal

ICSSG memory

PORT_NUM:

EMAC_SWITCH_PORT

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR_SEND_MGMT_MSG

if unable to send MGMT msg

over PSI as a result of UDMA

ring enqueue failure or TX

descriptor not available.

Status field values returned via

EMAC_RX_MGMT_CALLB

ACK_FN_T :

0x1: returned on success.

0x10: returned on error

EMAC_IOCTL_PORT_STATE_CTRL/
EMAC_IOCTL_PORT_STATE_DISABLE

Type: asynchronous IOCTL

MGMT message over PSI to FW, MGMT response

over PSI from FW via RX MGMT channel.

Place PORT is disabled

state

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR_SEND_MGMT_MSG

if unable to send MGMT msg

over PSI as a result of UDMA

ring enqueue failure or TX

descriptor not available.

Status field values returned via

EMAC_RX_MGMT_CALLB

ACK_FN_T :

0x1: returned on success.

EMAC_IOCTL_PORT_STATE_CTRL/
EMAC_IOCTL_PORT_STATE_BLOCKING

Type: asynchronous IOCTL

MGMT message over PSI to FW, MGMT response

over PSI from FW via RX MGMT channel.

Place PORT is blocking

state

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR_SEND_MGMT_MSG

if unable to send MGMT msg

over PSI as a result of UDMA

ring enqueue failure or TX

descriptor not available.

Status field values returned via

EMAC_RX_MGMT_CALLB

ACK_FN_T :

0x1: returned on success.

EMAC_IOCTL_PORT_STATE_CTRL/

EMAC_IOCTL_PORT_STATE_FORWARD

Type: asynchronous IOCTL

MGMT message over PSI to FW, MGMT response

over PSI from FW via RX MGMT channel.

Place PORT is

forwarding state

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR_SEND_MGMT_MSG

if unable to send MGMT msg

over PSI as a result of UDMA

ring enqueue failure or TX

descriptor not available.

Status field values returned via

EMAC_RX_MGMT_CALLB

ACK_FN_T :

0x1: returned on success.

EMAC_IOCTL_PORT_STATE_CTRL/

EMAC_IOCTL_PORT_STATE_FORWARD_WO_L

EARNING

Type: asynchronous IOCTL

MGMT message over PSI to FW, MGMT response

over PSI from FW via RX MGMT channel.

Place PORT is

forwarding state without

learning

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR_SEND_MGMT_MSG

if unable to send MGMT msg

over PSI as a result of UDMA

ring enqueue failure or TX

descriptor not available.

Status field values returned via

EMAC_RX_MGMT_CALLB

ACK_FN_T :

0x1: returned on success.

EMAC_IOCTL_VLAN_CTRL/

EMAC_IOCTL_VLAN_SET_DEFAULT_TBL

Type: synchronous IOCTL

MMR update, non-blocking

Update ICSSG shared

memory with default vlan

fid table entries (4096

entries set to default

settings)

PORT_NUM:

EMAC_SWITCH_PORT

EMAC_DRV_RESULT_OK

on success

EMAC_IOCTL_VLAN_CTRL/

EMAC_IOCTL_VLAN_SET_ENTRY

Type: synchronous IOCTL

MMR update, non-blocking

Set entry in vlan table for

specified vlan id value

where vlan id is from 0

to 4095).

PORT_NUM:

EMAC_SWITCH_PORT

EMAC_IOCTL_VLAN_

FID_ENTRY

int16_vlanId

vlanId Range: 0 to 4095

EMAC_IOCTL_VLAN_FI

D_PARAMS

vlanFidPrams –used to

populate vlan_fid and

vlan_info

EMAC_DRV_RESULT_OK

on success

EMAC_DRV_RESULT_IOCT

L_ERR_INVALID_VLAN_ID

on failure

EMAC_IOCTL_VLAN_CTRL/

EMAC_IOCTL_VLAN_SET_DEFAULT_VLAN_ID

Type: synchronous IOCTL

MMR update, non-blocking

Set default VLAN ID and

PCP bits for specified

switch port.

PORT_NUM:

EMAC_SWITCH_PORT0

(host port)

or

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_IOCTL_VLAN_

DEFAULT_ENTRY

int16_vlanId

vlanId Range: 0 to 4095

int8_t pcp

range 0-7

EMAC_DRV_RESULT_OK

on success

EMAC_DRV_RESULT_IOCT

L_ERR_INVALID_VLAN_ID

on failure

EMAC_IOCTL_VLAN_CTRL/

EMAC_IOCTL_VLAN_GET_ENTRY

Type: synchronous IOCTL

MMR update, non-blocking

Get entry in vlan table for

specified vlan id value

where vlan id is from 0

to 4095).

PORT_NUM:

EMAC_SWITCH_PORT

EMAC_IOCTL_VLAN_

FID_ENTRY to be

populated by the driver.

EMAC_DRV_RESULT_OK

on success

EMAC_DRV_RESULT_IOCT

L_ERR_INVALID_VLAN_ID

on failure

EMAC_IOCTL_VLAN_CTRL/

EMAC_IOCTL_VLAN_AWARE_MODE

Type: asynchronous IOCTL

MMR update and MGMT message over PSI to FW,

MGMT response over PSI from FW via RX MGMT

channel.

For future deliverable, subject to change.

Enable/disable VLAN

aware mode.

PORT_NUM:

EMAC_SWITCH_PORT,

enable(1), disable(0)

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR on failure

EMAC_IOCTL_PRIO_REGEN_CTRL

Type: synchronous IOCTL

MMR update, non-blocking

Configure the priority

regeneration table for a

port including the host

port.

PORT_NUM:

EMAC_SWITCH_PORT1

OR

EMAC_SWITCH_PORT2

EMAC_IOCTL_PRIO_R

EGEN_MAP:

8-byte priority regen array

indexed by PCP value.

Index 0 of the array

corresponds to PCP 0 so if

you want to change PCP 0

to 7 then you would write a

value of 7 at index 0

EMAC_DRV_RESULT_OK

on success

EMAC_IOCTL_PORT_PRIO_MAPPING_CTRL

Type: synchronous IOCTL

MMR update, non-blocking

Configure the mapping of

PCP to port queue. Also

configures the mapping

of PCP to CPPI flow/host

receive ring.

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_IOCTL_PORT_

PRIO_MAP:

8-byte port priority to port

queue mapping indexed by

PCP value.

Also the 8-byte priority to

CPPI flow/receive ring.

One-to-one mapping from

PCP to output Queue is

managed using FT3[0:7]

and Classifier[0:7] MMRs.

EMAC_DRV_RESULT_OK

on success

EMAC_IOCTL_ACCEPTABLE_FRAME_CHECK_

CTRL/EMAC_IOCTL_ACCEPTABLE_FRAME_CH

ECK_ONLY_VLAN_TAGGED

Type: asynchronous IOCTL

MGMT message over PSI to FW, MGMT response

over PSI from FW via RX MGMT channel.

Admit only VLAN-

tagged frames

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR_SEND_MGMT_MSG

if unable to send MGMT msg

over PSI as a result of UDMA

ring enqueue failure or TX

descriptor not available.

Status field values returned via

EMAC_RX_MGMT_CALLB

ACK_FN_T :

0x1: returned on success.

EMAC_IOCTL_ACCEPTABLE_FRAME_CHECK_

CTRL/

EMAC_IOCTL_ACCEPTABLE_FRAME_CHECK_

ONLY_UN_TAGGED_PRIO_TAGGED

Type: asynchronous IOCTL

MGMT message over PSI to FW, MGMT response

Admit Only Untagged

and Priority-tagged

frames

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR_SEND_MGMT_MSG

if unable to send MGMT msg

over PSI as a result of UDMA

ring enqueue failure or TX

over PSI from FW via RX MGMT channel. descriptor not available.

Status field values returned via

EMAC_RX_MGMT_CALLB

ACK_FN_T :

0x1: returned on success.

EMAC_IOCTL_ACCEPTABLE_FRAME_CHECK_

CTRL/

EMAC_IOCTL_ACCEPTABLE_FRAME_CHECK_

ALL_FRAMES

Type: asynchronous IOCTL

MGMT message over PSI to FW, MGMT response

over PSI from FW via RX MGMT channel

Admit all frames (default

setting)

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR_SEND_MGMT_MSG

if unable to send MGMT msg

over PSI as a result of UDMA

ring enqueue failure or TX

descriptor not available.

Status field values returned via

EMAC_RX_MGMT_CALLB

ACK_FN_T :

0x1: returned on success.

EMAC_IOCTL_INTERFACE_MAC_CONFIG

Type: synchronous IOCTL

MMR update, non-blocking

Interface MAC address

configuration in hardware

MMR’s.

PORT_NUM:

EMAC_SWITCH_PORT0

(host port)

or

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_MAC_ADDR_T:

uint8_t addr[EMAC_MA

C_ADDR_LENTH];

where

EMAC_MAC_ADDR_LE

NTH is 6

EMAC_DRV_RESULT_OK

on success

EMAC_DRV_RESULT_INV

ALID_PORT on failure

EMAC_IOCTL_SAV_CHECK_CTRL

Type: asynchronous IOCTL

MGMT message over PSI to firmware, MGMT

response over PSI via RX MGMT channel.

For future deliverable, subject to change.

Source address violation

check enable/disable

control.

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

enable(1), disable(0)

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR on failure

EMAC_IOCTL_CUT_THROUGH_CTRL

Could use a classi to determine if a packet type is

eligible for cut-through. Could also be 1 byte in SMEM

per port which FW reads to determine if a packet type

is eligible for cut-through

For future deliverable, subject to change.

TBD TBD TBD

EMAC_IOCTL_HOST_TX_RATE_LIMITER_CTRL

For future deliverable, subject to change.

TBD TBD TBD

EMAC_IOCTL_HOST_RX_RATE_LIMTER_CTLR

For future deliverable, subject to change.

TBD TBD TBD

EMAC_IOCTL_PKT_TO_FLOW_CLASSI_CTRL

For future deliverable, subject to change.

TBD TBD TBD

EMAC_IOCTL_UC_FLOODING_CTRL/
EMAC_IOCTL_PORT_UC_FLOODING_ENABLE

Type: asynchronous IOCTL

MGMT message over PSI to firmware, MGMT

response over PSI via RX MGMT channel.

Enable flooding of

unknown unicast packets

to host port

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR_SEND_MGMT_MSG

if unable to send MGMT

message over PSI as a result of

UDMA ring enqueue failure or

free TX descriptor not

available

EMAC_DRV_RESULT_INV

ALID_PORT on failure

EMAC_IOCTL_UC_FLOODING_CTRL/
EMAC_IOCTL_PORT_UC_FLOODING_DISABLE

Type: asynchronous IOCTL

MGMT message over PSI to firmware, MGMT

response over PSI via RX MGMT channel.

Disable flooding of

unknown unicast packets

to host port

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR_SEND_MGMT_MSG

if unable to send MGMT

message over PSI as a result of

UDMA ring enqueue failure or

free TX descriptor not

available

EMAC_DRV_RESULT_INV

ALID_PORT on failure

EMAC_IOCTL_FRAME_PREEMPTION_CTRL/
EMAC_IOCTL_PREEMPT_TX_ENABLE

Type: asynchronous IOCTL

MGMT message over PSI to firmware, MGMT

response over PSI via RX MGMT channel.

Enable pre-emption on

TX

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR_SEND_MGMT_MSG

if unable to send MGMT

message over PSI as a result of

UDMA ring enqueue failure or

free TX descriptor not

available

EMAC_DRV_RESULT_INV

ALID_PORT on failure

EMAC_IOCTL_FRAME_PREEMPTION_CTRL/
EMAC_IOCTL_PREEMPT_TX_DISABLE

Type: asynchronous IOCTL

MGMT message over PSI to firmware, MGMT

response over PSI via RX MGMT channel.

Disable pre-emption on

TX

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR_SEND_MGMT_MSG

if unable to send MGMT

message over PSI as a result of

UDMA ring enqueue failure or

free TX descriptor not

available

EMAC_DRV_RESULT_INV

ALID_PORT on failure

EMAC_IOCTL_FRAME_PREEMPTION_CTRL/
EMAC_IOCTL_PREEMPT_GET_TX_ENABLE_ST

ATUS

Type: synchronous IOCTL, non-blocking

Get status of pre-emption

on TX

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_IOCTL_PREEM

PTION_ENTRY:

premt_tx_enabled_status

field will be populated by

the driver as follows : 1 if

active, 0 if not active

EMAC_DRV_RESULT_OK

on success

EMAC_DRV_RESULT_INV

ALID_PORT on failure

EMAC_IOCTL_FRAME_PREEMPTION_CTRL/
EMAC_IOCTL_PREEMPT_GET_TX_ACTIVE_STA

TUS

Type: synchronous IOCTL, non-blocking

Get status of weather pre-

emption is active

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_DRV_RESULT_OK

on success

EMAC_DRV_RESULT_INV

EMAC_IOCTL_PREEM

PTION_ENTRY:

premt_tx_active_status

field will be populated by

the driver as follows : 1 if

active, 0 if not active

ALID_PORT on failure

EMAC_IOCTL_FRAME_PREEMPTION_CTRL/
EMAC_IOCTL_PREEMPT_VERIFY_ENABLE

Type: synchronous IOCTL

MMR update, non-blocking

Enable verify state

machine

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_DRV_RESULT_OK

on success

EMAC_DRV_RESULT_INV

ALID_PORT on failure

EMAC_IOCTL_FRAME_PREEMPTION_CTRL/
EMAC_IOCTL_PREEMPT_VERIFY_DISABLE

Type: synchronous IOCTL

MMR update, non-blocking

Disable verify state

machine

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_DRV_RESULT_OK

on success

EMAC_DRV_RESULT_INV

ALID_PORT on failure

EMAC_IOCTL_FRAME_PREEMPTION_CTRL/
EMAC_IOCTL_PREEMPT_GET_VERIFY_STATE

Type: synchronous IOCTL, non-blocking

Get the verify state

machine current state

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_IOCTL_PREEM

PTION_ENTRY:

preempt_verify_state

enum field will be

populated by the driver as

follows:

STATE_UNKNOWN

STATE_INITIAL

STATE_VERIFYING

STATE_SUCCEEDED

STATE FAILED

STATE DISABLED

EMAC_DRV_RESULT_OK

on success

EMAC_DRV_RESULT_INV

ALID_PORT on failure

EMAC_IOCTL_FRAME_PREEMPTION_CTRL/
EMAC_IOCTL_PREEMPT_GET_MIN_FRAG_SIZE

_LOCAL

Type: synchronous IOCTL, non-blocking

Get minimum fragment

size supported by

firmware

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_IOCTL_PREEM

PTION_ENTRY:

premt_min_fragment_siz

e field will be populated

with min fagment size

supported

EMAC_DRV_RESULT_OK

on success

EMAC_DRV_RESULT_INV

ALID_PORT on failure

EMAC_IOCTL_FRAME_PREEMPTION_CTRL/
EMAC_IOCTL_PREEMPT_SET_MIN_FRAG_SIZE

_REMOTE

Type: synchronous IOCTL

MMR update, non-blocking

Configure the minimum

non final fragment size

supported by remote link

partner in units of 64

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_IOCTL_PREEM

PTION_ENTRY:

premt_min_fragment_siz

e field will be populated

with min fagment size

supported

EMAC_DRV_RESULT_OK

on success

EMAC_DRV_RESULT_INV

ALID_PORT on failure

EMAC_IOCTL_CUT_THROUGH_PREEMPT_SELE

CT

Type: synchronous IOCTL

MMR update, non-blocking

Configures queues are

pre-emptive/express

and/or as cut-

through/Store&Forward

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_IOCTL_PREMP

T_OR_CUT_THROUGH

_MAP – The struct takes

two arrays as inputs

pcpPreemptMap is a byte

map for each queue where

1 indicates that the queue

is a pre-emptive queue.

(This is not operational

right now)

pcpCutThroughMap is

similar but for determining

if a queue should be cut-

through or not

EMAC_DRV_RESULT_OK

on success

EMAC_DRV_RESULT_INV

ALID_PORT on failure

EMAC_IOCTL_SPECIAL_FRAME_PRIO_CONFIG

Type: synchronous IOCTL

MMR update, non-blocking

Specifies the queue

number to be used for

special packets

PORT_NUM:

EMAC_SWITCH_PORT1

or

EMAC_SWITCH_PORT2

EMAC_IOCTL_SPECIA

L_FRAME_DEFAULT_

PRIO – specifies the

queue number to be used

for special packets

EMAC_DRV_RESULT_OK

on success

EMAC_DRV_RESULT_INV

ALID_PORT on failure

Table 2 Switch IOCTL Commands

14.4.9.2 DUAL MAC Use Case (Single Instance ICSS FW)

For DUAL MAC use case, use the software port number in the IOCTL call as follows:

ICSSG0 port 0, use LLD 0

ICSSG0 port 1, use LLD 1

ICSSG1 port 0, use LLD 2

ICSSG1 port 1, use LLD 3

ICSSG2 port 0, use LLD 4

ICSSG2 port 1, use LLD 5

IOCTL Command/Sub Command

Description IOCTL Parameters RETURN TYPE

EMAC_IOCTL_PROMISCOUS_MODE_CTRL

(MMR update, non-blocking)

Type: synchronous IOCTL

MMR update, non-blocking

Enable/disable

promiscuous mode of

operation

Port number

enable(1), disable(0)

EMAC_DRV_RESULT_OK

on success

EMAC_DRV_RESULT_IOCT

L_ERR on failure

EMAC_IOCTL_PORT_CTRL/
Place PORT is disabled port number EMAC_DRV_RESULT_IOCT

EMAC_IOCTL_PORT_STATE_DISABLE

For future deliverable, subject to change.

state L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR on failure

EMAC_IOCTL_PORT_CTRL/

EMAC_IOCTL_PORT_STATE_ENABLE

For future deliverable, subject to change.

Re-enable the PORT port number

EMAC_DRV_RESULT_IOCT

L_IN_PROGRESS on success

EMAC_DRV_RESULT_IOCT

L_ERR on failure

EMAC_IOCTL_HOST_TX_RATE_LIMITER_CTRL

For future deliverable, subject to change.

TBD TBD TBD

EMAC_IOCTL_HOST_RX_RATE_LIMTER_CTLR

For future deliverable, subject to change.

TBD TBD TBD

EMAC_IOCTL_PKT_TO_FLOW_CLASSI_CTRL

For future deliverable, subject to change.

TBD TBD TBD

Table 3 Single Instance ICSS Dual MAC FW IOCTL Commands

14.4.9.3 DUAL MAC Use Case (Interposer Instance ICSS FW)

Placeholder for future development.

7.4.10 Platform Specific functions/configuration

Emac_soc_v5.c contains AM65XX SOC specific configuration which includes register address

mapping, interrupts, NAVSS/UDMAP receive and transmit UDMA channel configuration. The

SOC configuration structure will be defined in emac_soc_v5.h.

For details of the UDMA subsystem, please refer to

Migrating_Applications_from_EDMA_to_UDMA_using_TI-RTOS .pdf as listed in the

reference section.

7.4.11 Interrupts

Interrupt registration for receive packet is done within the LLD at time of emac_open which uses

UDMA event registration API. Once interrupt is received, application provided receive packet

callback is invoked.

NOTE: Interrupt support is currently available for DUAL MAC use case, support for interrupts

at UDMA ring events is required for SWITCH use case and is being tracked by PRSDK-3812.

7.4.12 Multi- Core Support

Still an open issue, most likely APIs will be provided to clone driver context (handles) from

master core and deliver to secondary cores for use with common APIs to enqueue/dequeue

packets. Being tracked by PRSDK-5052 (am65xx: UDMA LLD: How to run instance of LLD on

multiple cores, share handles, etc)

7.4.13 Interposer Card Support

Interposer card is an Ethernet wiring adapter to let 2 icss-g subsystems (instances 0 and 1) drive

2 Ethernet ports with dual mac or switch firmware. This allows the power of more ICSS cores to

be applied to each port and direction (RX/TX).

The interposer card divides RGMII RX and TX pins for 2 ports and routes them to separate icss-

g RGMII pins as follows:

Interposer eth0 -> RX => icss_g instance 0, slice 0 (RX only) => EMAC LLD port 0

interposer eth0 -> TX => icss_g instance 1, slice1 (TX only) => EMAC LLD port 3

interposer eth1 -> RX => icss_g instance 1, slice 0 (RX only) => EMAC LLD port 2

interposer eth1 -> TX => icss_g instance 0, slice 1 (TX only) => EMAC LLD port 1

To support this card with NDK (or 3rd party stacks), EMAC LLD provides two 'virtual'

ports: EMAC7 (virtual port 7) and EMAC8 (virtual port 8) to be used in dual-EMAC mode. For

switch mode, three virtual ports are used: 9,10,11. Under the hood, the EMAC_LLD will treat

handling of these virtual ports as follows:

14.4.9.4 Switch Use Use Case (Switch F/W for Interposer Card)

The following virtual ports should be used when invoking API calls for switch use case:

1. cmac_open and emac close: Use EMAC_SWITCH_PORT (virtual port 12); API will internally

open LLD ports 0,1,2 and 3 with reduced configuration.

2. emac_poll_ctrl:

a. To poll ETH0 (1st port of switch), use EMAC_SWITCH_PORT1; API will

internally poll DMA rings associated with (ICSS-G instance 0), LLD port 0 for

RX packets and RX MGMT responses. For TX completion events, LLD will

internally poll DMA rings associated with (ICSS-G instance 1), LLD port 2.

b. To poll ETH1 (2nd port of switch), use EMAC_SWITCH_PORT2; API will

internally poll DMA rings associated with (ICSS-G instance 1) LLD port 2 for

RX packets and RX MGMT response. For TX completion events, LLD will

internally poll DMA rings associated with (ICSS-G instance 0), LLD port 0.

c. .

3. emac_send:

a. to direct packet out of ETH0, use EMAC_SWITCH_PORT1; API will internally

send directed packet to ICSS instance 1, using DMA resources of LLD port 2.

b. to direct packet out of ETH1, use EMAC_SWITCH_PORT2; API will internally

send directed packet out of ICSS instance 0, using the DMA resources of LLD

port 0

c. to send un-directed packet, use EMAC_SWITCH_PORT; API will clone the

packet and send to both instances using DMA resources of LLD ports 0 and 2.

Firmware will figure out if packet needs to be physically transmitted out

ETH0/ETH1 or both based on a destination mac address lookup into the

Forwarding Database.

4. emac_ioctl: Please refer to the IOCTL table for details about which virtual ports to use.

5. emac_get_statistics_icssg:

a. to query for EH0, use EMAC_SWITCH_PORT1, API will internal query for

LLD port 2 for RX and LLD port 3 for TX.

b. to query for EH1, use EMAC_SWITCH_PORT2, API will internal query for

LLD port 0 for RX and LLD port 1 for TX.

14.4.9.5 Dual MAC Use Case (Interposer Card with Standalone Dual Mac F/W)

Virtual port 7 handling:

1. emac_open and emac close: internally open (ICSS Instance 0) LLD port 0 and (ICSS

instance 1) LLD port 3 with reduced configuration. Since LLD port 0 is for RX handling

only, no UDMA TX channels/rings need to be configured at time of emac_open.

Similarly for LLD port 3 which is for TX handling only, no UDMA TX channels/rings

need to be configured.

2. emac_poll_pkt: internally poll packets from DMA resources of LLD port 0.

3. emac_poll_ctrl: internally poll packets from DMA resources of LLD port 0.

4. emac_send: internally send on DMA resources of LLD port 3.

5. emac_ioctl: internally do IOCTL configuration using DMA resources of LLD port 0 as

IOCTL is for RX path configuration at this time.

6. emac_get_statistics_icssg: internally query for RX statistics from LLD port 0, TX

statistics from LLD port 3

Virtual port 8 handling:

1. emac_open and emac close: internally open (ICSS Instance 1) LLD port 2 and (ICSS

Instance 0) LLD port 1 with reduced configuration. Since LLD port 2 is for RX handling

only, no UDMA TX channels/rings need to be configured at time of emac_open.

Similarly for LLD port 1 which is for TX handling only, no UDMA TX channels/rings

need to be configured at time of emac_open.

2. emac_poll_pkt: internally poll packets from DMA resources of LLD port 2.

3. emac_poll_ctrl: internally poll packets from DMA resources of LLD port 2.

4. emac_send: internally send on port 1.

5. emac_ioctl: internally do IOCTL configuration on LLD port 2 as IOCTL is for RX path

configuration at this time

6. emac_get_statistics_icssg: internally query for RX statistics from LLD port 2, TX

statistics from LLD port 1.

7.5 EMAC Polling Link Status

The application should poll the EMAC periodically (for example every 100msec) to monitor the

PHY link status change via the MDIO peripheral using the API emac_poll(). This should make

sure any changes in the link status (link up or down) should be communicated to the other

modules using the EMAC LLD. The application can disable the polling for link status in the

emac_open() API by disabling the MDIO module. Note that this does not apply for Maxwell and

MDIO module is always enabled in order to poll for link status.

Function Declaration
EMAC_DRV_ERR_E emac_poll(uint32_t port_num, EMAC_LINK_INFO_T* p_info)

Where
typedef struct EMAC_LinkInfo_s

{

 bool link_status_change;

 /**< True: link status changed, False: link status is not changed */

 EMAC_LINK_STATUS_T link_status;

 /**< PHY link status, only valid when link_status_change is TRUE */

} EMAC_LinkInfo;

For Maxwell EMAC driver use case with ICSSG Switch, when link_status_change is TRUE, the

application will need to convey the link status change to the firmware using

EMAC_IOCTL_PORT_STATE_CTRL as follows:

If link_status is zero (link down), issue EMAC_IOCTL_PORT_STATE_CTRL with sub-

command EMAC_IOCTL_PORT_STATE_DISABLE.

If link_status is non-zero(link is up), issue EMAC_IOCTL_PORT_STATE_CTRL with sub-

command EMAC_IOCTL_PORT_STATE_FORWARD or EMAC_PORT_BLOCK or

EMAC_PORT_FORWARD_WO_LEARNING as appropriate.

An example for using emac_poll function is shown below

7.6 Error Handling

Error handling is done inside all the LLD APIs and returns following error codes as applicable.

Error status Description

EMAC_DRV_RESULT_OK Indicates successful API call.

EMAC_DRV_RESULT_GENERAL_ERR
Generic error status code returned or an

unspecified error

EMAC_DRV_RESULT_INVALID_PORT
Invalid EMAC port number error returned from

EMAC APIs

EMAC_DRV_RESULT_NO_CHAN_AVAIL
Error indicating that there is no channels are

available. It is returned form EMAC_init() API

EMAC_DRV_RESULT_NO_MEM_AVAIL
Error indicating that there is no free memory

available. Returned from EMAC_init APIs

EMAC_DRV_RESULT_OPEN_PORT_ERR Error returned from EMAC_open API.

EMAC_DRV_RESULT_CLOSE_PORT_ERR Error returned from EMAC_close API

EMAC_DRV_RESULT_CONFIG_PORT_ERR Error returned from EMAC_config API

EMAC_DRV_RESULT_SEND_ERR Error returned from EMAC_send API

EMAC_DRV_RESULT_POLL_ERR
Error returned form EMAC_poll API to indicate

poll link status error

EMAC_DRV_RESULT_GET_STATS_ERR
Error returned from emac_get_statistics and

emac_get_statistics_icssg APIs

EMAC_DRV_RESULT_ISR_ERR Interrupt service error form emac_int_service

EMAC_DRV_RESULT_IOCTL_ERR IOCTL command error

EMAC_DRV_RESULT_IOCTL_IN_PROGRES
S

IOCTL command error, IOCLT command

already in progress

EMAC_DRV_RESULT_IOCTL_ERR_IN_PRO
GRESS

VLAN ID is specified in IOCTL is invalid, out

of range, valid rang is 0 to 4095

EMAC_DRV_RESULT_IOCTL_ERR_PORT_C
LOSED IOCTL command error, port is closed

EMAC_DRV_RESULT_IOCTL_ERR_SEND_M
GMT_MSG

Error when sending MGMT message over PSI

I/F to FW

EMAC_DRV_RESULT_IOCTL_IN_PROGRES
S

Successful IOCTL API call and IOCTL

command is in progress

8. Standards, Conventions and Procedures

8.1 Documentation Standards

Doxygen format is used for documentation in source code.

8.2 Naming conventions

Processor SDK standard naming conventions are used for file and module naming.

8.3 Programming Standards

• C99 standard data types are used in driver implementation.

• MISRA-C coding standards are followed wherever applicable.

8.4 Software development tools

• TI’s Code Composure Studio for project build setup.

• Make files for source code compilation and Test Applications

• Doxygen for extracting documentation from source code

• Klocworks for static code analysis

9. IP Feature List Comparison

This section gives the details of feature comparison of different EMAC HW IPs and software

support for those IP features.

NOTE: Table entries below marked with “*” are supported but currently not tested.

 EMAC IP Features

 OMAPL137 K2G

 HW SW HW SW

IP Driver Version NA 0 NA 1

No. of hardware instance 1 NA 1 NA

Synchronous operations.

10
Mbps

YES YES YES YES *

100
Mbps

YES YES YES YES *

1000
Mbps

NO
NA

YES YES

Standard Media Independent
Interface (MII)

YES YES YES YES *

Reduced Media Independent
Interface (RMII)

YES YES YES YES

GMII NO NA NO NA

RGMII NO NA YES YES

Support quality-of-service (QOS) 2 YES 8 YES *

Ether-Stats and 802.3-Stats
statistics gathering.

YES

NA

With
RMON
Statisti

c
gather

ing NA

Transmit CRC generation YES NO YES NO

Broadcast and Multicast frames
selection

YES YES YES YES *

Promiscuous receive mode YES YES YES YES

Flow control Support YES YES YES YES

Programmable interrupt logic YES NA YES NA

CPPI buffer descriptor memory 8k NA 2k NA

MDIO module for PHY
Management YES

YES
YES

YES

Wire rate switching
(802.1d)

NO
NA

NO
NA

Address Lookup Engine
(ALE)

addre
ss
entrie
s plus
VLAN
s

NO

NA

64

NA

Wire
rate
looku
p

NO

NA

YES NO

Host
contr
olled
Time-
based
aging

NO

NA

YES NO

Multi
ple
spann
ing
Tree
suppo
rt

NO

NA

YES NO

MAC
authe
nticat
ion
(802.
1x)

NO

NA

YES NO

MAC
addre
ss
blocki
ng

NO

NA

YES NO

Sourc
e port
lockin
g

NO

NA

YES NO

OUI
host
accep
t/den
y

Featu

NO

NA

YES NO

 re

VLAN support NO NA YES NO

Digital loopback and FIFO
loopback modes supported

NO
NA

YES NO

Emulation Support NO NA YES TBD

RAM Error Detection and
Correction (SECDED)

NO
NA

YES NO

Programmable transmit Inter-
Packet Gap (IPG)

NO
NA

YES TBD

EMAC IP Features

 AM335x AM437x AM572x AM6x

 HW SW HW SW HW SW HW SW

IP Driver Version NA 4 NA 4 NA 4 NA 5

No. of hardware instance 2 NA 2 NA 2 NA 1 NA

Synchronous operations.

10
Mbps

YES YES YES YES YES YES YES YES *

100
Mbps

YES YES YES YES YES YES YES YES *

1000
Mbps

YES YES YES YES YES YES YES
YES

Standard Media Independent
Interface (MII)

NO NA NO YES NO YES NO NO

Reduced Media Independent
Interface (RMII)

YES YES YES YES YES
 YES

YES NO

GMII
YES YES YES YES YES YES NO

NO

RGMII YES YES YES YES YES YES YES YES

Support quality-of-service (QOS) 4 YES 4 YES 4 YES 8 YES *

Ether-Stats and 802.3-Stats
statistics gathering.

With
RMO

N
Statis

tic
gath
ering NA

With
RMO

N
Statis

tic
gath
ering NA

With
RMON
Statisti

c
gather

ing NA

With
RMON
Statisti

c
gather

ing NA

Transmit CRC generation NO NA NO NA NO NA YES NO

Broadcast and Multicast frames
selection

YES YES YES YES YES YES YES YES

Promiscuous receive mode YES YES YES YES YES YES YES YES

Flow control Support YES YES YES YES YES YES YES NO

Programmable interrupt logic YES NA YES NA YES NA YES NA

CPPI buffer descriptor memory 8k NA 8k NA 8k NA NA NA

MDIO module for PHY
Management YES

YES
YES

YES
YES

YES
YES

YES

Wire rate switching
(802.1d)

YES NO YES NO YES NO NO
NA

Address Lookup Engine
(ALE)

addre
ss
entrie
s plus
VLAN
s

1024

NA

1024

NA

1024

NA

64

NA

Wire
rate
looku
p

YES NO YES NO YES NO YES NO

Host
contr
olled
Time-
based
aging

YES NO YES NO YES NO YES NO

Multi
ple
spann
ing
Tree
suppo
rt

YES NO YES NO YES NO YES NO

MAC
authe
nticat
ion
(802.
1x)

YES NO YES NO YES NO YES NO

MAC
addre
ss
blocki
ng

YES NO YES NO YES NO YES NO

Sourc
e port
lockin
g

YES NO YES NO YES NO YES NO

OUI
host
accep
t/den
y

Featu
re

YES NO YES NO YES NO YES NO

VLAN support YES NO YES NO YES NO YES NO

Digital loopback and FIFO
loopback modes supported

YES NO YES NO YES NO YES NO

RAM Error Detection and
Correction (SECDED)

NO
NA

NO
NA

NO
NA

NO NA

Programmable transmit Inter-
Packet Gap (IPG)

YES NO YES NO YES NO YES NO

10. System Design

10.1 Design Approach

The EMAC driver provides a well-defined API layer which allows applications to use the EMAC

peripheral to control the flow of packet data from the processor to the PHY and the MDIO

module to control PHY configuration and status monitoring.

The EMAC driver is designed to meet the following requirements:

• Support multiple EMAC ports (if available on the device) per core (i.e. A53/R5)

• Support multiple channels per core.

• Support multiple cores to use different channels on the same EMAC port.

• The driver is OS independent and exposes all the operating system callouts via the OSAL

layer.

• EMAC example test application provides standard configurations and demonstrates

measurable benchmarks.

Platform specific functions are mapped to the platform independent APIs using function table

which is given below

 /*! Function to open the specified EMAC port */

 EMAC_OpenFxn openFxn;

 /*! Function to config the specified EMAC port for RX filtering, multicast addresses */

 EMAC_ConfigFxn configFxn;

 /*! Function to close the specified peripheral */

 EMAC_CloseFxn closeFxn;

 /*! Function to send packet to network on specified EMAC port */

 EMAC_SendFxn sendFxn;

 /*! Function to poll link status for specified EMAC port*/

 EMAC_PollFxn pollFxn;

 /*! Function to get EMAC CPSW port statistics*/

 EMAC_GetStatsFxn getStatsFxn;

 /*! Function to poll for receive packets specified EMAC port*/

EMAC_PollPktFxn pollPktFxn;

/*! Function to get EMAC ICSSG port statistics, IP version 5 only*/

EMAC_GetStatsIcssgFxn getStatsIcssgFxn;

/*! Function to send IOCTL command for specified port, IP version 5 only*/

EMAC_IoctlFxn ioctlFxn;

/*! Function to Poll the driver for specified flow/rings, IP version 5 only */

 EMAC_PollCtrlFxn pollCtrl;

10.2 Dependencies

None

10.3 Decomposition of System

The following is an architecture figure which showcases the EMAC driver architecture:-

Figure 8 : EMAC LLD Subsystem Block Diagram

The figure illustrates the following key components:-

10.3.1 Platform Independent APIs

EMAC LLD exposes a set of well-defined APIs which are platform independent and

common across the platforms. These are the functions which are exposed to application

programs.

10.3.2 Platform specific functions/configurations

Platform specific functions implement actual functionality of EMAC LLD for a given

platform. These functions can be specific to one or set of platforms. There will be multiple

versions of platform specific functions based on the number of platforms supported.

Platform specific configurations will define high-level configurations specific to each

platform. This includes register address mapping, interrupts, function table initialization etc.

These configurations are included in soc file.

10.3.3 Operating System Abstraction Layer (OSAL)

The EMAC LLD is OS independent and exposes all the operating system callouts via this

OSAL layer.

10.3.4 CSL Functional Layer

The EMAC driver uses the CSL EMAC functional layer to program the device IP by

accessing the MMR.

 Platform specific

functions/configurations

 CSL Register Layer

OSAL

Interface

 Platform independent APIs

10.3.5 CSL Register Layer

The register layer is the IP block memory mapped registers which are generated by the IP

owner. The EMAC driver does not directly access the MMR registers but uses the EMAC CSL

Functional layer for this purpose.

11. OMAPL13x Integration

This section describes the changes required for adding OMAPL13x platform support to EMAC

LLD.

v0 version of EMAC LLD supported on C6657 platform will be used as reference for the

OMAPL13x integration.

11.1 Platform Independent API

There will be no change to platform independent APIs during OMAPL13x integration.

11.2 Platform Specific functions/configuration

EMAC_soc.c file will be added which defines platform specific configurations for OMAPL13x.

Gigabit support

There is gigabit speed support for OMAPL13x platform but existing v0 EMAC driver supports

gigabit mode through SGMII. Need to create new version of driver based on v0 for OMAPL13x

if we need to avoid SOC specific defines in the driver.

DNUM dependencies

DNUM register is used in the EMAC LLD to decide the core number. OMAPL13x platform

DNUM register returns a value 1 even though there is only one DSP core which is different from

other platforms. LLD changes are needed to handle this case.

11.3 OSAL

No changes are expected for EMAC LLD OSAL for integration of OMAPL13x platform.

11.4 CSL

New version of CSL-RL file is added for OMAPL13x platform.

11.5 Build Setup

Update make files to add support for OMAPL13x platform.

