
 Page i

20450 Century Boulevard
Germantown, MD 20874

MCASP LLD

Software Design Specification (SDS)

Revision A

 Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0

Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative

Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page ii

Revision Record

Document Title: Software Design Specification

Revision

Description of Change

A 1. Initial Release – Code drop 1.1.0

Note: Be sure the Revision of this document matches the Approval record Revision letter. The

revision letter increments only upon approval via the Quality Record System.

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page iii

TABLE OF CONTENTS

1 SCOPE .. 2

2 REFERENCES ... 2

3 DEFINITIONS ... 2

4 OVERVIEW ... 3

4.1 HARDWARE OVERVIEW .. 3
4.2 SOFTWARE OVERVIEW ... 5
4.3 KEY FEATURES .. 6

5 DESIGN .. 6

5.1 MCASP DRIVER INITIALIZATION ... 7
5.2 MCASP PERIPHERAL CONFIGURATION .. 7
5.3 MCASP DRIVER EXTERNAL INTERFACE (PUBLIC APIS) .. 9

5.3.1 Driver Instance Binding... 10
5.3.2 Channel Creation ... 12
5.3.3 I/O Frame Processing .. 14

5.3.3.1 Asynchronous I/O Mechanism .. 14
5.3.4 Control Commands .. 14

5.3.4.1 Mcasp_IOCTL_DEVICE_RESET.. 14
5.3.4.2 Mcasp_IOCTL_CNTRL_AMUTE ... 15
5.3.4.3 Mcasp_IOCTL_START_PORT .. 15
5.3.4.4 Mcasp_IOCTL_STOP_PORT .. 15
5.3.4.5 Mcasp_IOCTL_QUERY_MUTE ... 16
5.3.4.6 Mcasp_IOCTL_CTRL_MUTE_ON ... 16
5.3.4.7 Mcasp_IOCTL_CTRL_MUTE_OFF .. 16
5.3.4.8 Mcasp_IOCTL_PAUSE .. 17
5.3.4.9 Mcasp_IOCTL_RESUME .. 17
5.3.4.10 Mcasp_IOCTL_SET_DIT_MODE ... 17
5.3.4.11 Mcasp_IOCTL_CHAN_TIMEDOUT .. 17
5.3.4.12 Mcasp_IOCTL_CHAN_RESET ... 18
5.3.4.13 Mcasp_IOCTL_CNTRL_SET_FORMAT_CHAN ... 18
5.3.4.14 Mcasp_IOCTL_CNTRL_GET_FORMAT_CHAN .. 18
5.3.4.15 Mcasp_IOCTL_CNTRL_SET_GBL_REGS .. 19
5.3.4.16 Mcasp_IOCTL_SET_DLB_MODE .. 19
5.3.4.17 Mcasp_IOCTL_ABORT ... 19

5.3.5 Channel Deletion ... 20
5.3.6 Driver Instance Unbinding/Deletion ... 21

5.4 DATA STRUCTURES .. 21
5.4.1 Internal Data Structures .. 21

5.4.1.1 Driver Instance Object .. 21
5.4.1.2 Channel Object ... 22

5.4.2 External Data Structures ... 25
5.4.2.1 Mcasp_ChanParams .. 25
5.4.2.2 The Mcasp_ PktAddrPayload structure... 26
5.4.2.3 The Mcasp_ Params structure ... 26

5.5 SUPPORTED DATA FORMATS .. 27

6 INTEGRATION ... 27

6.1 PRE-BUILT APPROACH .. 27
6.2 REBUILD LIBRARY .. 28

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page iv

7 TEST APPLICATION ... 28

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 1

LIST OF FIGURES

Figure 1: MCASP Hardware Block Diagram ... 4

Figure 2: MCASP LLD Software Overview ... 5

Figure 3: MCASP LLD Driver Architecture... 6

Figure 4: Device Initialization Sequence .. 8

Figure 5: Driver Instance Binding ... 11

Figure 6: Create Channel Flow Diagram .. 13

Figure 7: Control Command Flow .. 20

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 2

1 Scope

This document describes the design of Multichannel Buffered Serial Port Low Level Driver

(MCASP LLD). Also, the data types, data structures and application programming interfaces

(APIs) provided by the MCASP driver are explained in this document.

2 References

The following references are related to the feature described in this document and shall be

consulted as necessary.

No Referenced Document Control Number Description

1 MCASP User Guide SPRUHH0 KeyStone Architecture

MCASP User Guide

2 MCASP LLD Documentation The MCASP LLD APIs are

generated by DOXYGEN

and is located in the

MCASP package under the

“docs” directory in CHM

format.

3 EDMA User Guide SPRUGS5A Enhanced Direct Memory

Access (EDMA3)

Controller User Guide

Table 1. Referenced Materials

3 Definitions

Acronym Description

API Application Programming Interface

CSL Chip Support Library

CPU Central Processing Unit

DMA Direct Memory Access

DSP Digital Signal Processor

EDMA Enhanced Direct Memory Access Controller

FIFO First In First Out

IP Intellectual Property

ISR Interrupt Service Routine

LLD Low Level Driver

MCASP Multichannel Buffered Serial Port

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 3

Acronym Description

MMR Memory Mapped Register

OSAL Operating System Abstraction Layer

PARAM Parameter RAM

SOC System On Chip

SRGR Sample Rate Generator

Table 2. Definitions

4 Overview

The multichannel buffered serial port (MCASP) peripheral allows direct interface to other TI

DSPs, codecs, and other devices in a system. The primary use for the MCASP is for audio

interface purposes. The following sub sections explain the hardware (MCASP peripheral) and

software context of the MCASP LLD.

4.1 Hardware Overview

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 4

Figure 1: MCASP Hardware Block Diagram

1. The Mcasp is a general purpose serial port optimized for the need of the

multichannel audio applications. It supports the TDM and DIT mode of data

transfers.

2. The McASP consists of transmit and receive sections that may operate

synchronized, or completely independently with separate master clocks, bit

clocks, and frame syncs, and using different transmit modes with different bit-

stream formats.

3. Extensive error checking and recovery

a. Transmit under runs and receiver overruns due to the system not meeting

real-time requirements

b. Early or late frame sync in TDM mode

c. Out-of-range high-frequency master clock for both transmit and receive

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 5

d. DMA error due to incorrect programming.

4. Has hardware FIFO for additional buffering.

5. Has provision for generating the clocks internally or to be sourced from an

external source.

4.2 Software Overview

Figure 2: MCASP LLD Software Overview

Figure 2: MCASP LLD Software Overview depicts the various components involved in the

transfer of data when the MCASP driver runs on the DSP. Serial data is stored in the memory by

DSP e.g. after decoding the audio data. The main function of MCASP driver is to program the

EDMA channels to move the data from memory to the MCASP interface on every transfer event

from the MCASP (TX path). Similarly, the driver can configure EDMA channels to move data

received on MCASP interface to the memory for DSP use (RX path).

The EDMA3 channel controller services MCASP peripheral in the background of DSP

operation, without requiring any DSP intervention. Through proper initialization of the EDMA3

channels, they can be configured to continuously service the peripheral throughout the device

operation. Each event available to the EDMA3 has its own dedicated channel, and all channels

operate simultaneously. The only requirements are to use the proper channel for a particular

transfer and to enable the channel event in the event enable register (EER). When programming

an EDMA3 channel to service MCASP peripheral, it is necessary to know how data is to be

TX EDMA

MCASP LLD

Memory

MCASP

Controller

RX EDMA

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 6

presented to the DSP. Data is always provided with some kind of synchronization event as either

one element per event (non-bursting) or multiple elements per event (bursting).

4.3 Key Features

Following are the key features of MCASP LLD software:

 Multi-instance support and re-entrant driver

 Each instance can operate as a receiver and or transmitter

 Supports multiple data formats

 Can be configured to operate in multi-slot TDM, DSP (used in audio data transfer)

 Mechanisms to transmit desired data (such as NULL tone) when idle

5 Design

This section explains the overall architecture of MCASP device driver, including the device

driver functional partitioning as well as run-time considerations. The MCASP LLD driver

provides well-defined API layers which allow applications to use the MCASP peripheral to send

and receive data.

Figure 3: MCASP LLD Driver Architecture

The Figure 3: MCASP LLD Driver Architecture illustrates the following key components:

1.) MCASP Device Driver

This is the core MCASP device driver. The device driver exposes a set of well-defined

APIs which are used by the application layer to send and receive data via the MCASP

peripheral. The driver also exposes a set of well-defined OS abstraction APIs which are

used to ensure that the driver is OS independent and portable. The MCASP driver uses

the CSL MCASP register layer for all MCASP MMR access. The MCASP driver also

interfaces with the EDMA3 library to be able to transfer data to and from MCASP

peripheral and data memory.

2.) Device Specific MCASP Layer

HLOS
 like

SYSBios

Application Code

MCASP LLD

CSL

Device Specific
MCASP

O
S
A
L

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 7

This layer implements a well defined interface which allows the core MCASP driver to

be ported on any device which has the same MCASP IP block. This layer may change for

every device.

3.) Application Code

This is the user of the driver and its interface with the driver is through the well-defined

APIs set. Application users use the driver APIs to send and receive data via the MCASP

peripheral.

4.) Operating System Abstraction Layer (OSAL)

The MCASP LLD is OS independent and exposes all the operating system callouts via

this OSAL layer.

5.) CSL Register Layer

The CSL register layer is the IP block memory mapped registers which are generated by

the IP owner. The MCASP LLD driver directly accesses the MMR registers.

5.1 MCASP Driver Initialization

The MCASP Driver initialization API needs to be called only once and it initializes the internal

driver data structures like device objects. Application developers need to ensure that they call the

MCASP Driver Init API before they call the MCASP Device Initialization.

The following API is used to initialize the MCASP Driver.

int32_t mcaspInit (void)

The function returns MCASP_STATUS_COMPLETED on success indicating that the MCASP

driver internal data structures have been initialized correctly.

5.2 MCASP Peripheral Configuration

The MCASP driver provides a sample implementation sequence which initializes the MCASP IP

block. The MCASP Device initialization API is implemented as a sample prototype:

void McaspDevice_init (void)

The function initializes all the instance specific information like base address of instance CFG

registers, FIFO address for the instance, TX and RX CPU event numbers, TX and RX EDMA

event numbers etc. The function also sets the inUse field of MCASP instance module object to

FALSE so that the instance can be used by an application which will create it. Mute buffers are

also initialized. Please refer to the figure below for the typical control flow during the device

initialization.

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 8

Figure 4: Device Initialization Sequence

The Figure 4: Device Initialization Sequence depicts the typical control flow during the

initialization of the MCASP device.

This implementation is sample only and application developers are recommended to modify it as

deemed necessary. The initialization sequence is not a part of the MCASP driver library. This

was done because the MCASP Device Initialization sequence has to be modified and customized

by application developers. If the initialization sequence was a part of the MCASP driver then it

START

Set the module state “inUse” to
FALSE

Initialize the Mute Buffer (used
for the Mute command

implementation)

Return

Update the device instance
specific information depending
on the instance that is being

currently initialized

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 9

would require the driver to be rebuilt. Moving this API outside the driver realm solves this issue.

The MCASP Device Initialization API should only be called after calling the MCASP Device

Init API. Failure to do so will result in unpredictable behaviors.

5.3 MCASP Driver External Interface (Public APIs)

The following table outlines the basic interfaces provided by MCASP LLD.

Function Description

mcaspBindDev

The mcaspBindDev function is called by the application after

MCASP device initialization. The mdBindDev performs following

actions:

 Acquire the device handle for the specified instance of MCASP

on the SOC.

 Configure the MCASP device instance with the specified

parameters (or default parameters, if there is no external

configuration).

mcaspUnBindDev

The mcaspUnBindDev function is called to delete an instance of the

Mcasp driver. It will unroll all the changes done during the bind

operation and free all the resources allocated to the MCASP.

mcaspCreateChan

The mcaspCreateChan function creates a TX or RX channel on

the specified MCASP instance. Application has to specify the mode in

which the channel has to be created through the “mode” parameter.

The MCASP driver supports only two modes of channel creation

(input and output mode) for every device instance. It performs

following actions:

 The required EDMA channel and spare PARAM sets are

acquired and configured.

 The required TX or RX sections (clocks, SRGR, frame sync

etc.) are setup.

mcaspDeleteChan

The mcaspDeleteChan deletes a channel created on a MCASP

instance. It frees all the resources allocated during the creation of the

channel.

mcaspSubmitChan

The mcaspSubmitChan is invoked with the appropriate channel

handle and IOBuf (aka frame) containing the operation to be

performed and required parameters needed for programming the

EDMA channels.

mcaspAppCallback
This function is the callback function routine called when any RX or

TX transfer is completed.

mcaspControlChan

The mcaspControlChan function is used to issue a control

command to the MCASP driver. Please refer to the list of control

commands supported by the MCASP driver.

 Typical commands supported are PAUSE, RESUME, STOP,

START etc.

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 10

5.3.1 Driver Instance Binding

The binding function (mcaspBindDev) of the MCASP driver is called to allocate and

configure a MCASP instance as specified by devid. Each driver instance corresponds to one

hardware instance of the MCASP. The function performs following actions:

 Check if the instance being created is already in use by checking “inUse”.

 Update the instance object with the user supplied parameters.

 Initialize all the channel objects (TX and RX) with default parameters.

 Initialize queues to hold the pending frames and currently executing frames (floating

queue).

 Configure the MCASP to receive the Frame Sync and bit clocks either externally or

internally for both receiver and transmitter depending on the user supplied parameters.

 Return the device handle.

The driver binding operation expects the following parameters:

1. Pointer to hold the function returned device handle.

2. Instance number of the MCASP instance being created.

3. Pointer to the user provided device parameter structure required for the creation of device

instance. The user provided device parameter structure will be of type “Mcasp_Params”.

Please refer the Figure 5: Driver Instance Binding below for the control flow of driver Bind

operation.

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 11

Figure 5: Driver Instance Binding

START

Validate Input parameters

Is

Instance in

Use?

No

1. Update the instance object with the user supplied Params.

2. Initialize the channel objects to default values.

3. Initialize the pending & floating queue for RX/TX. Reset

the McASP device and disable the device.

4. Configure the McASP for the DLB mode if applicable

5. Configure the McASP for the

DLB mode if applicable

Return device handle

Yes

Set device Handle to NULL

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 12

5.3.2 Channel Creation

Once the application has created a device instance, it needs to create a communication channel

for transactions with the underlying hardware. As such a channel is a logical communication

interface between the driver and the application. The driver allows at most two channels per

MCASP instance to be created which are a transmit channel (TX path e.g. audio playback or data

transmission) and a receive channel (RX path e.g. audio recording or data reception). The

application can create a communication channel by calling mcaspCreateChan function. The

application should call mcaspCreateChan with the appropriate “mode”

(MCASP_MODE_OUTPUT or MCASP_MODE_INPUT) parameter for the type of the channel to be

created.

The application needs to supply the parameters which will characterize the features of the

channel e.g. number of slots, slot width etc. The application can use the

“Mcasp_ChanParams” structure to specify the parameters to configure the channel.

The mcaspCreateChan function performs the following actions:

 Validates the input parameters given by the application.

 Checks if the requested channel is already opened or not. If it is already opened then the

driver will flag an error to the application else the requested channel will be allocated.

 Updates the appropriate channel object with the user supplied parameters.

 MCASP is configured with the appropriate word width.

 EDMA parameters for the requested channel are setup.

 If the global error callback function registration is enabled, the appropriate user supplied

function is registered to be called in case of an error.

 If the channel creation fails then it will perform a cleanup and also free all the resource

allocated by it till now.

 If the complete process of channel creation is successful, then it will return a unique

channel handle to the application. This handle should be used by the application for

further transactions with the channel. This handle will be used by the driver to identify the

channel on which the transactions are being requested.

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 13

Figure 6: Create Channel Flow Diagram

START

Validate input parameters

Is the requested

channel already

open?

1. The requested channel is allocated.

2. Configure the Mcasp with the user supplied parameters

3. Configure the EDMA for the Mcasp channel required

4. Update the channel handle to be returned to application

Is Loop Job

mode enabled?

1. Start the EDMA for the channel

2. Start the respective hardware sections(RX/TX)

3. Return the channel handle

Return to the

application

Yes

No

Return chanHandle as

NULL

Yes

No

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 14

5.3.3 I/O Frame Processing

MCASP driver provides mcaspSubmitChan interface to submit ioBufs (frames) for the I/O

transactions to be performed. Application invokes this API for data transfer using MCASP. This

API submits a Mcasp_IOBuf frame containing all the transfer parameters needed by the driver

to program the underlying hardware for data transfer. The mcaspSubmitChan function

handles the command code passed to it as part of the Mcasp_IOBuf structure.

The mcaspSubmitChan function performs the following actions:

 The input Mcasp_IOBuf frame is validated.

 If the driver has sufficient frames then the current frame is loaded in to the pending

queue.

 Otherwise the frame is programmed into the link PARAMs of the EDMA.

 In NON LOOP JOB mode, the first frame is always loaded in to the main transfer

channel. The subsequent two frames are loaded into the spare PARAM sets of the

EDMA. Also if this is the first frame for the driver then the clocks are started as per the

configuration of the channel. Any other frames after this are loaded into the pending

queue. These frames will be loaded by the EDMA callback into the appropriate PARAM

set of the EDMA.

5.3.3.1 Asynchronous I/O Mechanism

The MCASP driver supports asynchronous I/O mechanism. In this mechanism, multiple I/O

requests can be submitted by the application without causing it to block while waiting for the

previous I/O requests to complete. Application can submit multiple I/O requests using

mcaspSubmitChan API. The application callback function registered during the transfer

request submission will be called upon transfer completion by the driver. The driver internally

will queue the I/O frames submitted to support the asynchronous I/O functionality.

5.3.4 Control Commands

MCASP driver implements device specific control functionality which may be useful for any
application, which uses the MCASP driver. Application may invoke the control functionality
through a call to mcaspControlChan. MCASP driver supports the following control

functionality.The following sections list the IOCTL commands supported by the McASP
driver.

5.3.4.1 Mcasp_IOCTL_DEVICE_RESET

Command Mcasp_IOCTL_DEVICE_RESET

Parameters None

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 15

The application issues this command to reset the Mcasp device. On

receiving this command the Mcasp aborts all the current pending IO

requests and resets the Mcasp.

Note: This command resets the entire Mcasp instance irrespective of the

channel to which the command is issued.

5.3.4.2 Mcasp_IOCTL_CNTRL_AMUTE

Command Mcasp_IOCTL_CNTRL_AMUTE

Parameters Value to write to AMUTE register

The application issues this command to control the AMUTE pin of the

McASP device. The application also needs to specify the value to be

written to the AMUTE register.

5.3.4.3 Mcasp_IOCTL_START_PORT

Command Mcasp_IOCTL_START_PORT

Parameters None

This IOCTL function allows the application to start the state machine of

the required channel. The McASP driver has two channels receive and

transmit channel. This command starts the state machine of the channel for

which the start command has been issued.

5.3.4.4 Mcasp_IOCTL_STOP_PORT

Command Mcasp_IOCTL_STOP_PORT

Parameters None

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 16

This IOCTL function allows the application to stop the state machine of

the required channel. The McASP driver has two channels, receive and

transmit channels. This command stops the state machine of the channel

for which the command has been issued.

5.3.4.5 Mcasp_IOCTL_QUERY_MUTE

Command Mcasp_IOCTL_QUERY_MUTE

Parameters Pointer to the variable to hold the AMUTE register value

This command is used by the application to query the value of the McASP

AMUTE register. The application provides a pointer where the queried

valued is updated

5.3.4.6 Mcasp_IOCTL_CTRL_MUTE_ON

Command Mcasp_IOCTL_CTRL_MUTE_ON

Parameters None.

This command mutes the Mcasp device i.e. only zeros will be sent instead

of an audio stream.

5.3.4.7 Mcasp_IOCTL_CTRL_MUTE_OFF

Command Mcasp_IOCTL_CTRL_MUTE_OFF

Parameters None

This command is used to “un-mute” the previously muted Mcasp device.

In case of trying to un-mute a channel which is not muted, an error is given

by the IOM Driver.

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 17

5.3.4.8 Mcasp_IOCTL_PAUSE

Command Mcasp_IOCTL_PAUSE

Parameters None

This command sets the McASP device in to pause i.e. no more IO packets

are processed by the McASP. All the new requests will be queued up in

the IOM Driver.

5.3.4.9 Mcasp_IOCTL_RESUME

Command Mcasp_IOCTL_RESUME

Parameters None

This command is used to resume the McASP device which is paused

previously. In the case that the Mcasp is not is a paused state the IOM

Driver raises an error.

5.3.4.10 Mcasp_IOCTL_SET_DIT_MODE

Command Mcasp_IOCTL_SET_DIT_MODE

Parameters Value to write to DITCTL register

This command is used to modify the Mcasp audio data transport protocol

to the DIT mode.

5.3.4.11 Mcasp_IOCTL_CHAN_TIMEDOUT

Command Mcasp_IOCTL_CHAN_TIMEDOUT

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 18

Parameters None

This command is to be called in case a timeout is encountered during a

channel operation. This command aborts the timed out channel.

5.3.4.12 Mcasp_IOCTL_CHAN_RESET

Command Mcasp_IOCTL_CHAN_RESET

Parameters None

This command is used by the application to reset a McASP channel

5.3.4.13 Mcasp_IOCTL_CNTRL_SET_FORMAT_CHAN

Command Mcasp_IOCTL_CNTRL_SET_FORMAT_CHAN

Parameters Pointer to the new “Mcasp_HwSetupData” structure

This command is used to modify the channel settings of the McASP

channel. It configures the Mcasp channel with the new hardware set up

data sent by the application.

5.3.4.14 Mcasp_IOCTL_CNTRL_GET_FORMAT_CHAN

Command Mcasp_IOCTL_CNTRL_GET_FORMAT_CHAN

Parameters
Pointer to the “Mcasp_HwSetupData” structure to hold the

data

The application can use this command to get the information about the

current channel. The application needs to provide the pointer to the

“Mcasp_HwSetupData” structure to hold the data.

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 19

5.3.4.15 Mcasp_IOCTL_CNTRL_SET_GBL_REGS

Command Mcasp_IOCTL_CNTRL_SET_GBL_REGS

Parameters Pointer to the “Mcasp_HwSetup” structure

 The application can use this command to set the global control register.

The application needs to send the pointer to the new “Mcasp_HwSetup”

data structure that needs to be programmed.

5.3.4.16 Mcasp_IOCTL_SET_DLB_MODE

Command Mcasp_IOCTL_SET_DLB_MODE

Parameters DLB mode enable or disable

This command is used to set the McASP in to the loopback mode.

5.3.4.17 Mcasp_IOCTL_ABORT

Command Mcasp_IOCTL_ABORT

Parameters None

The application issues this command to abort the pending requests of the

channel. This IOCTL aborts all the pending request of the channel and

stops the state machine. The EDMA transfer is also stopped.

The typical control flow for the MCASP control function is as given below.

 Validate the command sent by the application.

 Check if the appropriate arguments are provided by the application for the execution of

the command.

 Process the command and return the status back to the application.

The basic control flow for the handling of the control commands for the driver is shown in Figure

7: Control Command Flow. Please note that the individual command handling is not detailed

here.

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 20

Figure 7: Control Command Flow

5.3.5 Channel Deletion

Once a channel has completed all the transactions it can be closed so that all the resources

allocated to the channel can be freed. The driver provides mcaspDeleteChan API to delete a

previously created MCASP channel for an instance. The actions performed during the channel

deletion are as follows:

 The channel to be deleted is reset.

 The reset operation aborts all the packets in the pending queue and also the packets in the

current active queue.

 The EDMA transfer for this channel is disabled.

 The MCASP state machines are stopped.

 The interrupt handlers are unregistered.

START

Validate the input parameters

Is the

command

supported by

the driver?

Execute the command

Return status

Return “command not

implemented” status

NO

YES

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 21

 All the spare PARAM sets of the EDMA are freed.

 The status of the channel is updated to DELETED.

5.3.6 Driver Instance Unbinding/Deletion

The MCASP driver provides mcaspUnBindDev interface to delete a driver instance. The

function de-allocates all the resources allocated to the instance object during the driver binding

operation. The operations performed by the unbind operation are as listed below:

 Check if both the TX and the RX channels are closed.

 Update the instance object.

 Set the status of the driver instance to “DELETED”.

 Set the status of the instance “inUse” to FALSE (so that instance can be used again).

5.4 Data Structures

5.4.1 Internal Data Structures

5.4.1.1 Driver Instance Object

This structure is the MCASP driver’s internal data structure. This data structure is
used by the driver to hold the information specific to the MCASP instance. There will
be one unique instance object for every instance of the MCASP controller supported
by the driver.

S.No
Structure Elements

(Mcasp_Object)
Description

1 instNum Current instance number of
the Mcasp

2 devState Preserve the current state of
the driver (Create/Deleted
etc)

3 isDataBufferPayloadStructure Whether the application
buffer to be interpreted as
payload structure.

4 mcaspHwSetup Mcasp device hardware
information for initializing

5 hwiNumber Interrupt number used by the
Mcasp

6 enablecache Flag to enable/disable the
usage of the cache

7 stopSmFsXmt Flag to stop the transmit
state machine

8 stopSmFsRcv Flag to stop the receive state
machine

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 22

9 XmtObj Transmit channel object

10 RcvObj Receive Channel object

11 HwInfo Structure holding the
instance specific information
like base address etc

12 serStatus Status of each serializers
(e.g. Free/transmit/receive)

13 isrSwiObject SWI to handle the interrupts

14 fifoSwiObject SWI object for the swi used
to handle the FIFO

15 retryCount value to be used when
waiting for the TX empty

16 loopJobMode loop job mode is always
disabled

17 pscPwrmEnable PSC control enable/disable

Comments

1. The MCASP Driver works only in the EDMA mode of operation.

2. One instance object represents one instance of the driver.

Constraints

None

See Also

Mcasp_ChannelObj

5.4.1.2 Channel Object

This structure is the MCASP driver’s internal data structure. This data structure is
used by the driver to hold the information specific to a channel. There will be at most
two channels supported per MCASP instance (one for TX and one for RX). It is used
to maintain the information pertaining to the channel like the current channel state,
callback function etc. This structure is initialized by mcaspCreateChan and a pointer

to this is passed down to all other channel related functions. Lifetime of the data
structure is from its creation by mcaspCreateChan till it is invalidated (deleted) by

mcaspDeleteChan.

S.No
Structure Elements

(Mcasp_ChannelObj)
Description

1 chanState Preserve the current state of
the driver (Open/closed etc)

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 23

2 mode Mode of operation of the
channel

3 devHandle Pointer to the Mcasp_Object
structure

4 cbFxn Callback function to be called
on completion of an IO
operation

5 cbArg Argument to be passed to the
callback function

6 queueReqList List to handle all the pending
IO packets

7 queueFloatingList List to handle the currently
processed IO requests

8 noOfSerAllocated Number of serializers
allocated for this channel

9 channelOpMode Audio data transport protocol
(DIT/TDM)

10 isDmaDriven Option to check if the
channel is DMA driven

11 dataQueuedOnReset Data queued in the channel.

12 intStatus Interrrupt status

13 dataPacket Current IO packet pointer

14 tempPacket Temporary IO packet pointer

15 isTempPacketValid Flag to indicate whether the
tempPacket field holds an
valid packet.

16 userDataBufferSize Size of the application given
buffer

17 submitCount Number of IO requests
pending in the channel

18 indexOfSersRequested[] Index of the serializers
requested by the channel.

19 edmaHandle Handle to the EDMA driver

20 xferChan EDMA transfer channel

21 tcc EDMA Transfer channel

22 pramTbl[2] Spare channels of EDMA
used for linking

23 pramTblAddr[2] Physical address of EDMA

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 24

channels used for linking

24 nextLinkParamSetToBeUpdated Element holding the next
paramset to be linked

25 loopjobUpdatedinParamset Flag to check if the loop job
is updated in the param set
(Not used as loopjob mode is
permanently disabled)

26 cpuEventNum Cpu interrupt number

25 xferinProgressIntmode Flag to indicate that transfer
is in progress in the interrupt
mode

26 loopJobBuffer Pointer to Loop job buffer to
be used when the Mcasp is
idle (Not used as loopjob
mode is permanently
disabled)

27 loopJobLength Length of the loop job to be
used for each serializer (Not
used as loopjob mode is
permanently disabled)

28 roundedWordWidth Length of the word to be
transferred in EDMA

29 currentDataSize Current transfer size

30 bMuteON Flag to indicate if the mute is
on for this channel

31 paused Flag to indicate if the channel
is paused

32 edmaCallback Pointer to the edma callback
function

33 gblErrCbk Pointer to the call back to be
called in case of error

34 nextFlag Flag used to check if the
channel state machine can
be stopped

35 currentPacketErrorStatus Current packet Error status is
maintained here

36 enableHwFifo whether the FIFO has to be
enabled for this channel

37 isDataPacked flag to indicate if the buffer
data needs to be packed

38 userLoopJobLength Length of the user supplied
loop job buffer (Not used as

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 25

loopjob mode is permanently
disabled)

39 dataFormat Application supplied buffer
format

40 userIntValue User supplied mask for the
interrupts to be enabled

41 userLoopJob Option to indicate if the user
loop job is used or driver loop
job (Not used as loopjob
mode is permanently
disabled)

Comments

Constraints

None

See Also

Mcasp_Object

5.4.2 External Data Structures

5.4.2.1 Mcasp_ChanParams

This structure is used to supply user parameters during the creation of the channel
instance. During the creation of the channel, user needs to supply the above
structure with the appropriate parameters as per the required mode of operation. The
structure is defined as below:

S.No
Structure Elements

(Mcasp_ChanParams)
Description

1 noOfSerRequested Number of serializers
requested

2 indexOfSersRequested[] Index of the requested
serializers

3 mcaspSetup Pointer to the Mcasp
hardware set up structure

4 isDmaDriven Flag to indicate if the channel
is DMA driven

5 channelMode Audio transport protocol to be
used(DIT/DTM)

6 wordWidth Size of the data to
transferred

7 userLoopJobBuffer Loop job buffer to be used

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 26

(Not used as loopjob mode is
permanently disabled)

8 userLoopJobLength Loop job buffer length (Not
used as loopjob mode is
permanently disabled)

9 edmaHandle Handle to the EDMA driver

10 gblCbk Pointer to the callback
function to be called in case
of Errors

11 noOfChannels Number of channels to be
transmitted (used only in
case of TDM mode).

12 dataFormat Format of the application
supplied buffer

13 enableHwFifo Option to enable the
Hardware FIFO

14 isDataPacked flag to indicate if the buffer
data needs to be packed

See Also

Mcasp_DataConfig

5.4.2.2 The Mcasp_ PktAddrPayload structure

This is the format of the audio data to be sent by the application in case of Using
DIT mode.

S.No
Structure Elements

(Mcasp_PktAddrPayload)
Description

1 chStat Channel status ram info

2 userData User information

3 writeDitParams Whether the DIT params are
to be written

4 addr Actual address of the buffer
to be transferred

5.4.2.3 The Mcasp_ Params structure

S.No
Structure Elements

(Mcasp_Params)
Description

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 27

1 enablecache Whether cache has to be
used.

2 hwiNumber Hwi number to be used by
the Mcasp device

3 isDataBufferPayloadStructure Whether the buffer is to be
interpreted as payload
structure or normal buffer

4 mcaspHwSetup The Mcasp hardware
initialization strcuture

5 pscPwrmEnable Option to enable or disable
the PSC control

5.5 Supported Data Formats

6 Integration

The MCASP LLD depends on the following components:

a. CSL

b. EDMA3 LLD

These components need to be installed before the MCASP driver can be integrated. The MCASP

driver is released in source code and in pre-built library. Applications can decide how to use the

MCASP driver.

The MCASP Driver release notes indicate the version of the above components which that

release is dependent upon. The next steps use the version numbers for illustrative purpose only.

6.1 Pre-built approach

In this approach, the application developers can decide to use the MCASP driver pre-built

libraries as is. The following steps need to be done:

a. The application developers modify their application configuration file to use the MCASP

package.

var Mcasp = xdc.loadPackage('ti.drv.mcasp');

b. Ensure that the XDCPATH is configured to have the path to the PDK package

c. This implies that XDC Configuration scripts will link the application using the MCASP

Driver libraries (Module.xs)

d. The application authors need to provide an OSAL implementation file for MCASP and

ensure that this is linked with the application; failure to do so will results in linking

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 28

errors. Please refer to the MCASP OSAL header file (mcasp_osal.h) for more

information on the API’s which need to be provided.

6.2 Rebuild library

In this approach, the application developers can decide to use the MCASP driver source code and

add these files to the application project to rebuild the MCASP driver code base. The following

steps need to be redone:

a. Application developers should port the file “mcasp_osal.h” to their operating system

environment. Developers are recommended to create a copy of this file and place it in

their application directory. They should use the file which is provided in the MCASP

installation only as a template. The goal here should be to map the Mcasp_osalXXX

macros to the OS calls directly thus reducing the overhead of an API callout. E.g.

#define Mcasp_osalCreateSem() (Void*)Semaphore_create(0, NULL, NULL)

b. Application developers should port the file “mcasp_types.h” to the application

environment. Developers are recommended to create a copy of this file and place it in

their application directory.

c. Append the include path to the top level MCASP package directory i.e. if the MCASP

package is installed in C:\Program Files\Texas

Instruments\mcasp_C6657_1_0_0_0; then make sure the include path is configured as
C:\Program Files\Texas Instruments\mcasp_C6657_1_0_0_0\packages

d. Add the MCASP driver files listed in the src directory to the application build files

The approach above is highlighted in the MCASP example directory.

7 Test Application

The test application is an audio loopback example. This programs the AIC3104 codec on

AM572x GP-EVM to accept analog input and output analog. The code to program the codec is

present in the following files under the directory

mcasp\example\evmAM572x\AIC31_Stereo_Loopback\src\

Texas Instruments Incorporated Software Design Specification

Revision A MCASP LLD

 Page 29

The test example receives the audio samples received on the McASP port through the AIC3104

codec EVM and plays them back through the audio output port of the EVM.

