

MMCSD LLD SDS

TABLE OF CONTENTS

1 INTRODUCTION .. 1

2 KEY FEATURES ... 1

3 HARDWARE SUPPORT (EVM/SOCS) .. 1

4 DESIGN OVERVIEW ... 1

4.1 PERIPHERAL DEVICE DRIVER .. 2
4.2 DEVICE SPECIFIC MODULE LAYER ... 2
4.3 APPLICATION CODE .. 2
4.4 OSAL .. 2
4.5 CSL REGISTER LAYER ... 2

5 MODES OF OPERATION ... 3

5.1 MMCSD_MODE_BLOCKING .. 3
5.2 MMCSD_MODE_CALLBACK ... 3

6 DRIVER CONFIGURATION .. 3

6.1 BOARD SPECIFIC CONFIGURATION ... 3
6.2 MMCSD CONFIGURATION STRUCTURE ... 3
6.3 APIS... 3
6.4 USAGE .. 4
6.5 API CALLING SEQUENCE .. 4
6.6 FLOW CHART .. 5

7 EXAMPLES ... 6

7.1 EEPROM READ: .. 6
7.1.1 Building the examples: .. 6
7.1.2 Running the examples .. 6
7.1.3 Supported platforms: ... 7

8 TEST ... 7

8.1 BUILDING THE EXAMPLES: .. 7
8.2 RUNNING THE EXAMPLES ... 8
8.3 SUPPORTED PLATFORMS: .. 8

9 MIGRATION GUIDE ... 8

10 BENCHMARKING ... 8

1 Introduction

The MMCSD module provides an interface between a CPU and any MMCSD-bus-compatible

device

that connects via the MMCSD serial bus. External components attached to the MMCSD bus can

serially

transmit/receive data to/from the CPU device through the two-wire MMCSD interface.

2 Key Features

 Type of transfers

o Read

o Write

o Write followed by read

 Operating modes

o Blocking(interrupt or Non interrupt)

o Callback mode(interrupt)

 Supports only master mode. Slave mode is not supported

3 Hardware Support (EVM/SoCs)

Board SoC Cores

AM572x IDK EVM AM572x A15 & C66X

AM572x GP EVM AM572x A15 & C66X

AM571x IDK EVM AM571x A15 & C66X

4 Design Overview

The MMCSD driver provides a well-defined API layer which allows applications to use the

MMCSD peripheral to send and receive data.

The below figure which shows the MMCSD Driver architecture.

The figure illustrates the following key components:-

4.1 Peripheral device driver

This is the core MMCSD device driver. The device driver exposes a set of well-defined

APIs which are used by the application layer. The driver also exposes a set of well-

defined OS abstraction APIs which will ensure that the driver is OS independent and

portable. The driver uses the CSL register layer for MMR accesses.

4.2 Device specific module layer

This layer implements a well-defined interface which allows the core MMCSD device

driver to be ported to any device which has the same MMCSD IP block. This layer may

change for every device.

4.3 Application Code

This is the user of the driver and its interface through the well-defined APIs set.

Application uses the driver APIs to send and receive data via the MMCSD peripheral.

4.4 OSAL

The driver is OS independent and exposes all the operating system callouts via this OSAL

layer.

4.5 CSL Register Layer

The MMCSD driver uses the CSL MMCSD functional layer to program the device IP by

accessing the MMR (Memory Mapped Registers).

5 Modes of Operation

MMCSD driver provides the following modes of operations.

5.1 MMCSD_MODE_BLOCKING

By default, the MMCSD driver operates in blocking mode. In blocking mode, a Task’s code

execution is blocked until an MMCSD transaction has completed. This ensures that only

one MMCSD transaction operates at a given time.

 MMCSD Driver will support both interrupt or non-interrupt based blocking modes.

5.2 MMCSD_MODE_CALLBACK

I n callback mode, an MMCSD transaction functions asynchronously, which means that it

does not block a Task’s code execution. After an MMCSD transaction has been completed,

the MMCSD driver calls a user-provided hook function.

Only interrupt based callback mode is supported. Callback mode is not supported in-case

of non-interrupt use cases.

6 Driver Configuration

6.1 Board Specific Configuration

All the board specific configurations like enabling the clock and pin-mux of MMCSD pins

should be performed before calling any of the driver APIs. Once the board specific configuration

is done then the driver API MMCSD_init() should be called to initialize the MMCSD driver.

6.2 MMCSD Configuration Structure

The MMCSD_soc.c file contains the declaration of the MMCSD_config structure. This structure

must be provided to the MMCSD driver. It must be initialized before the MMCSD_init()

function is called and cannot be changed afterwards. For details about the individual fields of this

structure, see the Doxygen help by opening \docs\doxygen\html\index.html.

6.3 APIs

In order to use the MMCSD module APIs, the MMCSD.h header file should be included in an

application as follows:

#include <ti/drv/MMCSD/MMCSD.h>

The following are the MMCSD APIs:

• MMCSD_init() initializes the MMCSD module.

• MMCSD_Params_init() initializes an MMCSD_Params data structure. It defaults to Blocking

mode.

• MMCSD_open() initializes a given MMCSD peripheral.

• MMCSD_close() deinitializes a given MMCSD peripheral.

• MMCSD_read() handles the MMCSD peripheral read.

• MMCSD_write() handles the MMCSD peripheral write.

6.4 Usage

The application needs to supply the following structures in order to set up the framework for the

driver:

• MMCSD_Params specifies the transfer mode and any callback function to be used.

6.5 API Calling Sequence

The below sequence indicates the calling sequence of MMCSD driver APIs for a use case of

write transaction in blocking mode:

MMCSD_Handle MMCSD;

UInt peripheralNum = 0; /* Such as MMCSD0 */

MMCSD_Params MMCSDParams;

uint8_t writeBuffer[3];

uint8_t readBuffer[2];

uint8_t startBlock = 0;

uint8_t numBlock = 5;

bool readOK = 0;

bool writeOK = 0;

MMCSD_Params_init(&MMCSDParams);

MMCSD = MMCSD_open(peripheralNum, &MMCSDParams);

if (MMCSD == NULL) {

 /* Error opening MMCSD */

}

readOK = MMCSD_read(MMCSD, readBuffer , startBlock, numBlock); /* Perform

MMCSD read */

if (!transferOK) {

 /* MMCSD transaction failed */

}

writeOK = MMCSD_read(MMCSD, readBuffer , startBlock, numBlock); /* Perform

MMCSD write */

if (!writeOK) {

 /* MMCSD transaction failed */

}

6.6 Flow chart

 API flow path of MMCSD driver is as shown in fig.

MMCSD_Init(). This will create the handle for
the all instances of MMCSD driver.

MMCSD_params_init() This will initialize the
parameters structure with default values. If

other than default values then the parameters
have to be overwritten.

MMCSD_open(index, mmcsdParams) This will
perform the configuration of mmcsd controller

for the specific instance based on the
parameters and will return the handle

corresponding to that instance.

Configure board specific parameters from

soc specific file MMCSD_soc.c. Enable

clock and pinmuxing of MMCSD

peripheral

Configure the MMCSD parameters based on
the type of the transaction.

read write

MMCSD_Close().

Yes

If MMCSD

instance to be

closed. the

parametersate

the pa

No

Transaction type

A

MMCSD_read()
To perform MMCSD read

MMCSD_write()
To perform MMCSD write

A

7 Examples

Following are the examples of supported for the MMCSD Driver

7.1 Eeprom Read:

Each EVM will have ID memory (EEPROM), where board specific information like board Id and

version information will be stored. This example will read the data from the EEPROM using the

MMCSD driver and verifies whether this data matches with the expected data. As a first step this

will write the offset address of EEPROM from which data has to be read and then reads the

number of bytes from the EEPROM.

7.1.1 Building the examples:

Following are list of MMCSD projects which will reside the following location

“packages/MyExampleProjects”

MMCSD_BasicExample_AM571X_armExampleProject

MMCSD_BasicExample_AM571X_c66xExampleProject

MMCSD_BasicExample_AM572X_armExampleProject

MMCSD_BasicExample_AM572X_c66xExampleProject

MMCSD_BasicExample_AM572X_GpEvm_armExampleProject

MMCSD_BasicExample_AM572X_GpEvm_c66xExampleProject

These projects have to be imported in CCS and have to be built. The “.out” files corresponding to

each project will be generated after successfully compiling the projects.

Interrupt/Non-Interrupt Modes:

The example projects have to be recompiled to support interrupt and non-interrupt use cases

Following parameter have to be updated in MMCSD_Soc.c file and the application have to be

recompiled.

o Structure: MMCSDInitCfg

o Parameter: enableIntr

o True: interrupt

o False: Non interrupt

7.1.2 Running the examples

The “.out” have to be loaded and executed. Then on the CCS console the result of the project

execution will be displayed. If the project is executed successfully, then it will print “PASS” else

will print “Data Mismatch”

7.1.3 Supported platforms:

AM572x GP EVM

AM572x IDK EVM

AM571x IDK EVM

8 Test

Each EVM will have ID memory (EEPROM), where board specific information like board Id and

version information will be stored. This example will read the data from the EEPROM using the

MMCSD driver and verifies whether this data matches with the expected data. As a first step this

will write the offset address of EEPROM from which data has to be read and then reads the

number of bytes from the EEPROM.

This test application will test the use case for the following speeds

100 Kbps

400 Kbps

8.1 Building the examples:

Following are list of MMCSD projects which will reside the following location

“packages/MyExampleProjects”

MMCSD_BasicExample_AM571X_Idk_armTestProject

MMCSD_BasicExample_AM571X_Idk_c66xTestProject

MMCSD_BasicExample_AM572X_Idk_armTestProject

MMCSD_BasicExample_AM572X_Idk_c66xTestProject

MMCSD_BasicExample_AM572X_Evm_armTestProject

MMCSD_BasicExample_AM572X_Evm_c66xTestProject

These projects have to be imported in CCS and have to be built. The “.out” files corresponding to

each project will be generated after successfully compiling the projects.

Interrupt/Non-Interrupt Modes:

The example projects have to be recompiled to support interrupt and non-interrupt use cases

Following parameter have to be updated in MMCSD_Soc.c file and the application have to be

recompiled.

o Structure: MMCSDInitCfg

o Parameter: enableIntr

o True: interrupt

o False: Non interrupt

8.2 Running the examples

The “.out” have to be loaded and executed. Then on the CCS console the result of the project

execution will be displayed. If the project is executed successfully, then it will print “PASS” else

will print “Data Mismatch”

8.3 Supported platforms:

AM572x GP EVM

AM572x IDK EVM

AM571x IDK EVM

9 Migration Guide

The driver supports multiple SoCs, Cores and different IP versions. Different IP versions are

supported using function pointer based approach, whereas high lever driver APIs will remain

same and these driver APIs will call the corresponding the correct version of IP specific

implementation APIs using function pointers. This function pointer table will be fixed for each

instance of the peripheral and will be defined in the main config structure, which resides in soc

specific file “MMCSD_soc.c”.

Users who are using the low level APIs(Device abstraction APIs: which perform hardware

register read/write) have to use the high level APIs which are described in the section 6.3.

10 Benchmarking

Code size for library in bytes:

Initialized data : 40

 Code: 5792

