
Texas Instruments Incorporated Software Design Document
Revision B EMAC LLD 1.0.2

20450 Century Boulevard
Germantown, MD 20874

EMAC Low Level Driver 1.0.2
Software Design Document

Revision B

November 10, 2010

Texas Instruments Incorporated Software Design Document
Revision B EMAC LLD 1.0.2

Document License

This work is licensed under the Creative Commons Attribution-Share Alike 3.0
United States License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/

Texas Instruments Incorporated Software Design Document
Revision B EMAC LLD 1.0.2

Revision Record

Document Title: Software Design Specification

Revision

Description of Change
A Initial Release
B Added document license for Creative Commons

TABLE OF CONTENTS

1 SCOPE... 1

2 REFERENCES.. 1

3 DEFINITIONS .. 1

4 OVERVIEW.. 2

5 DESIGN... 3

5.1 EMAC PERIPHERAL CONFIGURATION.. 4
5.2 QUEUE MANAGEMENT... 5
5.3 CPPI PACKET DESCRIPTOR.. 5
5.4 EMAC POLLING ... 5
5.5 PACKET TX/RX.. 5
5.6 SINGLE CRITICAL SECTION.. 6
5.7 MULTI-CORE CRITICAL SECTION.. 7
5.8 PACKET DATA CACHE COHERENCE PROTECTION.. 7

6 FUTURE EXTENSIONS .. 8

6.1.1 Local switching of multicast/broadcast packets ... 8
6.1.2 Local switching of packets destined to the device .. 8

1 Scope
This document describes the functionality, architecture, and operation of the EMAC Low Level
Driver.

2 References
The following references are related to the feature described in this document and shall be
consulted as necessary.

No Referenced Document Control Number Description

1 EMAC PRD EMAC Component Product
Requirements Document

2 MC BIOS C64x SDK PDK Multi-Core BIOS C64x SDK
Product Requirements
Document

Table 1. Referenced Materials

3 Definitions

Acronym Description

API Application Programming Interface

CSL Chip Support Library

EMAC Ethernet Media Access Controller

LLD Low Level Driver Design

MC-SDK Multi-Core Software Development Kit

MDIO Managed Data Input Output

MMR Memory Mapped Registers

NDK Network Development Kit

NIMU Network Interface Management Unit

OSAL Operating System Adaptation Layer

PHY Physical layer

Table 2. Definitions

4 Overview
The EMAC driver provides a well defined API layer which allows applications to use the
EMAC peripheral to control the flow of packet data from the processor to the PHY and the
MDIO module to control PHY configuration and status monitoring.

The EMAC driver is designed to meet the following requirements:

• Support multiple EMAC ports (if available on the device) per core.
• Support multiple channels/MAC addresses per core.
• Support multiple cores to use different channels on the same EMAC port.
• The driver is OS independent and exposes all the operating system callouts via the OSAL

layer.
• EMAC example test application provides standard configurations and demonstrates

measureable benchmarks.

The following is an architecture figure which showcases the EMAC driver architecture:-

Driver Exposed
API

OS Abstraction
API

Application Code

EMAC Device Driver

CSL EMAC Functional Layer

CSL Register Layer

OSAL

BIOS/IPC

BIOS/IPC API

The figure illustrates the following key components:-

1. EMAC Device Driver

The device driver exposes a set of well defined API which is used by the application layer
to send and receive data packets via the EMAC peripheral, and configure and monitor the
PHY via the MDIO peripheral.

The driver also exposes a set of well defined OS abstraction API which is used to ensure
that the driver is OS independent and portable. The EMAC driver uses the CSL EMAC
functional layer for all EMAC MMR accesses.

2. Application Code

This is the user of the EMAC driver and its interface with the driver is through the well
defined API set. Applications users use the EMAC driver API’s to send and receive data
packets via the EMAC peripheral.

3. Operating System Abstraction Layer (OSAL)
The EMAC LLD is OS independent and exposes all the operating system callouts via this
OSAL layer.

4. CSL Functional Layer

The EMAC driver uses the CSL EMAC functional layer to program the device IP by
accessing the MMR.

5. Register Layer

The register layer is the IP block memory mapped registers which are generated by the IP
owner. The EMAC driver does not directly access the MMR registers but uses the
EMAC CSL Functional layer for this purpose.

5 Design
The EMAC driver is responsible for the following:-

1. EMAC/MDIO configuration & Queue Management
2. Providing a well defined API to interface with the applications
3. Well defined operating system adaptation layer API which supports single core and

multiple core critical section protection

The next couple of sections document each of the above mentioned responsibilities in greater
detail:

5.1 EMAC Peripheral Configuration
The EMAC driver test application provides a sample implementation sequence which initializes
and configures the EMAC IP block. This implementation is sample only and application
developers are recommended to modify it as deemed fit.

The initialization sequence is not a part of the EMAC driver library. This was done because the
EMAC initialization sequence has to be modified and customized by application developers.

The following figure shows the EMAC API the application can call to initialize the EMAC
peripheral:-

EMAC
LLD

App

emac_open(port_num, &open_cfg)

emac_config(port_num, &emac_cfg)

CSL

EMAC_commonInit(port_num, &commonCfg, hEmac)

EMAC_coreDeInit(hEmac)

EMAC_coreInit(hEmac, hApp, &coreCfg, hCore)

CSL_semInit(&rx_sem_context)*

CSL_semInit(&tx_sem_context)*

SGMII_reset()**

SGMII_config(&SgmiiCfg)**

EMAC_setReceiveFilter(hEmac, rx_filter, master_chn)

EMAC_setMulticast(hEmac, mcast_cnt, &mcast_list)

Notes:
* Only called for C6474 device
** Only called for C6457 & C6474 devices

The emac_open() API passes the following configuration parameters to the EMAC driver:

• EMAC port number
• EMAC TX/RX packet descriptor queue size
• Maximum packet size
• Number of channels on this port to be used by the core
• MAC address configured for each channel
• Master core flag
• Loopback test flag
• MDIO enable flag
• PHY address to be used
• Call back functions for receive/allocate/free a packet

When this API is called, the EMAC driver will first initialize common EMAC configurations (e.g.
loopback mode, MDIO enable, PHY address, packet size, etc.) which applies to all the cores, and
then initialize the core specific configurations (e.g. channel/MAC address configuration, TX/RX

packet descriptor queue size, call back functions, etc.). The driver may also need to do some
device specific configurations (e.g. C6457 & C6474 have a SGMII interface in the EMAC
peripheral which need to be configured, and C6474 has a hardware semaphore which also need to
be configured).

The emac_config() API passes the following configuration parameters to the EMAC driver:

• EMAC port number
• EMAC packet receive filter level
• Multicast configurations

5.2 Queue Management
The EMAC driver manages one TX packet descriptor queue and one RX packet descriptor queue
per each EMAC port, the TX/RX queue size is initialized by the application. The driver pre-
allocates the packet buffer for each packet descriptor pushed to the RX queue when an EMAC
port is opened. The driver frees both TX/RX queues when an EMAC port is closed.

5.3 CPPI Packet Descriptor
By default, the EMAC driver selects CPPI RAM for EMAC IP managed Packet Descriptor
memory. CSL allocates total 64 packet descriptors for both TX and RX channels. The number of
packet descriptors allocated for a RX channel is also configurable by the EMAC driver.

5.4 EMAC Polling
The application polls the EMAC periodically (every 100msec) to monitor the PHY link status
change via the MDIO peripheral. The application can disable the polling in the emac_open() API
by disabling the MDIO module.

5.5 Packet TX/RX
The application can send a packet by calling emac_send () API, the application needs to allocate
an application managed packet descriptor from the application queue, copy the packet data and
convert it to the EMAC driver managed packet descriptor format.

The following figure shows the EMAC/CSL API for a packet sent:-

EMAC
LLD

App

emac_send(port_num, &app_pkt_desc)

CSL

EMAC_sendPacket(hEmac, &csl_pkt_desc);

EMAC_txEoiWrite(EMAC_CORE_NUM)*

CSL_semHwControl(hTxSem, SEM_CMD_FREE_DIRECT, NULL)*

EMAC_TxServiceCheck(hEmac)

CSL_semGetHwStatus(hTxSem, SEM_QUERY_DIRECT,&resp)*

Notes:
* Only called for C6474 device

TX Interrupt

free_pkt_cb(port_num, &app_pkt_desc)

When a packet is received, the EMAC driver will convert the packet descriptor received to the
application managed packet descriptor format and pass it to the application by calling the
rx_pkt_cb() callback function.

The following figure shows the EMAC/CSL API for a packet received:-

EMAC
LLD

App CSL

EMAC_rxEoiWrite(EMAC_CORE_NUM)*

CSL_semHwControl(hRxSem, SEM_CMD_FREE_DIRECT, NULL)*

EMAC_RxServiceCheck(hEmac)

CSL_semGetHwStatus(hRxSem, SEM_QUERY_DIRECT,&resp)*

Notes:
* Only called for C6474 device

RX Interrupt

rx_pkt_cb(port_num, &app_pkt_desc)

5.6 Single Critical Section
The EMAC driver maintains certain per core specific data structures. These data structures need
to be protected from access by multiple users running on the same core. Users are defined as
entities in the system which uses the EMAC Driver API’s. The critical section defined here should
also take into account the context of these users (Thread or Interrupt) and define the critical
sections appropriately.

For example: In the EMAC RX interrupt service routine, if RX interrupt is not disabled, a new
RX interrupt may pre-empt the existing RX ISR and cause data corruption in CSL CPPI packet
descriptors.

The EMAC driver uses the Emac_osalEnterSingleCoreCriticalSection() API to enter the
single core critical section and Emac_osalExitSingleCoreCriticalSection to exit the single core
critical section.

5.7 Multi-core Critical Section
The EMAC driver supports multiple cores sharing the same EMAC port. The driver defines the
following common data structures that are shared by all the cores:

• EMAC_Device emac_comm_dev
• EMAC_COMMON_PCB_T emac_comm_pcb

emac_comm_dev contains common EMAC device instance information, it is defined in the
EMAC driver, but is managed by the EMAC CSL.

emac_comm_pcb contains common port control block information that is managed by the EMAC
driver.

The EMAC driver defines a pragma data section “emacComm” for these two data structures, the
application needs to put “emacComm” data section in the shared memory (either shared L2 data if
available or external memory)

The EMAC driver calls Emac_osalEnterMultipleCoreCriticalSection() and
Emac_osalExitMultipleCoreCriticalSection() API to enter and exit critical section to access
shared resource by multiple cores. The EMAC multicore test application shows an example how
to implement semaphore protection for shared resource access among multiple cores. C6472 uses
IPC GateMP module to implement a software semaphore, and C6474 uses CSL hardware
semaphore.

For shared memory access, the EMAC driver calls Emac_osalBeginMemAccess() and
Emac_osalEndMemAccess() to protect cache coherence when cache is enabled. The driver
always performs an invalidate cache operation before reading data and write back cache operation
after writing data. The start address of emac_comm_dev and emac_comm_pcb need to be set
aligned to the cache line size of the device by the application.

The following figure shows an example how the EMAC driver can access the shared resource:-

App
EMAC
LLD

Emac_osalEnterMultipleCoreCriticalSection(port_num)

Emac_osalBeginMemAccess(&emac_comm_dev, sizeof(EMAC_Device))

Emac_osalEndMemAccess(&emac_comm_dev, sizeof(EMAC_Device))

Emac_osalExitMultipleCoreCriticalSection(port_num)

Read/Write emac_comm_dev

5.8 Packet Data Cache Coherence Protection
If the application places the packet data buffer to external memory, the application needs to do
write back cache operation for the packet data before sending a packet and do an invalidate cache

operation after receiving a packet. The start address of each packet buffer should be aligned to the
cache line size of the device by the application.

6 Future Extensions

6.1.1 Local switching of multicast/broadcast packets
The EMAC drive will need to support local switching of multicasting/broadcasting packets
received from the master channel to all the channels on all the cores due to a hardware RX filter
limitation.

6.1.2 Local switching of packets destined to the device
The EMAC driver will need to support local switching of packets destined to the channels on the
same device.

