Texas Instruments Incorporated
Revision B

Software Desigrub@nt
EMAC LLD 1.0.2

‘#’P TEXAS
INSTRUMENTS

20450 Century Boulevard
Germantown, MD 20874

EMAC Low Leve Driver 1.0.2
Softwar e Design Document

Revision B

November 10, 2010

Texas Instruments Incorporated Software Desigrub@nt
Revision B EMAC LLD 1.0.2

Document License

This work is licensed under the Creative CommorigtAttion-Share Alike 3.0
United States License. To view a copy of this Igmnvisit
http://creativecommons.org/licenses/by-sa/3.0/as/send a letter to Creative
Commons, 171 Second Street, Suite 300, San Fran€sdifornia, 94105, USA.

Contributorsto this document

Copyright (C) 2010 Texas Instruments Incorporatetp://www.ti.com/

Texas Instruments Incorporated

Revision B

Software Desigrub@nt
EMAC LLD 1.0.2

Revision Record

Document Title:

Software Design Specification

Revision Description of Change
A Initial Release
B Added document license for Creative Commons

TABLE OF CONTENTS

1 SCOPE 1
2 L ot N (O 1
3 LD I A 1O 1 1 1
4 OVERVIEW ... 2
5 [0 1 3
5.1 EMAC PERIPHERALCONFIGURATION . .1t tttttttttteteteeaeteaasseeasteenst s tasasa et sseanssean st seaesteaestenesarnssaenssnees
5.2 L0 18 =0 =Y NN Y] = Y 1= N PP 5
5.3 (O 2 1 =N ol Sy B =IST01 2] = K0] = S 5
5.4 LY N O 0 T TN 5
5.5 [= I 1D, GO 5
5.6 SINGLE CRITICAL SECTION ..t tuititttittetttt ettt e et e et ea et e st e e ea st ta st ta st tttet st e st ten st renasrensnsnnnrnssnens 6
5.7 MULTI-CORECRITICAL SECTION. ...t ttuititititttttettt ettt esttaetes e ran s tae ettt e sttt et rtastetnesaensseenssasnsnnns 7
5.8 PACKET DATA CACHE COHERENCEPROTECTION. .1t ttuitttititittttettetetisesiseenssseasnrnstienesienessseseneenenes 7
6 FUTURE EXTENSIONS ...ttt s e s nanas 8
6.1.1 Local switching of multicast/broadCast PACKELS............coieiriiiaiiie e 8

6.1.2 Local switching of packets destined t0 the deViCeoceir i 8

1 Scope

This document describes the functionality, architex; and operation of the EMAC Low Level
Driver.

2 References

The following references are related to the feati@gcribed in this document and shall be
consulted as necessary.

No | Referenced Document Control Number Description

1 | EMAC PRD EMAC Component Product
Requirements Document

2 | MC BIOS C64x SDK PDK Multi-Core BIOS C64x SDK
Product Requirements
Document

Table 1. Referenced M aterials

3 Definitions

Acronym Description

API Application Programming Interface
CSL Chip Support Library

EMAC Ethernet Media Access Controller
LLD Low Level Driver Design

MC-SDK Multi-Core Software Development Kit
MDIO Managed Data Input Output

MMR Memory Mapped Registers

NDK Network Development Kit

NIMU Network Interface Management Unit
OSAL Operating System Adaptation Layer
PHY Physical layer

Table 2. Definitions

4 Qverview

The EMAC driver provides a well defined API layehiah allows applications to use the
EMAC peripheral to control the flow of packet d&tam the processor to the PHY and the

MDIO module to control PHY configuration and statasnitoring.

The EMAC driver is designed to meet the followiegiuirements:

layer.

e EMAC example test application provides standardigarations and demonstrates

Support multiple EMAC ports (if available on theviae) per core.
Support multiple channels/MAC addresses per core.
Support multiple cores to use different channelshensame EMAC port.

The driver is OS independent and exposes all tkeatipg system callouts via the OSAL

measureable benchmarks.

The following is an architecture figure which shases the EMAC driver architecture:-

Application Code

BIOS/IPC API

BIOS/IPC

OS Abstraction

API

Driver Exposed
API

OSAL

EMAC Device Driver

CSL EMAC Functional Layer

CSL Register Layer

The figure illustrates the following key components

1. EMAC DeviceDriver

The device driver exposes a set of well defined WRith is used by the application layer
to send and receive data packets via the EMAC Ipergb, and configure and monitor the
PHY via the MDIO peripheral.

The driver also exposes a set of well defined Gssrattion API which is used to ensure
that the driver is OS independent and portable. HMAC driver uses the CSL EMAC
functional layer for all EMAC MMR accesses.

2. Application Code

This is the user of the EMAC driver and its intedawvith the driver is through the well
defined API set. Applications users use the EMARalrAPI’s to send and receive data
packets via the EMAC peripheral.

3. Operating System Abstraction Layer (OSAL)

The EMAC LLD is OS independent and exposes albiherating system callouts via this
OSAL layer.

4. CSL Functional Layer

The EMAC driver uses the CSL EMAC functional layemprogram the device IP by
accessing the MMR.

5. Register Layer
The register layer is the IP block memory mappegsters which are generated by the IP

owner. The EMAC driver does not directly accessNiMR registers but uses the
EMAC CSL Functional layer for this purpose.

5 Design
The EMAC driver is responsible for the following:-

1. EMAC/MDIO configuration & Queue Management

2. Providing a well defined API to interface with thpplications

3. Well defined operating system adaptation layer wRich supports single core and
multiple core critical section protection

The next couple of sections document each of theealmentioned responsibilities in greater

detail:

5.1 EMAC Peripheral Configuration

The EMAC driver test application provides a sanmpielementation sequence which initializes
and configures the EMAC IP block. This implememtatis sample only and application
developers are recommended to modify it as deeimned f

The initialization sequence ot a part of the EMAC driver library. This was donedese the
EMAC initialization sequence has to be modified andtomized by application developers.

The following figure shows the EMAC API the apptioa can call to initialize the EMAC
peripheral:-

App

[emac_open(port_num, &open_cfg) |

EMAC
LLD

emac_config(port_num, &emac_cfg)\»

| SGMII_reset()**

Notes:
* Only called for C6474 device

** Only called for C6457 & C6474 devices

CSL

EMAC_commonlinit(port_num, &commonCfg, hEmac)_______,

CSL_seminit(&rx_sem_contexty—]
CSL_seminit(&tx_sem_context)* —

EMAC_coreDelnithEmac) ——]
EMAC_corelnit(thEmac, hApp, &coreCfg, hCore)\.

—
SGMI_config(&SgmiiCfgy* ——]
EMAC_setReceiveFilter(hEmac, rx_filter, master_chn) |

EMAC_setMulticast(hEmac, mcast_cnt, &mcast_list)

The emac_open() API passes the following configoingbarameters to the EMAC driver:

EMAC port number
EMAC TX/RX packet descriptor queue size
Maximum packet size
Number of channels on this port to be used by tie c
MAC address configured for each channel

Master core flag
Loopback test flag
MDIO enable flag

PHY address to be used
Call back functions for receive/allocate/free algdc

When this APl is called, the EMAC driver will firgtitialize common EMAC configurations (e.g.
loopback mode, MDIO enable, PHY address, packet six.) which applies to all the cores, and
then initialize the core specific configurationgy(echannel/MAC address configuration, TX/RX

packet descriptor queue size, call back functietws). The driver may also need to do some
device specific configurations (e.g. C6457 & C6dhade a SGMII interface in the EMAC
peripheral which need to be configured, and C64&lehhardware semaphore which also need to
be configured).

The emac_config() API passes the following configian parameters to the EMAC driver:

e EMAC port number
e EMAC packet receive filter level
e Multicast configurations

5.2 Queue Management

The EMAC driver manages one TX packet descript@uguand one RX packet descriptor queue
per each EMAC port, the TX/RX queue size is ink&d by the application. The driver pre-
allocates the packet buffer for each packet deserfushed to the RX queue when an EMAC
port is opened. The driver frees both TX/RX quenbken an EMAC port is closed.

5.3 CPPI Packet Descriptor

By default, the EMAC driver selects CPPI RAM for BM IP managed Packet Descriptor
memory. CSL allocates total 64 packet descriptorddth TX and RX channels. The number of
packet descriptors allocated for a RX channelsig abnfigurable by the EMAC driver.

5.4 EMAC Polling

The application polls the EMAC periodically (eveiOmsec) to monitor the PHY link status
change via the MDIO peripheral. The application dsable the polling in the emac_open() API
by disabling the MDIO module.

5.5 Packet TX/RX

The application can send a packet by calling ensa §) API, the application needs to allocate
an application managed packet descriptor from ppdication queue, copy the packet data and
convert it to the EMAC driver managed packet desoriformat.

The following figure shows the EMAC/CSL API for agket sent:-

LLD CSL

| emac_send(port_num, &app_pkt_desc))
EMAC_sendPacket(hEmac, &csl_pkt_desc),— |

la——— ————————————TXInterrupt

EEEEEEEE———

la——free_pkt_cb(port_num, &app_pkt_desc) EMAC_TxServiceCheck(hEmac)\»
| CSL_semGetHwStatus(hTxSem, SEM_QUERY_DIRECT,&resp)*

EMAC_txEoiWrite(EMAC_CORE_NUM)*

—»

e —
| CSL_semHwControl(hTxSem, SEM_CMD_FREE_DIRECT, NULL)*

—»

Notes:
* Only called for C6474 device

When a packet is received, the EMAC driver will cert the packet descriptor received to the
application managed packet descriptor format asg pdo the application by calling the
rx_pkt_chb() callback function.

The following figure shows the EMAC/CSL API for agket received:-

LLD CSL

- RX Interrupt

la——x_pkt_cb(port_num, &app_pkt_desc) EMAC_RxServiceCheck(hEmac)\»

| *
CSL_semGetHwStatus(hRxSem, SEM_QUERY_DIRECT,&resp))

EMAC_rxE0iWrite(EMAC_CORE_NUM)*]

| CSL_semHwControl(hRxSem, SEM_CMD_FREE_DIRECT, NULL)*

Notes:
* Only called for C6474 device

5.6 Single Critical Section

The EMAC driver maintains certain per core speciita structures. These data structures need
to be protected from access by multiple users ngnon the same core. Users are defined as
entities in the system which uses the EMAC Driv&1’A. The critical section defined here should
also take into account the context of these u3dnse@d or Interrupt) and define the critical
sections appropriately.

For example: In the EMAC RX interrupt service roatiif RX interrupt is not disabled, a new
RX interrupt may pre-empt the existing RX ISR aadse data corruption in CSL CPPI packet
descriptors.

The EMAC driver uses the Emac_osalEnterSingleCatie@lEection() API to enter the
single core critical section and Emac_osalExit®i@glreCriticalSection to exit the single core
critical section.

5.7 Multi-core Critical Section

The EMAC driver supports multiple cores sharingghee EMAC port. The driver defines the
following common data structures that are sharedlliye cores:

e EMAC Device emac_comm_dev
e EMAC _COMMON_PCB_T emac_comm_pch

emac_comm_dev contains common EMAC device insterfimemation, it is defined in the
EMAC driver, but is managed by the EMAC CSL.

emac_comm_pcb contains common port control bloicknmation that is managed by the EMAC
driver.

The EMAC driver defines a pragma data section “@aem” for these two data structures, the
application needs to put “emacComm” data sectidhanshared memory (either shared L2 data if
available or external memory)

The EMAC driver calls Emac_osalEnterMultipleCoreiCalSection() and
Emac_osalExitMultipleCoreCriticalSection() API toter and exit critical section to access
shared resource by multiple cores. The EMAC mulédest application shows an example how
to implement semaphore protection for shared resoaccess among multiple cores. C6472 uses
IPC GateMP module to implement a software semaplame: C6474 uses CSL hardware
semaphore.

For shared memory access, the EMAC driver callsEmsalBeginMemAccess() and
Emac_osalEndMemAccess() to protect cache cohexener cache is enabled. The driver

always performs an invalidate cache operation bafeading data and write back cache operation
after writing data. The start address of emac_codewand emac_comm_pcb need to be set
aligned to the cache line size of the device byajhy@ication.

The following figure shows an example how the EMé@er can access the shared resource:-

EMAC
App LLD

«————— Emac_osalEnterMultipleCoreCriticalSection(port_num)

‘ Emac_osalBeginMemAccess(&emac_comm_dev, sizeof(EMAC_Device))

Read/Write emac_comm_dev

‘ Emac_osalEndMemAccess(&emac_comm_dev, sizeof(EMAC_Device))

e Emac_osalExitMultipleCoreCritical Section(port_num)

5.8 Packet Data Cache Coherence Protection

If the application places the packet data buffesxternal memory, the application needs to do
write back cache operation for the packet datarbefending a packet and do an invalidate cache

operation after receiving a packet. The start astdo¢ each packet buffer should be aligned to the
cache line size of the device by the application.

6 Future Extensions

6.1.1 Local switching of multicast/broadcast packets

The EMAC drive will need to support local switchinfmulticasting/broadcasting packets
received from the master channel to all the chammelall the cores due to a hardware RX filter
limitation.

6.1.2 Local switching of packets destined to the device

The EMAC driver will need to support local switchinf packets destined to the channels on the
same device.

