
Texas Instruments Incorporated

PASDK - Reference Audio I/O Interfaces

Guidelines to port on custom hardware

DRAFT Version

9/15/2017

This document provides a high level overview of the Reference K2G Audio Platform (HW + SW). This is
not intended to be a self-contained document, but as a supplement device TRMs, H/W schematics &
other software user-guides & documentation available with PASDK.

PASDK - Reference Audio I/O Interfaces September 15, 2017

1

Table of Figures
Figure 1: K2G McASP Topology .. 4

Figure 2: K2G McASP Aux Clock ... 5

Figure 3: Audio DC McASP0 Clock Mux ... 6

Figure 4: Example/Reference Data Flow in PASDK ... 7

Figure 5: Overview of the Audio IO Structures ... 10

Figure 6: McASP Input Buffer ... 14

Figure 7: EDMA Reads from McASP Input ... 14

Figure 8: Driver’s view of Input Buffer .. 15

Figure 9: DECChannelMap From & To ... 15

PASDK - Reference Audio I/O Interfaces September 15, 2017

2

Table of Contents
Table of Figures ... 1

Introduction .. 3

Audio I/O on the K2G Hardware ... 4

Audio I/O Clocking .. 5

Audio I/O Software Architecture – An Overview .. 7

Features/Files to be customized: .. 10

Input/Output device configuration tables (io.c & pa_i13_evmk2g_io_a.h) ... 10

McASP register configurations (sap_d10.c) .. 11

McASP I/O parameter definitions (sap_d10.c) ... 12

Shortcuts definitions and Alpha commands (pa_i13_evmk2g_io_a.h & io.c) .. 13

Channel Maps ... 14

Channel Mapping for Decoder .. 14

Channel Mapping for Encoder .. 16

PASDK - Reference Audio I/O Interfaces September 15, 2017

3

Introduction
The K2G EVM along with the K2G Audio Daughter Card serves as the basic hardware platform upon

which the PASDK reference software validation & testing activities are performed.

At the time of writing this guide, the reference schematics are available here:

 Mistral K2G Rev. D EVM: http://www.ti.com/lit/df/sprr302/sprr302.pdf

 Mistral K2G EVM Audio Daughter Card: http://www.ti.com/lit/df/sprr310/sprr310.pdf

In addition to the above-mentioned, PASDK also employs HDMI as the primary multichannel, digital

input interface to handle many audio formats of interest (i.e, IC Certification needs). The HDMI input is

enabled by an “add-on” HDMI repeater module from MDS (Momentum Data Systems) that’s interfaced

with the I2S Header, exposed & available on the Audio Daughter Card.

Note: The HDMI card itself is not supported by TI. It’s only used within PASDK setup for extracting HDMI

Audio & redirecting it to K2G platform, as appropriate for McASP reception in I2S mode.

While the McASP peripheral is capable of supporting a wide variety of serial data formats, PASDK is

mostly concerned about the I2S (or 2-slot TDM) mode of operation.

At the time of writing this guide, the framework has been validated for correctness of operations only

with synchronous “I-topology” (i.e, single input, single output) – I13 in PASDK.

It is expected that this document serves as a high level guide that explains the programming choices to

enable the K2G Audio platform (i.e, K2G EVM + Audio DC + HDMI-card) and in turn serves to guide

others working with custom target hardware, with different components/interfaces than used on the

said reference platform.

http://www.ti.com/lit/df/sprr302/sprr302.pdf
http://www.ti.com/lit/df/sprr310/sprr310.pdf
http://www.mds.com/products/hdmivideo/hsr-8/

PASDK - Reference Audio I/O Interfaces September 15, 2017

4

Audio I/O on the K2G Hardware
The below topology diagram – from the Audio Daughter Card reference - provides an overview of the

various McASP instances that have been wired up as necessary with the various Audio interfaces, for the

software validation of the distributed, multichannel audio framework available within PASDK for K2G.

Figure 1: K2G McASP Topology

A variety of Audio I/O interfaces are available on these 2 boards, although only a subset of them is

validated with the multichannel audio framework.

 SPDIF Input via DIR9001

 MultiChannel (up to 8-ch) Analog Input via 2xPCM1865

 MultiChannel (up to 16-Ch) Analog Output via 2xPCM1690

It’s significant to mention here that the AIC3x combo-codec, on-board the K2G “main” EVM, does not

figure into PASDK’s list of “supported interfaces”.

OutAnalog
(8/12/16 - ch)

InAnalog
(8-ch)

InDigital
(SPDIF)

InHDMI (4-lane)
InHDMIStereo
(1-lane)

http://www.ti.com/lit/ds/symlink/dir9001.pdf
http://www.ti.com/lit/ds/symlink/pcm1865.pdf
http://www.ti.com/lit/ds/sbas448b/sbas448b.pdf

PASDK - Reference Audio I/O Interfaces September 15, 2017

5

Audio I/O Clocking
At the time of writing this guide, PASDK supports only synchronous audio operations. This means that

the input & the output sections are clocked by (or derived from) a single, common source.

Note: Even if identical in frequencies, independent/discrete clock sources are still asynchronous.

(They’re syntonous, though.)

This implies that the OutAnalog device (DAC) requires to be synchronized with the chosen input device,

always. It naturally follows & is also noteworthy that the DAC does not have any dedicated Xtal, but

relies upon McASP0 AHCLKX to supply the clock, for its operations.

Owing to the nature of the component’s clock routing & mux-options, the following notes on the input

interfaces on the K2G EVM + Audio DC hardware platform are deemed to be useful, to be mindful about.

 Analog

o K2G device is equipped with an on-board Audio-OSC, fed by a 22.5792 MHz Xtal, on the

“main EVM”. This ‘AUDIO_OSCCLK’ is available as an internal aux-source for all the

McASP instances. (Refer: K2G TRM, 11.9.3 McASP Integration)

Figure 2: K2G McASP Aux Clock

o The ADCs is clocked with McASP1 AHCLKR (i.e, McASP Master) in lieu of the need for the

DACs to stay synchronous. i.e, McASP0 is also programmed with the same AUX clock

source.

 Digital (SPDIF)

o While active, the PLL (on board the DIR9001) recovers the active clock and supplies the

same via these output signals: a Master Clock (DIR_SCKO), a bit-clock (DIR_BCKO) & a

Frame Clock (DIR_LRCKO).

o The Bit & the Frame Clocks are sufficient to master the receive section of McASP2.

o The DIR_SCKO signal is used to clock AHCLKX i.e, the transmit section of McASP0. (i.e,

then, McASP masters the DACs with internally generated Frame+Bit clocks).

PASDK - Reference Audio I/O Interfaces September 15, 2017

6

 HDMI

o The “I2S Header” exposed on the Audio DC is used to interface with the HDMI Repeater

card, which supplies the necessary clocks.

o I2SHDR_McASP0_AFSR & I2SHDR_McASP0_ACLKR are used to master the Frame & Bit

clocks, respectively, of the receive section of McASP0.

o I2SHDR_MCLKOUT is used as the external source to clock AHCLKX i.e, the transmit

section of McASP0. (i.e, then, McASP masters the DACs with internally generated

Frame+Bit clocks).

 The Audio DC is equipped with a flexible, programmable mux that allows the McASP0’s AHCLKX

is to be chosen between the above-mentioned 2 sources.

Figure 3: Audio DC McASP0 Clock Mux

Note: On the reference K2G Audio Platform, owing to the above-explained clock routing/muxing options

available, there will be certain limitations in the reference software’s flexibility to demonstrate seamless

IO Switching (across multiple sources or sinks), underscored by the need to maintain synchronous

relationships between Input & Output devices.

PASDK - Reference Audio I/O Interfaces September 15, 2017

7

Audio I/O Software Architecture – An Overview
PASDK employs distributed software architecture for processing audio data on K2G. Within this

architecture, software interfaces exist at key locations in the data flow to allow for generality,

modularity, and extensibility. This data flow typically begins and ends at a physical interface, such as a

serial port. Since PASDK is built atop the SYS/BIOS operating system, one of the choices available for

managing physical interfaces is the SIO device driver standard. Specifically, the interface between the

core processing loop of the framework and the reception and transmission of audio data consists of SIO

data structures and function calls.

The management of these interfaces takes place as part of a larger, more general facility known

as Input/Output Switching (IOS). As its name implies, the primary function of IOS is to provide the

mechanism through which various sources and sinks are selected under user control for connection to

the core processing of the Audio Framework.

As a concrete example, assume that a single stream of input audio data is received from the McASP

which is connected to an external DIR. Likewise, a single stream of output data is transmitted via the

McASP to external DACs. Since it is a serial port, the McASP shifts in one audio word at a time into its

internal shift register. For efficient processing, these words are collected into a block of samples. This

buffer is then examined for supported IEC bitstreams and is handed to the appropriate decoder which

converts the raw input data into floating point PCM data. This data is then processed (e.g. via custom

ASPs) and subsequently the data is encoded into a form suitable for transmission. Finally, the encoded

data is shifted out the McASP one word at a time.

Figure 4: Example/Reference Data Flow in PASDK

PASDK - Reference Audio I/O Interfaces September 15, 2017

8

Using the above example, we can highlight two general interfaces of interest.

 First, the code which configures the McASPs and collects the data into blocks is called the SIO

Physical Device Driver.

 Second, the code which scans the input for bitstreams is called the SIO Logical Device Driver.

In this example, both layers are provided by PASDK referencecode. The physical device driver for both

the input and the output is SAP (Serial Audio Port), the input logical driver is MIB (Multichannel Input

Buffer) and the output logical driver is MOB (Multichannel Output Buffer).

Note that the core processing loop of the Audio Framework only interfaces with the logical device layer.

In a sense, the physical device layer is hidden or abstracted from the core via the logical device layer.

The connectivity of the two layers is accomplished through the SIO technique of driver stacking.

It is important to note that the functionality of each layer can be replaced without modifying other

layers. For example, if the McASP is connected to an ADC then one could replace MIB with another

device driver which doesn't perform ‘auto-detection’ (i.e, identification of IEC bitstream format), but the

physical device layer (SAP) could be re-used without change.

Audio flow begins with the choice of specific input and output devices. What is actually selected, via IOS,

are individual data structures representing each device. These data structures are referred to as Device

Configuration Parameters; or when the context is clear, just parameters. A typical system will have one

set of parameters for each possible device selection. In the above example, there would be a parameter

structure for the DIR input and one for DAC output.

 A PASDK-compliant SIO driver must define a device parameter structure which can be used, via IOS, to

configure particular device instances.

By creating one or more such structures and placing their pointers in the devinp or devout array, as

appropriate, PASDK is able to manage the use and configuration of any device. In other words, a general

purpose peripheral driver (e.g., SAP) is parameterized via the use of a parameter structure to work with

a particular device in a particular configuration. In order for PA/F to handle different devices in a

uniform manner all such parameter structures must use a common header which is defined

as PAF_SIO_Params (paf_sio.h).

A particular driver uses this common structure upon which to build a more extensive parameter

structure which includes peripheral or device specifics.

Here we describe the PAF_SIO_Params structure in detail.

struct DXX_Params_

{

 const char *name; // driver name, e.g. "SAP"

 XDAS_Int32 moduleNum;

 XDAS_Void *pConfig;

PASDK - Reference Audio I/O Interfaces September 15, 2017

9

 XDAS_Int16 wordSize;

 XDAS_Int16 precision;

 XDAS_Int32 (*control)(DEV_Handle, const struct PAF_SIO_Params *, XDAS_Int32,

XDAS_Int32);

};

typedef struct PAF_SIO_Params

{

 Int size; // Type-specific size

 struct DXX_Params_ sio; // Common parameters

} PAF_SIO_Params;

PAF SIO

Parameter
Description

size Used as per XDAIS and describes the sizeof the data structure in bytes.

sio.name
String which specifies the physical and logical drivers used to communicate with the

device.

sio.moduleNum Driver specific. In general, it is the peripheral module's ID (0, 1, etc.).

sio.pConfig
Driver specific. In general, it is a pointer to a configuration structure specific to the

underyling peripheral.

sio.wordSize
Driver specific. In general, it is the maximum and default word size, in bytes, for this

device configuration.

sio.precision
Driver specific. In general, it is the maximum and default precision, in bits, for this

device configuration.

sio.control Pointer to function which processes SIO control codes.

PASDK - Reference Audio I/O Interfaces September 15, 2017

10

Features/Files to be customized:
For the K2G Audio setup, the below platform-level definitions enable the hardware to be serviced by the

audio i/o drivers. The EVM or Audio DC (incl components) or the HDMI related configurations provided

with PASDK are provided as a validated reference or example.

For other custom platforms, equivalent configurations (in equivalent custom board files) need to be

defined, as appropriate, for the drivers to service them.

Figure 5: Overview of the Audio IO Structures

Note: Only a limited set of functionalities provided by the audio interfaces on the reference platform are

exploited (as necessary for PASDK operations) and this is not intended to be an exhaustive reference for

the components (ADC/DAC/DIR/HDMI etc) themselves.

Input/Output device configuration tables (io.c & pa_i13_evmk2g_io_a.h)
Each McASP Input/Output Parameter Definition should be placed in the Input/Output device

configurations' tables - patchs_devinp and patchs_devout.

// Input device configurations & shortcut definitions

patchs_devinp[1] =
{
 DEVINP_N,
 // These values reflect the definitions DEVINP_* in pa*io_a.h:
 NULL, // InNone
 (const PAF_SIO_Params *) &SAP_D10_RX_HDMI_STEREO, // InHDMIStereo
 (const PAF_SIO_Params *) &SAP_D10_RX_HDMI, // InHDMI
 (const PAF_SIO_Params *) &SAP_D10_RX_DIR, // InDigital
 (const PAF_SIO_Params *) &SAP_D10_RX_ADC_44100HZ, // InAnalog
};

The order in this table matches DEVINP_* in pa_i13_evmk2g_io_a.h

// These values reflect the definition of devinp[]
#define DEVINP_NULL 0
#define DEVINP_HDMI_STEREO 1
#define DEVINP_HDMI 2

PASDK - Reference Audio I/O Interfaces September 15, 2017

11

#define DEVINP_DIR 3
#define DEVINP_ADC 4
#define DEVINP_N 5

McASP register configurations (sap_d10.c)
These are generic sets of register configurations that can be used for multiple inputs/outputs. These are

not dependent on the McASP port number.

These structures are defined in sap_d10.c file under these sections:

// McASP Input Configuration Definitions

// McASP Output Configuration Definitions

For example, the below configuration for a digital input device basically configures the McASP

peripheral. Please pay attention to the clocks' configuration (INTERNAL/ EXTERNAL) and how they relate

to the K2G reference hardware platform.

static const MCASP_ConfigRcv rxConfigDIR =
{
 MCASP_RMASK_OF(0xFFFFFFFF),
 MCASP_RFMT_RMK(
 MCASP_RFMT_RDATDLY_1BIT,
 MCASP_RFMT_RRVRS_MSBFIRST,
 MCASP_RFMT_RPAD_RPBIT,
 MCASP_RFMT_RPBIT_OF(0),
 MCASP_RFMT_RSSZ_32BITS,
 MCASP_RFMT_RBUSEL_DAT,
 MCASP_RFMT_RROT_NONE),
 MCASP_AFSRCTL_RMK(
 MCASP_AFSRCTL_RMOD_OF(2),
 MCASP_AFSRCTL_FRWID_WORD,
 MCASP_AFSRCTL_FSRM_EXTERNAL,
 MCASP_AFSRCTL_FSRP_ACTIVELOW),
 MCASP_ACLKRCTL_RMK(
 MCASP_ACLKRCTL_CLKRP_RISING,
 MCASP_ACLKRCTL_CLKRM_EXTERNAL,
 MCASP_ACLKRCTL_CLKRDIV_DEFAULT),
 MCASP_AHCLKRCTL_RMK(
 MCASP_AHCLKRCTL_HCLKRM_EXTERNAL,
 MCASP_AHCLKRCTL_HCLKRP_RISING,
 MCASP_AHCLKRCTL_HCLKRDIV_DEFAULT),
 MCASP_RTDM_OF(3),
 MCASP_RINTCTL_DEFAULT,
 MCASP_RCLKCHK_DEFAULT
};

Note: Please refer to K2G TRM & McASP peripheral descriptions to understand, modify the individual

register/field values appropriately.

PASDK - Reference Audio I/O Interfaces September 15, 2017

12

McASP I/O parameter definitions (sap_d10.c)
These are structures that are specific for each input/output. These are dependent on the McASP port

number and actual pins used for that I/O (pinmask). The McASP Input/Output Parameter

Definitions point to a McASP register configuration. Multiple McASP Input/Output Parameter

Definitions can use the same McASP register configuration if the parameters are common between

I/Os.

Here is an example of McASP Input Parameter Definition for the SPDIF receiver device:

const SAP_D10_Rx_Params SAP_D10_RX_DIR =
{
 sizeof (SAP_D10_Rx_Params), // size
 "SAP", // name
 MCASP_DEV2, // moduleNum --> mcasp #
 (Void *)&rxConfigDIR, // pConfig
 4, // wordSize (unused)
 24, // precision (unused)
 D10_sapControl, // control
 0x00000020, // pinMask
 (D10_MCLK_DIR << D10_MCLK_SHIFT), // mode
 0,0 // unused[2]
};

Please note that the last fields are custom fields that are currently used for the EVM, one may add or

remove fields to this structure (after pinmask) as needed for the custom hardware:

(D10_MCLK_DIR << D10_MCLK_SHIFT), // mode
 0,0 // unused[2]

The above structures are available under these sections, in the said file.

// SAP Input Parameter Definitions
// SAP Output Parameter Definitions

The information of McASP port number and pinmask will come from the custom system's block diagram
and/or schematic. In the above example, McASP2 has been used to interface with the SPDIF receiver.

D10 is the codename for the reference audio platform (i.e, K2G EVM + Audio DC + HSR41). The below
function is responsible for managing the input-status & clock-divider values.

XDAS_Int32 D10_sapControl (DEV2_Handle device, const PAF_SIO_Params *pParams,
XDAS_Int32 code, XDAS_Int32 arg);

This function is called by the peripheral driver (SAP) in response to various SIO_ctrl() calls made by the
framework. The stacked nature of the driver architecture allows for anyone to implement their own
equivalent control function, as appropriate for their custom hardware.

PASDK - Reference Audio I/O Interfaces September 15, 2017

13

Shortcuts definitions and Alpha commands (pa_i13_evmk2g_io_a.h & io.c)
The last 2 digits of the value defined for execPA* shortcuts/alpha commands should match the shortcut

definition # in io.c. For example, for digital (spdif) input in pa_i13_evmk2g_io_a.h is:

 #define execPAIInDigital 0xf123

And 0x23 = 35 (in 0xf123). So in io.c the digital (spdif) input will have the shortcut CUS_SIGMA35_S:

 // execPAIInDigital
#define CUS_SIGMA35_S \
 writeDECSourceSelectNone, \
 writePA3Await(rb32DECSourceDecode,ob32DECSourceDecodeNone), \
 writeIBUnknownTimeoutN(2*2048), \
 writeIBScanAtHighSampleRateModeDisable, \
 writePCMChannelConfigurationProgramStereoUnknown, \
 writePCMScaleVolumeN(0), \
 writeDECChannelMapFrom16(0,1,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3), \
 writeIBEmphasisOverrideDisable, \
 writeIBPrecisionDefaultOriginal, \
 writeIBPrecisionOverrideDetect, \
 writeIBSampleRateOverrideStandard, \
 writeIBSioSelectN(DEVINP_DIR), \
 wroteDECSourceProgramUnknown, \
 writeDECSourceSelectAuto, \
 0xcdf0,execPAIInDigital

#pragma DATA_SECTION(cus_sigma35_s0, ".none")
const ACP_Unit cus_sigma35_s0[] = {
 0xc900 + 0 - 1,
 CUS_SIGMA35_S,
};

const ACP_Unit cus_sigma35_s[] = {
 0xc900 + sizeof (cus_sigma35_s0) / 2 - 1,
 CUS_SIGMA35_S,
};

Note: The shortcut definitions CUS_SIGMA##_S use DEVINP_* or DEVOUT_* to specify the I/O devices

used. Eg: execPAIInDigital employs: writeIBSioSelectN(DEVINP_DIR)

Note: The function ACP_main_cus() in acp_main_cus.c allows for these CUStom Input & Output

shortcut definitions to be extended beyond the validated number by modifying/extending structure

definitions of this type: extern const ACP_Unit cus_sigmaXY

Note: The functions defined in audio_dc_cfg.c are specific to the components/configurations

appropriate for the reference D10 Audio Platform. Equivalent replacement functions can be authored

using these as a reference, if necessary.

PASDK - Reference Audio I/O Interfaces September 15, 2017

14

Channel Maps
PASDK supports channel mapping both at the input (decoder) and also for the output (encoder).There is

alpha code support provided to easily handle the various channel mapping options. Channel Map gives

you a flexible mapping ability of input/output pin , in/out buffer and channel buffer.

Channel Mapping for Decoder

Here is the example of setting, as employed in the definition of execPAIInHDMI, which can receive 8

input audio channels on 4 McASP pins:

writeDECChannelMapFrom16(0,4,1,5,2,6,3,7,-3,-3,-3,-3,-3,-3,-3,-3)

 This function can map each input pin and input buffer.

 The relation between McASP pins and index is as follows:

0, ..., 7 is index of input buffer.

Audio samples are read in the order of index. (0->1->2->...->7)

Figure 6: McASP Input Buffer

EDMA reads audio data from the McASP pins. The data is read sample by sample. The data is read

starting from lower number McASP pin. First sample is read from AXR0[0]. The next sample is picked

from AXR0[1] and so on. Thus, the EDMA picks up one sample from each McASP pin and loops back once

it has read one sample from each of the McASP pins.

Figure 7: EDMA Reads from McASP Input

The audio channels are present on the input pins like shown below:

PASDK - Reference Audio I/O Interfaces September 15, 2017

15

AXR0[0] = L/R AXR0[1] = SL/SR AXR0[2] = C/SW AXR0[3] = LB/RB

The samples read from the McASP pins are accumulated in data buffers. Thus input buffer is generated

in the following order:

Figure 8: Driver’s view of Input Buffer

The audio channels from the driver buffers need to be copied to the framework buffers. The DEC and

the ASP algorithms read the data from the framework buffers.

The mapping of the channels is fixed in the framework buffers. Thus, the first buffer will always be for

Left channel. Similarly second buffer will always be for Right channel.

The decoder needs to read the data FROM the input driver buffer and copy it TO the framework buffer:

Figure 9: DECChannelMap From & To

The mapping between the input & the framework buffers, to accomplish the above, are specified in

atboot.c, as thus:

writeDECChannelMapTo16(PAF_LEFT,PAF_RGHT,8,9,2,12,10,11,-3,-3,-3,-3,-3,-3,-3,-3)

PASDK - Reference Audio I/O Interfaces September 15, 2017

16

Also, instead of reading the data from the input driver buffer, the data can be forced to be read as zero

for any channel by specifying the buffer number as –3 (or any negative integer).

Thus, writeDECChannelMapFrom8(-1,-1,-1,-1,-1,-1,-1,-1) - for instance - will cause the data to be read

by the decoder as zero for all channels.

Channel Mapping for Encoder

EDMA writes audio data to the McASP pins. The data is written sample by sample. The data is written

starting from lower number McASP pin.

Refer the above section to understand the channel mapping described for the Decoder. The mirror-

image structure is applicable to the mapping that enables the Encoder to interface with the Output

Buffer & the McASP pins.

The equivalent mapping functions employed on the output side are writeENCChannelMapTo16 &

writeENCChannelMapFrom16.

