
Processor SDK Audio

Getting Started Guide

9/8/2017

1

Processor SDK Audio Software

2

K2G EVM + Audio Daughter Card + MDS HSR41 HDMI Card

RTOS Support on A15 & C66

CCS
CodeGen

Tools
Pinmux
Tools

Boot
Utilities

SBL
(MMCSD, QSPI)

CSL

Platform/Board Library

Diagnostics

RTOS IPC

XDC, XDAIS, UIA,
RTOS-Kernel etc

DSPLib

EDMA LLD

Timers, PLLs,
INTC/GIC etc

Drivers for I2C, UART, SPI, GPIO, McASP
From RTOS-PDK.

Processor
SDK RTOS

Hardware
Platform

Input Switch - DIB
(Audio Driver)

 McASP

DECs ENCASPs

Output Switch - DOB
(Audio Driver)

 McASP

PA Framework

Processor SDK Audio Platform
(a.k.a System Test or IC Certification Platform)

Control Switch - DCS
(Control Driver)
UART, [I2C/SPI]

PASDK
Package
on K2G

Library Architecture Framework

K2G: ARM+DSP Layout

Input ASP Encode Output Decode

Input

Buffer

(PCM or

Bitstream)

Auto

Detection

Decode

Buffer

(PCM

Channels

or objects)

Source

Program

Audio Frame Buffer

Output Buffer

DDR
Shared

Structures

Control/Status

Legend

DSP A15 DSP L2 MSMC DDR

Control/Status

Different/same Frame-lengths

across multiple entities? Got to solve

metadata timing, specifically.

Audio Tasks Layout

4

Adding New Components to PASDK (K2G)

• Decoders

– Execute on ARM Core under TI SYS/BIOS (RTOS)

– Must provide auto detection method definition and/or implementation for

identifying the content type within an incoming bit stream which can be

integrated into the real-time system.

• Audio Stream Processing (ASP) Components (e.g. audio rendering,

filtering, etc.)

– Execute on DSP Core under TI SYS/BIOS (RTOS)

• All components must provide interface that complies with the XDAIS

API Specification

– Standard specification has been extended for use in PASDK

– IALG interface handles memory management and component creation

• All components must use Audio Frame Structure where required

– Described in documentation and example ASP

5

Typical Development Steps

• Step#1: Implement component using standard C language

– To make it possible to comply with the XDAIS API standard and PASDK extension

make sure the code is re-entrant and it does not use malloc() or similar dynamic

memory allocation functions.

– Code should not depend on any operating system or any target system drivers

– Organize your code in a modular way minimizing module coupling and maximizing

module cohesion

– Your functions should be implemented for real-time system (using signal frame

durations that can be configurable where applicable resulting in reasonable

signal/buffering latencies once integrated into the system)

• Step#2: Optimize your code for ARM or DSP core where it may execute

– This may be achieved through creation of a suitable “intrinsic” library with functions

that can be called from the components

– Port “intrinsic” library to ARM and/or DSP

– Optimize the functions in the intrinsic library for ARM and/or DSP core (use

ARM or DSP intrinsic functions provided by code generation tools; do NOT use

assembly language – EVER! (unless standard assembly optimized libraries were

provided by the ARM or TI)

 6

Typical Development Steps (cont.)

• Step#3: Create XDAIS wrappers

– Using IALG specification and PASDK extension create wrappers that can be used for

integration into the PASDK framework

• Step#4: Update Auto detection methods

– If creating decoder component, modify the appropriate PASDK software (drivers) to

include new auto detection method for recognizing the particular decoder content

(currently this runs on a DSP and informs ARM to switch to using appropriate

decoder component)

• Step#5: Integrate new components on ARM and/or DSP

– Familiarize yourself with the operation of the PASDK framework (tasks, drivers,

memory management, buffer management)

– Take special care of properly handling circular buffer between decoder and the

renderers/ASP’s

• Step#6: Implement alpha-commands that can be used for configuration and

real-time control of new components

– If necessary update apply() method of PASDK XDAIS extension to detect changes in

configuration and apply them prior to processing incoming data

7

