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Processor SDK Audio Software 
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K2G EVM + Audio Daughter Card + MDS HSR41 HDMI Card
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K2G: ARM+DSP Layout 
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Audio Tasks Layout 
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Adding New Components to PASDK (K2G) 

• Decoders 

– Execute on ARM Core under TI SYS/BIOS (RTOS) 

– Must provide auto detection method definition and/or implementation for 

identifying the content type within an incoming bit stream which can be 

integrated into the real-time system. 

• Audio Stream Processing (ASP) Components (e.g. audio rendering, 

filtering, etc.) 

– Execute on DSP Core under TI SYS/BIOS (RTOS) 

• All components must provide interface that complies with the XDAIS 

API Specification 

– Standard specification has been extended for use in PASDK 

– IALG interface handles memory management and component creation 

• All components must use Audio Frame Structure where required 

– Described in documentation and example ASP 
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Typical Development Steps 

• Step#1: Implement component using standard C language 

– To make it possible to comply with the XDAIS API standard and PASDK extension 

make sure the code is re-entrant and it does not use malloc() or similar dynamic 

memory allocation functions. 

– Code should not depend on any operating system or any target system drivers 

– Organize your code in a modular way minimizing module coupling and maximizing 

module cohesion 

– Your functions should be implemented for real-time system (using signal frame 

durations that can be configurable where applicable resulting in reasonable 

signal/buffering latencies once integrated into the system) 

• Step#2: Optimize your code for ARM or DSP core where it may execute 

– This may be achieved through creation of a suitable “intrinsic” library with functions 

that can be called from the components 

– Port “intrinsic” library to ARM and/or DSP 

– Optimize the functions in the intrinsic library for ARM and/or DSP core (use 

ARM or DSP intrinsic functions provided by code generation tools; do NOT use 

assembly language – EVER! (unless standard assembly optimized libraries were 

provided by the ARM or TI) 
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Typical Development Steps (cont.) 

• Step#3: Create XDAIS wrappers 

– Using IALG specification and PASDK extension create wrappers that can be used for 

integration into the PASDK framework 

• Step#4: Update Auto detection methods 

– If creating decoder component, modify the appropriate PASDK software (drivers) to 

include new auto detection method for recognizing the particular decoder content 

(currently this runs on a DSP and informs ARM to switch to using appropriate 

decoder component) 

• Step#5: Integrate new components on ARM and/or DSP 

– Familiarize yourself with the operation of the PASDK framework (tasks, drivers, 

memory management, buffer management) 

– Take special care of properly handling circular buffer between decoder and the 

renderers/ASP’s 

• Step#6: Implement alpha-commands that can be used for configuration and 

real-time control of new components 

– If necessary update apply() method of PASDK XDAIS extension to detect changes in 

configuration and apply them prior to processing incoming data 
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