Processor SDK Audio

Getting Started Guide
9/8/2017

Wi3 TEXAS INSTRUMENTS

Processor SDK Audio Software

Processor SDK Audio Platform

(a.k.a System Test or IC Certification Platform)

PA Framework

DECs

ASPs

ENC

Input Switch - DIB
(Audio Driver)

Output Switch - DOB
(Audio Driver)

Control Switch - DCS
(Control Driver)

From RTOS-PDK.

MCcASP MCcASP UART, [I12C/SPI]
Library Architecture Framework
EDMA LLD RTOS IPC Drivers for 12C, UART, SPI, GPIO, McASP

RTOS Support on A15 & C66

et R 1 by Timers, PLLs, Boot SBL XDC, XDAIS, UIA,
y INTC/GIC etc | Utilities | (MMCSD, QSP!I) | RTOS-Kernel etc
ccs o csL Diagnostics DSPLib
Tools Tools

K2G EVM + Audio Daughter Card + MDS HSR41 HDMI Card

AN

PASDK
> Package
on K2G

Processor
SDK RTOS

Hardware
Platform

W3 TEXAS INSTRUMENTS

K2G: ARM+DSP Layout

" \‘ ,’ _________ \\

' Input | 1 Decode !

, Buffer i ' Buffer !

1 1 1

1 |] 1

(PCM

: (P.CM or i : Channels : ___________________
1 Bitstream) | | orobjects) | cTTTTTTTTTTTTTTTTTTTTTTT oo .

1 1 : :

———————

N —— -

Source i Shared
Program

Different/same Frame-lengths
across multiple entities? Got to solve
metadata timing, specifically.

DSP Al5 DSP L2 MSMC DDR

legend 3) (v oY T

Wi3 TEXAS INSTRUMENTS

Audio Tasks Layout

relocated to
ARM
ARM (TI-RTOS) /
| -
—“ipe; ¥ Audio Decode [—00—
y
SHM
SHM
Input
Buffer Decode .
Memory Output Audio
Buffer Frames
Memaory
B_Sy dala-
Qutput
Buffer
L Memory
psP (TI RTCS} Audio Output Task
Audio Input g
= J,Am[‘fet) 5 ASP’s Enciout [feaad | [-
|
L —daa—r
3 :
'L'[l k.
EDMA - EDNMA
{Audic In) ?Udlo (Audio Out)
rame .
T Buffer Audio Frame l
McASP M emaory MecASP
{Audic In) (Audie Out)

W3 TEXAS INSTRUMENTS

Adding New Components to PASDK (K2G)

Decoders
— Execute on ARM Core under TI SYS/BIOS (RTOS)

— Must provide auto detection method definition and/or implementation for
identifying the content type within an incoming bit stream which can be
integrated into the real-time system.

Audio Stream Processing (ASP) Components (e.g. audio rendering,
filtering, etc.)

— Execute on DSP Core under TI SYS/BIOS (RTOS)

All components must provide interface that complies with the XDAIS
API Specification

— Standard specification has been extended for use in PASDK
— IALG interface handles memory management and component creation

All components must use Audio Frame Structure where required
— Described in documentation and example ASP

5

W3 TEXAS INSTRUMENTS

Typical Development Steps

« Step#l: Implement component using standard C language

— To make it possible to comply with the XDAIS API standard and PASDK extension
make sure the code is re-entrant and it does not use malloc() or similar dynamic
memory allocation functions.

— Code should not depend on any operating system or any target system drivers

— Organize your code in a modular way minimizing module coupling and maximizing
module cohesion

— Your functions should be implemented for real-time system (using signal frame
durations that can be configurable where applicable resulting in reasonable
signal/buffering latencies once integrated into the system)

» Step#2: Optimize your code for ARM or DSP core where it may execute
— This may be achieved through creation of a suitable “intrinsic” library with functions
that can be called from the components
— Port “intrinsic” library to ARM and/or DSP
— Optimize the functions in the intrinsic library for ARM and/or DSP core (use
ARM or DSP intrinsic functions provided by code generation tools; do NOT use

assembly language — EVER! (unless standard assembly optimized libraries were
provided by the ARM or TI)

W3 TEXAS INSTRUMENTS

Typical Development Steps (cont.)

Step#3: Create XDAIS wrappers

— Using IALG specification and PASDK extension create wrappers that can be used for
integration into the PASDK framework

Step#4. Update Auto detection methods

— If creating decoder component, modify the appropriate PASDK software (drivers) to
include new auto detection method for recognizing the particular decoder content
(currently this runs on a DSP and informs ARM to switch to using appropriate
decoder component)

Step#5: Integrate new components on ARM and/or DSP

— Familiarize yourself with the operation of the PASDK framework (tasks, drivers,
memory management, buffer management)

— Take special care of properly handling circular buffer between decoder and the
renderers/ASP’s

Step#6: Implement alpha-commands that can be used for configuration and
real-time control of new components

— If necessary update apply() method of PASDK XDAIS extension to detect changes in
configuration and apply them prior to processing incoming data

W3 TEXAS INSTRUMENTS

