Processor SDK Audio

Getting Started Guide
9/8/2017

Wi3 TEXAS INSTRUMENTS



Processor SDK Audio Software
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K2G: ARM+DSP Layout
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Audio Tasks Layout
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Adding New Components to PASDK (K2G)

Decoders
— Execute on ARM Core under TI SYS/BIOS (RTOS)

— Must provide auto detection method definition and/or implementation for
identifying the content type within an incoming bit stream which can be
integrated into the real-time system.

Audio Stream Processing (ASP) Components (e.g. audio rendering,
filtering, etc.)

— Execute on DSP Core under TI SYS/BIOS (RTOS)

All components must provide interface that complies with the XDAIS
API Specification

— Standard specification has been extended for use in PASDK
— IALG interface handles memory management and component creation

All components must use Audio Frame Structure where required
— Described in documentation and example ASP

5
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Typical Development Steps

« Step#l: Implement component using standard C language

— To make it possible to comply with the XDAIS API standard and PASDK extension
make sure the code is re-entrant and it does not use malloc() or similar dynamic
memory allocation functions.

— Code should not depend on any operating system or any target system drivers

— Organize your code in a modular way minimizing module coupling and maximizing
module cohesion

— Your functions should be implemented for real-time system (using signal frame
durations that can be configurable where applicable resulting in reasonable
signal/buffering latencies once integrated into the system)

» Step#2: Optimize your code for ARM or DSP core where it may execute
— This may be achieved through creation of a suitable “intrinsic” library with functions
that can be called from the components
— Port “intrinsic” library to ARM and/or DSP
— Optimize the functions in the intrinsic library for ARM and/or DSP core (use
ARM or DSP intrinsic functions provided by code generation tools; do NOT use

assembly language — EVER! (unless standard assembly optimized libraries were
provided by the ARM or TI)
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Typical Development Steps (cont.)

Step#3: Create XDAIS wrappers

— Using IALG specification and PASDK extension create wrappers that can be used for
integration into the PASDK framework

Step#4. Update Auto detection methods

— If creating decoder component, modify the appropriate PASDK software (drivers) to
include new auto detection method for recognizing the particular decoder content
(currently this runs on a DSP and informs ARM to switch to using appropriate
decoder component)

Step#5: Integrate new components on ARM and/or DSP

— Familiarize yourself with the operation of the PASDK framework (tasks, drivers,
memory management, buffer management)

— Take special care of properly handling circular buffer between decoder and the
renderers/ASP’s

Step#6: Implement alpha-commands that can be used for configuration and
real-time control of new components

— If necessary update apply() method of PASDK XDAIS extension to detect changes in
configuration and apply them prior to processing incoming data
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