Processor Audio SDK Setup Guide V0.40

Processor Audio SDK Setup Guide[image:]
Rev. 0.40
17 March 2017

	

	

Revision History

	Version
	Date
	Description of changes
	Author(s)

	0.10
	23-Aug-16
	Initial version
	Frank Livingston

	0.20
	30-Aug-16
	Added gmake clean to UART LLD build instructions
	Frank Livingston

	0.30
	08-Dec-16
	Updated for AR2
	Frank Livingston

	0.40
	17-Mar-17
	Updated for AR4
	Frank Livingston

Table of Contents

1	Introduction	5
2	Required Hardware	5
3	Software Installation	5
3.1	Code Composer Studio (CCS)	5
3.2	Processor SDK-RTOS	6
3.3	Open Source Package	6
3.4	Firmware Deliverable Package	7
3.5	Dolby IP Packages	7
3.6	CCS Update	7
3.7	PASDK OS Dev Build and Alpha Communication Tools	8
4	Emulator Firmware Update	8
5	Software Build	9
5.1	PASDK OS Dev Libraries	9
5.2	UART, SPI, and I2C Low Level Drivers (LLDs)	10
5.3	K2G Platform Library	10
5.4	DSP Application	10
5.5	ARM Application	11
6	Application Execution and Test	11
6.1	I/O Configuration	11
6.2	Connect EVM	12
6.2.1	ADC 8-Ch Input and DAC 8-Ch Output	12
6.2.2	S/PDIF Input and DAC 8-Ch Output	12
6.2.3	HDMI Input and DAC Output	13
6.3	Load and Execute Code	13
6.4	PyAlpha Python Scripts for Alpha Communication	14
6.5	Alpha Commands for AE0 Configuration/Status	14

[bookmark: _Toc476929936]Introduction
This document provides installation and setup instructions for the Alpha-4 Release (AR4) of Processor Audio SDK (PASDK) 1.0 for K2G provided by Texas Instruments, Inc. (TI). AR4 incorporates several packages: (1) the Open Source (OS) package; (2) the Firmware Deliverable (FD) package; and (3) the Dolby Atmos IP packages. The AR4 features provided by these packages are detailed below.
1. OS package
· Audio input drivers: HDMI input, and 8-channel ADC or S/PDIF (optical only) input.
· Audio output drivers: up to 16-channel DAC output.
· Control I/O drivers: UART, SPI and I2C.
· PCM decoder (executing on A15).
· PCM encoder with DEL and VOL ASP phases.
· DM, FIL, SRC, ML0 and AE0 ASP’s.
· Framework supporting I-topology, decoders on ARM, and ASP’s on DSP.
2. FD package
· SNG decoder (executing on ARM).
· BM2, DEM and GEQ3 ASP’s.
3. Dolby Atmos IP packages (uncertified)
· Dolby Intrinsics 1.8.1.1.
· Dolby Digital Plus (DDP) decoder 4.7.2.
· MAT-PCM decoder 2.1.2 and MAT-THD decoder 3.3.3.
· Channel Audio Renderer (CAR) 1.0.0.
· Object Audio Renderer (OAR) 1.0.0.
· Object Audio Renderer Interface (OARI) 1.1.11 from SIDK 1.3.
· Bass Management (BMDA) from SIDK 1.2.
[bookmark: _Toc476929937]Required Hardware
The hardware listed below is required for complete AR4 functionality:
1. Mistral K2G Rev. D EVM (SPRW274).
2. Mistral K2G EVM Audio Daughter Card Rev. B (SPRW279).
3. Momentum Data Systems (MDS) HDMI repeater kit, including:
· MDS HSR41P HDMI Repeater module Rev. A.
· MDS DA10X Interface board (IFB) Rev. A.
· 5V AC to USB power supply for IFB and HSR41P.
· Short 26- and 34-wire ribbon cables for connecting HSR41P and IFB.
· Long 34-wire ribbon cable for connecting IFB and Audio Daughter Card.
[bookmark: _Toc476929938]Software Installation
[bookmark: _Toc476929939]Code Composer Studio (CCS)
AR4 was developed using CCS 6.1.2.00015 on Windows. Download the Off-line Installer for this version of CCS at the following URL:
http://processors.wiki.ti.com/index.php/Download_CCS#Code_Composer_Studio_Version_6_Downloads
Install CCS to C:\ti. During CCS installation:
· For “Processor Support”, select “Multi Core Processors (all)”
· For “Select Debug Probes”, select “TI XDS Debug Probe Support” and “Spectrum Digital Debug Probes and Boards”
AR4 was developed using the code generation tools listed below. These tools are installed as part of CCS.
· GNU ARM Tools 4.8.0.2014q3-20140805
· C6000 v8 Compiler Tools: 8.1.0
[bookmark: _Toc476929940]Processor SDK-RTOS
AR4 was developed using Processor SDK-RTOS 2.0.2.11 for K2G on Windows. Release information for this version of Processor SDK-RTOS is provided at the URL below, along with links to the installer:
http://software-dl.ti.com/processor-sdk-rtos/esd/K2G/02_00_02_11/index_FDS.html
Install Processor SDK-RTOS to C:\ti. Among others, this should install the tools in the following list:
· SYS/BIOS 6.45.01.29
· XDAIS 7.24.00.04
· XDC Tools 3.32.00.06
[bookmark: _Toc476929941]Open Source Package
The AR4 OS package is distributed using a self-extracting executable. Follow the steps below to install the software.
1. Double click the executable to initiate the installation process. Continue to the License Agreement.
2. Accept the terms of the click-wrap license agreement.
3. Change the installation destination folder to c:\ti\processor_audio_sdk_1_00_00_02 in the Choose Destination Location window. Complete the installation.

Upon completion of the installation, the processor_audio_sdk_1_00_00_02 folder contains the sub-folders described in the table below.
	Folder
	Contents

	docs\
	User documentation

	pasdk\
	PASDK OS Dev (paf\)
ARM application (common\, shared\, test_arm\
DSP application (common\, shared\, test_dsp\)

	psdk_cust\
	IPC engineering release 3.43 (ipc_3_43_00_00_eng\)
Enhanced PDK K2G 1.0.1 (pdk_k2g_1_0_1_0_eng\)

	scripts\
	Build scripts

	tools\
	Alpha communication tools

[bookmark: _Toc476929942][bookmark: _Ref459713956][bookmark: _Ref468882289]Firmware Deliverable Package
The AR4 FD package is distributed as a .zip archive. To install the software, unzip the package .zip file to c:\ti\processor_audio_sdk_1_00_00_02\pasdk\paf. The FD package root folder is “pa”, so unzipping the file should overwrite the pa folder in paf and overwrite or create the sub-folders described in the table below.
	Folder
	Contents

	pa\asp\rel\
	ASP IP (bm2, dem, geq3) header files

	pa\build
	ARM and DSP IP libraries

	pa\dec\rel\sng1
	Decoder IP (sng1) header files

	pa\docs
	User documentation

[bookmark: _Toc476929943][bookmark: _Ref468889109]Dolby IP Packages
The AR4 Dolby IP packages are distributed using a select-extracting executable. Follow the steps below to install the software.
1. Double click the executable to initiate the installation process. Continue to the License Agreement.
2. Accept the terms of the click-wrap license agreement.
3. Accept the default installation folder, or change the folder to the desired location of the Dolby IP packages (e.g. c:\ti\processor_audio_sdk_1_00_00_02\release\dhip_package). Complete the installation.
4. Upon completion of the installation, unzip all Dolby IP .zip packages (bmda, car, oar, ddp, intrinsics, matted, and oar) to c:\ti\processor_audio_sdk_1_00_00_02\dolby_ip\dh-ip. After unzipping the Dolby IP .zip packages, the dh-ip folder should contain the sub-folders described in the table below.

	Folder
	Contents

	asp\
	ASP IP (bmda, car, oar) header files

	build\
	ARM and DSP Dolby IP libraries

	dec\
	Decoder IP (ddp, mat-thd) header files

	DOC\
	User documentation

[bookmark: _Ref468986930][bookmark: _Toc476929944]CCS Update
Update the CCS installation as below:
1. Launch CCS and create a new workspace (e.g. c:\ti\processor_audio_sdk_1_00_00_02\pasdk\workspace_v6_1).
2. Allow installation of newly discovered products located in c:\ti.
· Ignore any messages about unsigned content
· Restart CCS when prompted
3. Update Keystone2 device support
· Select HelpInstallation Details from the CCS menu
· Select Keystone2 device support and click Uninstall.
· Restart CCS when prompted.
· Select HelpInstall New Software.
· Select “--All Available Sites--” from the “Work with:” drop-down menu.
· Uncheck “Show only the latest version of the available software”.
· Click the right arrow next to Keystone2 Device Support to display the Keystone2 device support version options.
· Select the second version 1.1.5 Keystone2 device support option. Continue to and accept the license agreement.
· Restart CCS when prompted.
4. Update Emulators
· Select HelpCheck for updates from the CCS menu
· Update Spectrum Digital Emulators to 5.2.0.14 or greater
· Update TI Emulators to 6.0.407.3 or greater
· Restart CCS when prompted
5. Update RTSC Product discovery path to access to IPC engineering release 3.43 and Enhanced PDK K2G 1.0.1
· Select WindowPreferences
· Select Code Composer StudioRTSCProducts
· Click Add next to Product Discovery Path, add folder C:\ti\processor_audio_sdk_1_00_00_02\psdk_cust
[bookmark: _Toc476929945]PASDK OS Dev Build and Alpha Communication Tools
Download and install the additional tools below. Sed and Python are required to build the PASDK OS DEV software contained in the ti\processor_audio_sdk_1_00_00_02\pasdk\paf folder. Python is also required for alpha command control I/O over using the PyAlpha tool. The PyAlpha tool is further described below in Section 6.4.
1. Obtain Sed 4.2.1 from http://gnuwin32.sourceforge.net/packages/sed.htm,
executable installer, sed-4.2.1-setup.exe.
Install to c:\PA_Tools\GnuWin32 (or change installation location in c:\ti\processor_audio_sdk_1_00_00_02\pasdk\setup_env.bat).
2. Obtain Python 2.7.6 from https://www.python.org/download/releases/2.7.6
executable installer, python-2.7.6.amd64.msi.
Install to c:\PA_Tools\Python27 (or change installation location in c:\ti\processor_audio_sdk_1_00_00_02\pasdk\setup_env.bat).
3. [bookmark: _GoBack]Once Python is installed, run c:\ti\processor_audio_sdk_1_00_00_02\pasdk\setup_env.bat and then navigate to c:\ti\processor_audio_sdk_1_00_00_02\tools\ and run setup.bat to install PyAlpha dependencies.
[bookmark: _Ref459718737][bookmark: _Toc476929946]Emulator Firmware Update
The K2G EVM on-board emulator firmware must be updated for correct emulator operation. Update the firmware as described below.
1. Connect the EVM to the host PC using the provided USB Mini B to A plug type cable. Connect the Mini B plug on the cable to XDS_USB connector J1 on the EVM.
2. Connect the EVM to power using the supplied 12V power supply.
3. Apply power to the EVM by pushing the SW1 switch to the “ON” position.
4. Open a DOS prompt on the PC. At the DOS prompt, issue these commands:
> cd c:\ti\ccsv6\ccs_base\common\uscif\xds2xx
> update_xds2xx.bat xds200
5. The batch file output should appear as shown below.
Updating CPLD ...
.
Updating Firmware ...
.
Rebooting ...
.
Reading Configuration ...
.
Check swRev is 1.0.0.8 or higher
.
boardRev=4
ipAddress=0.0.0.0
ipConfig=dhcp
ipGateway=0.0.0.0
ipNetmask=0.0.0.0
productClass=XDS2XX
productName=XDS200
serialNum=00:0E:99:03:90:0F
swRev=1.0.0.8
hostCPU=AM1802
emuCtrlType=Bit bang
extMemType=SDRAM
portUSB=true
portENET=false
portWIFI=false
portRS232=false
EnableUSBSerial=false
CurrentMeasure=false
Press any key to continue . . .
[bookmark: _Toc476929947]Software Build
[bookmark: _Toc476929948]PASDK OS Dev Libraries
The ARM and DSP applications depend on several libraries located in the ti\processor_audio_sdk_1_00_00_02\pasdk\paf folder. Detailed instructions for building any of the libraries in this folder are contained in C:\ti\processor_audio_sdk_1_00_00_02\pasdk\paf\ReadMe.txt. However, batch files for building only the necessary libraries for the ARM/DSP applications are provided in the C:\ti\processor_audio_sdk_1_00_00_02\scripts folder. To build the required libraries:
1. Open a DOS prompt.
2. From the DOS prompt, execute:
> cd C:\ti\processor_audio_sdk_1_00_00_02\scripts
> setup_env.bat
> build_paf_libs.bat
[bookmark: _Toc476929949]UART, SPI, and I2C Low Level Drivers (LLDs)
The enhanced PDK K2G 1.0.1 includes UART, SPI, and I2C serial port LLDs for control I/O. Each LLD supports CPU interrupt-callback mode and the UART LLD also supports EDMA dma-callback mode. Control I/O is implemented in the DSP application using the UART LLD in dma-callback mode. To build the serial port LLD libraries:
1. Open a DOS prompt.
2. From the DOS prompt, execute:
> cd C:\ti\processor_audio_sdk_1_00_00_02\scripts
> build_pdk_libs.bat
[bookmark: _Toc476929950]K2G Platform Library
Configuration and control of the K2G EVM and Audio Daughter Card require the K2G platform library supplied with the enhanced PDK K2G 1.0.1. To build the K2G platform library:
1. If necessary, re-launch CCS using the workspace created above in Section 3.6.
2. Import the “platform_lib_evmk2g” CCS project into the CCS workspace. The project is located in C:\ti\processor_audio_sdk_1_00_00_02\psdk_cust\pdk_k2g_1_0_1_0_eng\packages\ti\platform\evmk2g\platform_lib.	Comment by Jeyaram, Govind: Perhaps we enhance this document with screenshots. This, for instance, is a perfect scenario for doing that.
3. Rebuild the project using the Debug build profile.
· Right-click “platform_lib_evmk2g” project in CCS Project Explorer, select Build ConfigurationsSet ActiveProjectDebug.
· Right-click “platform_lib_evmk2g” project in CCS Project Explorer, select Rebuild Project.
[bookmark: _Toc476929951]DSP Application
To build the DSP application:
2. Import the “test_dsp” CCS project into the CCS workspace. The project is located in C:\ti\processor_audio_sdk_1_00_00_02\pasdk\test_dsp.
3. Ensure the correct component software versions are selected by RTSC.
· Right-click “test_dsp” project in CCS Project Explorer, select Properties
· On left-hand side of window, Select General. Select RTSC tab on the right-hand side of General window.
· Confirm the following are installed and selected: (1) EDMA3 LLD 2.12.1; (2) SYS/BIOS 6.45.1.29; (3) System Analyzer (UIA Target) 2.0.3.43; (4) XDAIS 7.24.0.04; and (5) k2g PDK 1.0.1
· For IPC, select version 3.42.0.02 and then (re-)select version 3.43.0.00_eng.
· Click OK.
4. Rebuild the project using the Debug_pkgs build profile.
· Right-click “test_dsp” project in CCS Project Explorer, select Build ConfigurationsSet ActiveProjectDebug_pkgs.
· Right-click “test_dsp” project in CCS Project Explorer, select Rebuild Project.
[bookmark: _Toc476929952]ARM Application
To build the ARM application:
1. Import the “test_arm” CCS project into the CCS workspace. The project is located in C:\ti\processor_audio_sdk_1_00_00_02\pasdk\test_arm.
2. Ensure the correct component software versions are selected by RTSC.
· Right-click “test_arm” project in CCS Project Explorer, select Properties
· On left-hand side of window, Select “General”. Select “RTSC” tab on the right-hand side of “General” window.
· Confirm the following are installed and selected: (1) SYS/BIOS 6.45.1.29; (2) System Analyzer (UIA Target) 2.0.3.43; and (3) XDAIS 7.24.0.04.
· For IPC, select version 3.42.0.02 and then (re-)select version 3.43.0.00_eng.
· Click “OK”.
3. Rebuild the project using the Debug_pkgs build profile.
· Right-click “test_dsp” project in CCS Project Explorer, select Build ConfigurationsSet ActiveProjectDebug_pkgs.
· Right-click “test_dsp” project in CCS Project Explorer, select Rebuild Project.
[bookmark: _Toc476929953]Application Execution and Test
[bookmark: _Toc476929954]I/O Configuration
AR4 supports boot- and run-time I/O configuration. Boot-time I/O configuration is determined by the at-boot I/O shortcuts in the CUS_ATBOOT_S definition in c:\ti\processor_audio_sdk_1_00_00_02\pasdk\test_dsp\application\itopo\evmk2g\atboot.c, while run-time I/O configuration is performed by invoking I/O shortcuts via alpha commands. The available Input and Output shortcuts are defined in C:\ti\processor_audio_sdk_1_00_00_02\pasdk\test_dsp\application\itopo\evmk2g\io.c and described in the tables below.
	Input Configuration
	Input Shortcut

	ADC 8-ch
(w/ DAC 8-ch input)
	execPAIInAnalog

	S/PDIF
	execPAIInDigital

	Stereo HDMI
(PCM or DDP)
	execPAIHDMIInStereo

	HDMI
(MAT-THD/PCM)
	execPAIInHDMI

	Output Configuration
	Output Shortcut

	DAC 8-ch
(w/ ADC 8-ch input)
	execPAIOutAnalogSlave

	DAC (8-ch)
	execPAIOutAnalog

	DAC (12-ch)
	execPAIOutAnalog12Ch

	DAC (16-ch)
	execPAIOutAnalog16Ch

[bookmark: _Toc476929955]Connect EVM
1. Turn off power to the EVM using SW1 on the EVM. Disconnect the 12V power supply.
2. Assemble the Audio Daughter Card (assembly instructions are packaged with Audio Daughter Card).
3. Attach the Audio Daughter Card to the K2G EVM. The Audio Daughter Card connects to the EVM through the JP1 “Audio Expansion” and J12 “Serial Expansion” connectors on EVM.
4. Connect the PC and K2G EVM using DB9 serial RS-232 cable delivered with EVM.
· A USB to UART FTDI cable can be used on the PC side of the connection.
· Attach the DB9 connector to the P1 “UART0” connector on the EVM.
· Push the SW12-UART0_DB9_EN switch to the “ON” position.
5. Connect the EVM emulation port to the PC as described in Section 4.
6. Connect the MDS HSR41P to the MDS IFB.
· Connect HSR41P J4 “Main” header to the IFB J5 “Main” header using the short 26-wire ribbon cable. Ensure the red wire on the ribbon cable is connected between HSR41P J4 Pin1 and IFB J5 Pin1.
· Connect HSR41P J7 “Sec” header to the IFB J2 “Sec” header using the short 34-wire ribbon cable. Ensure the red wire on the ribbon cable is connected between HSR41P J7 Pin1 and IFB J2 Pin1.
7. Connect the MDS IFB to the Audio Daughter Card. Connect IFB J3 “McASP0” header to Audio Daughter Card “I2S Header” using the supplied long 34-wire ribbon cable. Ensure the red wire on the ribbon cable is connected between IFB J3 Pin1 and Audio Daughter Card “I2S Header” Pin1 (note the “I2S Header” is only 32 pins, so the two wires on the ribbon cable opposite Pin1 are unused).
8. Connect HDMI cable from audio source (e.g. Blu-ray player) to HSR41P J6 “IN”. Connect HDMI cable to audio sink (e.g. HDMI enabled monitor) from HSR41P J8 “HDMI OUT”.
9. Connect 5V AC to USB power supply to IFB power connector J1.
10. Re-connect the 12V power supply to the EVM. Turn on power to the EVM using SW1.
[bookmark: _Toc476929956]ADC 8-Ch Input and DAC 8-Ch Output
Connect ADC inputs to the ADC_IN0-3 input jacks on the Audio Daughter Card. Processed PCM samples will be output to the corresponding DAC output jacks DAC_OUT0-3 on the Daughter Card.
[bookmark: _Toc476929957]S/PDIF Input and DAC 8-Ch Output
Connect S/PDIF input to the MOD1 Digital Input (Optical) connector on the Audio Daughter Card. Processed PCM samples will be output to the DAC output jacks DAC_OUT0-3 on the Daughter Card.
[bookmark: _Toc476929958]HDMI Input and DAC Output
Connect HDMI input source to the HSR41P repeater module as described above. Processed PCM samples will be output to DAC output jacks DAC_OUT0-6 on the Daughter Card. The number of active DAC outputs depends on: (1) the selected Output Shortcut (execPAIOutAnalog, execPAIOutAnalog12Ch, or execPAIOutAnalog16Ch); (2) the configured ENC channel map from; and (3) the active renderer channel configuration request. For example, issue the alpha commands listed below to enable 12-channel DAC for channel-based audio using CAR with speaker layout L/R, C, Sub, Ls/Rs, Lrs/Rrs, Ltf/Rtf, Ltr/Rtr:
CMD> python pyalpha execPAIOutAnalog12Ch
alpha execPAIOutAnalog12Ch

CMD> python pyalpha writeENCChannelMapFrom16(PAF_LEFT,PAF_RGHT,PAF_LSUR,PAF_RSUR,PAF_CNTR,PAF_SUBW,PAF_LBAK,PAF_RBAK,PAF_LTFT,PAF_RTFT,PAF_LTRR,PAF_RTRR,-3,-3,-3,-3)

CMD> python pyalpha writeSYSChannelConfigurationRequestSurround4LtfRtfLtrRtr_1
alpha /* none */

CMD> python pyalpha readCARChannelCfgOverride
alpha writeCARChannelCfgOverrideUnknown

[bookmark: _Toc476929959]Load and Execute Code
Follow the steps below from within CCS to load and execute the DSP and ARM application code:
1. Click ViewTarget Configurations.
2. In the Target Configurations window, open the Projectstest_dsptargetConfigs folder.
3. Right-click on K2GEVM.ccxml contained in the targetConfigs folder.
4. Select Launch Selected Configuration.
5. In the Debug window, right-click on the C66x and select Connect Target. The output from the GEL code invoked on the target connection can be observed in the Console output window. The final line of this output should read “C66xx: GEL Output: DDR3A initialization complete”.
6. In the Debug window, right-click on the CortexA15 and select Connect Target. The output from the GEL code invoked on the target connection can be observed in the Console output window. The final line of this output should read “CortexA15: GEL Output: A15 non secure mode entered”.
7. In the Debug Window, click on the C66x and then open RunLoadLoad Program. In the Load Program window, click on Browse project, open the “test_dsp” folder, and click on “test_dsp.out” and OK to select the program to be loaded. Click on OK in the Load Program window to load the program to the C66x.	Comment by Jeyaram, Govind: If we offer Pre-built binaries, then they will help the customers sanity-verify the EVM connections (JTAG, audio-cabling, boot-mode switches etc) first. Then, they could mess around with the atboot/CCS project themselves.
8. In the Debug Window, click on the CortexA15, and then open RunLoadLoad Program. In the Load Program window, click on Browse project, open the “test_arm” folder, and click on “test_arm.out” and OK to select the program to be loaded. Click on OK in the Load Program window to load the program to the A15.
9. In the Debug window, click on the C66x and then Open RunResume to execute the DSP code.
10. In the Debug window, click on the CortexA15 and then Open RunResume to execute the ARM code.
11. The CIO Console output window should display memory usage statistics. The final line of output should display the memory usage summary for the MSMC SHM heap.
12. In the Debug Window, click on the CortexA15, and then open RunDisconnect Target. This step is required for clean audio output (known issue for this release).
[bookmark: _Ref459728367][bookmark: _Toc476929960]PyAlpha Python Scripts for Alpha Communication
AR4 supports alpha command control over UART using the PyAlpha tool located in c:\ti\processor_audio_sdk_1_00_00_02\tools. PyAlpha is invoked on the command-line in a DOS shell. PyAlpha documentation can be obtained by executing PyAlpha with a “--help” argument as below (note: the Python executable is contained in the DOS shell path for this example).
> cd c:\ti\processor_audio_sdk_1_00_00_02\tools
> python pyalpha --help
usage: PyAlpha [-?] [-h FILE] [-I DIR] [-p PORT] [-b BAUD] [-t DIR] [-bin DIR]
 [-r] [-s] [--fast] [--repeat N T N T] [-log LEVEL]
 [ALPHAS [ALPHAS ...]]

Alpha Command Communicator

positional arguments:
 ALPHAS Alpha commands, separated by spaces

optional arguments:
 -?, --help show this help message and exit
 -h FILE, --header FILE
 Add FILE_a.h to symbol definition list and FILE_a.hdM
 to symbol decomposition list
 -I DIR, --include DIR
 Add DIR to the include path. [default: ./alpha]
 -p PORT, --port PORT Communication port [default: COM1]
 -b BAUD, --baud BAUD Baud rate [default: 19200]
 -t DIR, --temp DIR Temporary file save location [default: .]
 -bin DIR Binary file location [default: ./bin]
 -r, --retain Retain temporary files
 -s, --session Run a PyAlpha session, retains startup settings
 --fast Skip post-processing
 --repeat N T N T Repeat an alpha command N times with a T second break
 between
 -log LEVEL, --loglevel LEVEL
 Set log level

The file <tools>\config_cust.ini is used to configure default settings for PyAlpha and should be edited to reflect your system (these configurations can be overwritten with CLI flags).

When running PyAlpha with the –s flag, you can use tab-completion once 3 or more characters are typed into the console.
[bookmark: _Toc476929961]Alpha Commands for AE0 Configuration/Status
AR4 includes the Audio Example 0 (AE0) ASP. This ASP transforms stereo (Left/Right) PCM into 3stereo (Left/Right/Center) PCM. AE0 can be included in the signal chain by uncommenting Line 63 (63: #define _AE0_) in C:\ti\processor_audio_sdk_1_00_00_02\pasdk\test_dsp\framework\itopo\patch.c and rebuilding the DSP application. AE0 documentation is provided in C:\ti\processor_audio_sdk_1_00_00_02\docs\DA10x_UG_AspExample.pdf, and the alpha commands contained in C:\ti\processor_audio_sdk_1_00_00_02\tools\alpha\ae_a.h can be used to configure AE0 and consult AE0 status.
In the example alpha command sequence below, AE0 is configured to generate 3stereo using a gain of 0.5 (16384 in S16Q15 format) using COM port 1. After disabling AE0, the Master Volume Control is set to -20 (= 40*0.5 dB).
(Note: ‘CMD>’ indicates the commands issued from a DOS shell and ‘>’ indicates commands from a PyAlpha session).
CMD> cd c:\ti\processor_audio_sdk_1_00_00_02\tools
CMD> python pyalpha --session
> readAEMode
alpha writeAEModeDisable
> writeAEModeEnable
alpha /* none */
> readAEMode
alpha writeAEModeEnable
> readAEScaleQ15
alpha wroteAEScaleQ15,0x0000
> writeAEScaleQ15(16384)
alpha
> readAEScaleQ15
alpha wroteAEScaleQ15,0x4000
> readSYSChannelConfigurationRequest
alpha 0xce20,0x2008,0x010c,0x0000,0x0000,0x0000
> writeSYSChannelConfigurationRequestStereo
alpha /* none */
> readSYSChannelConfigurationRequest
alpha 0xce20,0x2008,0x0003,0x0000,0x0000,0x0000
> writeSYSChannelConfigurationRequestSurround4_1
alpha /* none */
> readSYSChannelConfigurationRequest
alpha 0xce20,0x2008,0x010c,0x0000,0x0000,0x0000
> writeAEModeDisable
alpha /* none */
> readAEMode
alpha writeAEModeDisable
> writeVOLControlMasterN(-40)
alpha /* none */

8

image1.emf

