]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - rpmsg/rpmsg.git/blob - arch/x86/kvm/mmu.c
Merge tag 'alloc-args-v4.19-rc8' of https://git.kernel.org/pub/scm/linux/kernel/git...
[rpmsg/rpmsg.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
44 #include <asm/page.h>
45 #include <asm/pat.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
52 /*
53  * When setting this variable to true it enables Two-Dimensional-Paging
54  * where the hardware walks 2 page tables:
55  * 1. the guest-virtual to guest-physical
56  * 2. while doing 1. it walks guest-physical to host-physical
57  * If the hardware supports that we don't need to do shadow paging.
58  */
59 bool tdp_enabled = false;
61 enum {
62         AUDIT_PRE_PAGE_FAULT,
63         AUDIT_POST_PAGE_FAULT,
64         AUDIT_PRE_PTE_WRITE,
65         AUDIT_POST_PTE_WRITE,
66         AUDIT_PRE_SYNC,
67         AUDIT_POST_SYNC
68 };
70 #undef MMU_DEBUG
72 #ifdef MMU_DEBUG
73 static bool dbg = 0;
74 module_param(dbg, bool, 0644);
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78 #define MMU_WARN_ON(x) WARN_ON(x)
79 #else
80 #define pgprintk(x...) do { } while (0)
81 #define rmap_printk(x...) do { } while (0)
82 #define MMU_WARN_ON(x) do { } while (0)
83 #endif
85 #define PTE_PREFETCH_NUM                8
87 #define PT_FIRST_AVAIL_BITS_SHIFT 10
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
90 #define PT64_LEVEL_BITS 9
92 #define PT64_LEVEL_SHIFT(level) \
93                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
95 #define PT64_INDEX(address, level)\
96         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
99 #define PT32_LEVEL_BITS 10
101 #define PT32_LEVEL_SHIFT(level) \
102                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
104 #define PT32_LVL_OFFSET_MASK(level) \
105         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106                                                 * PT32_LEVEL_BITS))) - 1))
108 #define PT32_INDEX(address, level)\
109         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
112 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
113 #define PT64_DIR_BASE_ADDR_MASK \
114         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115 #define PT64_LVL_ADDR_MASK(level) \
116         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117                                                 * PT64_LEVEL_BITS))) - 1))
118 #define PT64_LVL_OFFSET_MASK(level) \
119         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                                 * PT64_LEVEL_BITS))) - 1))
122 #define PT32_BASE_ADDR_MASK PAGE_MASK
123 #define PT32_DIR_BASE_ADDR_MASK \
124         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125 #define PT32_LVL_ADDR_MASK(level) \
126         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127                                             * PT32_LEVEL_BITS))) - 1))
129 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
132 #define ACC_EXEC_MASK    1
133 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
134 #define ACC_USER_MASK    PT_USER_MASK
135 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
137 /* The mask for the R/X bits in EPT PTEs */
138 #define PT64_EPT_READABLE_MASK                  0x1ull
139 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
141 #include <trace/events/kvm.h>
143 #define CREATE_TRACE_POINTS
144 #include "mmutrace.h"
146 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
149 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
151 /* make pte_list_desc fit well in cache line */
152 #define PTE_LIST_EXT 3
154 /*
155  * Return values of handle_mmio_page_fault and mmu.page_fault:
156  * RET_PF_RETRY: let CPU fault again on the address.
157  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
158  *
159  * For handle_mmio_page_fault only:
160  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
161  */
162 enum {
163         RET_PF_RETRY = 0,
164         RET_PF_EMULATE = 1,
165         RET_PF_INVALID = 2,
166 };
168 struct pte_list_desc {
169         u64 *sptes[PTE_LIST_EXT];
170         struct pte_list_desc *more;
171 };
173 struct kvm_shadow_walk_iterator {
174         u64 addr;
175         hpa_t shadow_addr;
176         u64 *sptep;
177         int level;
178         unsigned index;
179 };
181 static const union kvm_mmu_page_role mmu_base_role_mask = {
182         .cr0_wp = 1,
183         .cr4_pae = 1,
184         .nxe = 1,
185         .smep_andnot_wp = 1,
186         .smap_andnot_wp = 1,
187         .smm = 1,
188         .guest_mode = 1,
189         .ad_disabled = 1,
190 };
192 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
193         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
194                                          (_root), (_addr));                \
195              shadow_walk_okay(&(_walker));                                 \
196              shadow_walk_next(&(_walker)))
198 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
199         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
200              shadow_walk_okay(&(_walker));                      \
201              shadow_walk_next(&(_walker)))
203 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
204         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
205              shadow_walk_okay(&(_walker)) &&                            \
206                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
207              __shadow_walk_next(&(_walker), spte))
209 static struct kmem_cache *pte_list_desc_cache;
210 static struct kmem_cache *mmu_page_header_cache;
211 static struct percpu_counter kvm_total_used_mmu_pages;
213 static u64 __read_mostly shadow_nx_mask;
214 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
215 static u64 __read_mostly shadow_user_mask;
216 static u64 __read_mostly shadow_accessed_mask;
217 static u64 __read_mostly shadow_dirty_mask;
218 static u64 __read_mostly shadow_mmio_mask;
219 static u64 __read_mostly shadow_mmio_value;
220 static u64 __read_mostly shadow_present_mask;
221 static u64 __read_mostly shadow_me_mask;
223 /*
224  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
225  * Non-present SPTEs with shadow_acc_track_value set are in place for access
226  * tracking.
227  */
228 static u64 __read_mostly shadow_acc_track_mask;
229 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
231 /*
232  * The mask/shift to use for saving the original R/X bits when marking the PTE
233  * as not-present for access tracking purposes. We do not save the W bit as the
234  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
235  * restored only when a write is attempted to the page.
236  */
237 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
238                                                     PT64_EPT_EXECUTABLE_MASK;
239 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
241 /*
242  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
243  * to guard against L1TF attacks.
244  */
245 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
247 /*
248  * The number of high-order 1 bits to use in the mask above.
249  */
250 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
252 /*
253  * In some cases, we need to preserve the GFN of a non-present or reserved
254  * SPTE when we usurp the upper five bits of the physical address space to
255  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
256  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
257  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
258  * high and low parts.  This mask covers the lower bits of the GFN.
259  */
260 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
263 static void mmu_spte_set(u64 *sptep, u64 spte);
264 static union kvm_mmu_page_role
265 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
267 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
269         BUG_ON((mmio_mask & mmio_value) != mmio_value);
270         shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
271         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
273 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
275 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
277         return sp->role.ad_disabled;
280 static inline bool spte_ad_enabled(u64 spte)
282         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
283         return !(spte & shadow_acc_track_value);
286 static inline u64 spte_shadow_accessed_mask(u64 spte)
288         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
289         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
292 static inline u64 spte_shadow_dirty_mask(u64 spte)
294         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
295         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
298 static inline bool is_access_track_spte(u64 spte)
300         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
303 /*
304  * the low bit of the generation number is always presumed to be zero.
305  * This disables mmio caching during memslot updates.  The concept is
306  * similar to a seqcount but instead of retrying the access we just punt
307  * and ignore the cache.
308  *
309  * spte bits 3-11 are used as bits 1-9 of the generation number,
310  * the bits 52-61 are used as bits 10-19 of the generation number.
311  */
312 #define MMIO_SPTE_GEN_LOW_SHIFT         2
313 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
315 #define MMIO_GEN_SHIFT                  20
316 #define MMIO_GEN_LOW_SHIFT              10
317 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
318 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
320 static u64 generation_mmio_spte_mask(unsigned int gen)
322         u64 mask;
324         WARN_ON(gen & ~MMIO_GEN_MASK);
326         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
327         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
328         return mask;
331 static unsigned int get_mmio_spte_generation(u64 spte)
333         unsigned int gen;
335         spte &= ~shadow_mmio_mask;
337         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
338         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
339         return gen;
342 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
344         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
347 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
348                            unsigned access)
350         unsigned int gen = kvm_current_mmio_generation(vcpu);
351         u64 mask = generation_mmio_spte_mask(gen);
352         u64 gpa = gfn << PAGE_SHIFT;
354         access &= ACC_WRITE_MASK | ACC_USER_MASK;
355         mask |= shadow_mmio_value | access;
356         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
357         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
358                 << shadow_nonpresent_or_rsvd_mask_len;
360         trace_mark_mmio_spte(sptep, gfn, access, gen);
361         mmu_spte_set(sptep, mask);
364 static bool is_mmio_spte(u64 spte)
366         return (spte & shadow_mmio_mask) == shadow_mmio_value;
369 static gfn_t get_mmio_spte_gfn(u64 spte)
371         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
373         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
374                & shadow_nonpresent_or_rsvd_mask;
376         return gpa >> PAGE_SHIFT;
379 static unsigned get_mmio_spte_access(u64 spte)
381         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
382         return (spte & ~mask) & ~PAGE_MASK;
385 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
386                           kvm_pfn_t pfn, unsigned access)
388         if (unlikely(is_noslot_pfn(pfn))) {
389                 mark_mmio_spte(vcpu, sptep, gfn, access);
390                 return true;
391         }
393         return false;
396 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
398         unsigned int kvm_gen, spte_gen;
400         kvm_gen = kvm_current_mmio_generation(vcpu);
401         spte_gen = get_mmio_spte_generation(spte);
403         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
404         return likely(kvm_gen == spte_gen);
407 /*
408  * Sets the shadow PTE masks used by the MMU.
409  *
410  * Assumptions:
411  *  - Setting either @accessed_mask or @dirty_mask requires setting both
412  *  - At least one of @accessed_mask or @acc_track_mask must be set
413  */
414 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
415                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
416                 u64 acc_track_mask, u64 me_mask)
418         BUG_ON(!dirty_mask != !accessed_mask);
419         BUG_ON(!accessed_mask && !acc_track_mask);
420         BUG_ON(acc_track_mask & shadow_acc_track_value);
422         shadow_user_mask = user_mask;
423         shadow_accessed_mask = accessed_mask;
424         shadow_dirty_mask = dirty_mask;
425         shadow_nx_mask = nx_mask;
426         shadow_x_mask = x_mask;
427         shadow_present_mask = p_mask;
428         shadow_acc_track_mask = acc_track_mask;
429         shadow_me_mask = me_mask;
431 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
433 static void kvm_mmu_reset_all_pte_masks(void)
435         u8 low_phys_bits;
437         shadow_user_mask = 0;
438         shadow_accessed_mask = 0;
439         shadow_dirty_mask = 0;
440         shadow_nx_mask = 0;
441         shadow_x_mask = 0;
442         shadow_mmio_mask = 0;
443         shadow_present_mask = 0;
444         shadow_acc_track_mask = 0;
446         /*
447          * If the CPU has 46 or less physical address bits, then set an
448          * appropriate mask to guard against L1TF attacks. Otherwise, it is
449          * assumed that the CPU is not vulnerable to L1TF.
450          */
451         low_phys_bits = boot_cpu_data.x86_phys_bits;
452         if (boot_cpu_data.x86_phys_bits <
453             52 - shadow_nonpresent_or_rsvd_mask_len) {
454                 shadow_nonpresent_or_rsvd_mask =
455                         rsvd_bits(boot_cpu_data.x86_phys_bits -
456                                   shadow_nonpresent_or_rsvd_mask_len,
457                                   boot_cpu_data.x86_phys_bits - 1);
458                 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
459         }
460         shadow_nonpresent_or_rsvd_lower_gfn_mask =
461                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
464 static int is_cpuid_PSE36(void)
466         return 1;
469 static int is_nx(struct kvm_vcpu *vcpu)
471         return vcpu->arch.efer & EFER_NX;
474 static int is_shadow_present_pte(u64 pte)
476         return (pte != 0) && !is_mmio_spte(pte);
479 static int is_large_pte(u64 pte)
481         return pte & PT_PAGE_SIZE_MASK;
484 static int is_last_spte(u64 pte, int level)
486         if (level == PT_PAGE_TABLE_LEVEL)
487                 return 1;
488         if (is_large_pte(pte))
489                 return 1;
490         return 0;
493 static bool is_executable_pte(u64 spte)
495         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
498 static kvm_pfn_t spte_to_pfn(u64 pte)
500         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
503 static gfn_t pse36_gfn_delta(u32 gpte)
505         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
507         return (gpte & PT32_DIR_PSE36_MASK) << shift;
510 #ifdef CONFIG_X86_64
511 static void __set_spte(u64 *sptep, u64 spte)
513         WRITE_ONCE(*sptep, spte);
516 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
518         WRITE_ONCE(*sptep, spte);
521 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
523         return xchg(sptep, spte);
526 static u64 __get_spte_lockless(u64 *sptep)
528         return READ_ONCE(*sptep);
530 #else
531 union split_spte {
532         struct {
533                 u32 spte_low;
534                 u32 spte_high;
535         };
536         u64 spte;
537 };
539 static void count_spte_clear(u64 *sptep, u64 spte)
541         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
543         if (is_shadow_present_pte(spte))
544                 return;
546         /* Ensure the spte is completely set before we increase the count */
547         smp_wmb();
548         sp->clear_spte_count++;
551 static void __set_spte(u64 *sptep, u64 spte)
553         union split_spte *ssptep, sspte;
555         ssptep = (union split_spte *)sptep;
556         sspte = (union split_spte)spte;
558         ssptep->spte_high = sspte.spte_high;
560         /*
561          * If we map the spte from nonpresent to present, We should store
562          * the high bits firstly, then set present bit, so cpu can not
563          * fetch this spte while we are setting the spte.
564          */
565         smp_wmb();
567         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
570 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
572         union split_spte *ssptep, sspte;
574         ssptep = (union split_spte *)sptep;
575         sspte = (union split_spte)spte;
577         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
579         /*
580          * If we map the spte from present to nonpresent, we should clear
581          * present bit firstly to avoid vcpu fetch the old high bits.
582          */
583         smp_wmb();
585         ssptep->spte_high = sspte.spte_high;
586         count_spte_clear(sptep, spte);
589 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
591         union split_spte *ssptep, sspte, orig;
593         ssptep = (union split_spte *)sptep;
594         sspte = (union split_spte)spte;
596         /* xchg acts as a barrier before the setting of the high bits */
597         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
598         orig.spte_high = ssptep->spte_high;
599         ssptep->spte_high = sspte.spte_high;
600         count_spte_clear(sptep, spte);
602         return orig.spte;
605 /*
606  * The idea using the light way get the spte on x86_32 guest is from
607  * gup_get_pte(arch/x86/mm/gup.c).
608  *
609  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
610  * coalesces them and we are running out of the MMU lock.  Therefore
611  * we need to protect against in-progress updates of the spte.
612  *
613  * Reading the spte while an update is in progress may get the old value
614  * for the high part of the spte.  The race is fine for a present->non-present
615  * change (because the high part of the spte is ignored for non-present spte),
616  * but for a present->present change we must reread the spte.
617  *
618  * All such changes are done in two steps (present->non-present and
619  * non-present->present), hence it is enough to count the number of
620  * present->non-present updates: if it changed while reading the spte,
621  * we might have hit the race.  This is done using clear_spte_count.
622  */
623 static u64 __get_spte_lockless(u64 *sptep)
625         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
626         union split_spte spte, *orig = (union split_spte *)sptep;
627         int count;
629 retry:
630         count = sp->clear_spte_count;
631         smp_rmb();
633         spte.spte_low = orig->spte_low;
634         smp_rmb();
636         spte.spte_high = orig->spte_high;
637         smp_rmb();
639         if (unlikely(spte.spte_low != orig->spte_low ||
640               count != sp->clear_spte_count))
641                 goto retry;
643         return spte.spte;
645 #endif
647 static bool spte_can_locklessly_be_made_writable(u64 spte)
649         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
650                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
653 static bool spte_has_volatile_bits(u64 spte)
655         if (!is_shadow_present_pte(spte))
656                 return false;
658         /*
659          * Always atomically update spte if it can be updated
660          * out of mmu-lock, it can ensure dirty bit is not lost,
661          * also, it can help us to get a stable is_writable_pte()
662          * to ensure tlb flush is not missed.
663          */
664         if (spte_can_locklessly_be_made_writable(spte) ||
665             is_access_track_spte(spte))
666                 return true;
668         if (spte_ad_enabled(spte)) {
669                 if ((spte & shadow_accessed_mask) == 0 ||
670                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
671                         return true;
672         }
674         return false;
677 static bool is_accessed_spte(u64 spte)
679         u64 accessed_mask = spte_shadow_accessed_mask(spte);
681         return accessed_mask ? spte & accessed_mask
682                              : !is_access_track_spte(spte);
685 static bool is_dirty_spte(u64 spte)
687         u64 dirty_mask = spte_shadow_dirty_mask(spte);
689         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
692 /* Rules for using mmu_spte_set:
693  * Set the sptep from nonpresent to present.
694  * Note: the sptep being assigned *must* be either not present
695  * or in a state where the hardware will not attempt to update
696  * the spte.
697  */
698 static void mmu_spte_set(u64 *sptep, u64 new_spte)
700         WARN_ON(is_shadow_present_pte(*sptep));
701         __set_spte(sptep, new_spte);
704 /*
705  * Update the SPTE (excluding the PFN), but do not track changes in its
706  * accessed/dirty status.
707  */
708 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
710         u64 old_spte = *sptep;
712         WARN_ON(!is_shadow_present_pte(new_spte));
714         if (!is_shadow_present_pte(old_spte)) {
715                 mmu_spte_set(sptep, new_spte);
716                 return old_spte;
717         }
719         if (!spte_has_volatile_bits(old_spte))
720                 __update_clear_spte_fast(sptep, new_spte);
721         else
722                 old_spte = __update_clear_spte_slow(sptep, new_spte);
724         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
726         return old_spte;
729 /* Rules for using mmu_spte_update:
730  * Update the state bits, it means the mapped pfn is not changed.
731  *
732  * Whenever we overwrite a writable spte with a read-only one we
733  * should flush remote TLBs. Otherwise rmap_write_protect
734  * will find a read-only spte, even though the writable spte
735  * might be cached on a CPU's TLB, the return value indicates this
736  * case.
737  *
738  * Returns true if the TLB needs to be flushed
739  */
740 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
742         bool flush = false;
743         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
745         if (!is_shadow_present_pte(old_spte))
746                 return false;
748         /*
749          * For the spte updated out of mmu-lock is safe, since
750          * we always atomically update it, see the comments in
751          * spte_has_volatile_bits().
752          */
753         if (spte_can_locklessly_be_made_writable(old_spte) &&
754               !is_writable_pte(new_spte))
755                 flush = true;
757         /*
758          * Flush TLB when accessed/dirty states are changed in the page tables,
759          * to guarantee consistency between TLB and page tables.
760          */
762         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
763                 flush = true;
764                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
765         }
767         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
768                 flush = true;
769                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
770         }
772         return flush;
775 /*
776  * Rules for using mmu_spte_clear_track_bits:
777  * It sets the sptep from present to nonpresent, and track the
778  * state bits, it is used to clear the last level sptep.
779  * Returns non-zero if the PTE was previously valid.
780  */
781 static int mmu_spte_clear_track_bits(u64 *sptep)
783         kvm_pfn_t pfn;
784         u64 old_spte = *sptep;
786         if (!spte_has_volatile_bits(old_spte))
787                 __update_clear_spte_fast(sptep, 0ull);
788         else
789                 old_spte = __update_clear_spte_slow(sptep, 0ull);
791         if (!is_shadow_present_pte(old_spte))
792                 return 0;
794         pfn = spte_to_pfn(old_spte);
796         /*
797          * KVM does not hold the refcount of the page used by
798          * kvm mmu, before reclaiming the page, we should
799          * unmap it from mmu first.
800          */
801         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
803         if (is_accessed_spte(old_spte))
804                 kvm_set_pfn_accessed(pfn);
806         if (is_dirty_spte(old_spte))
807                 kvm_set_pfn_dirty(pfn);
809         return 1;
812 /*
813  * Rules for using mmu_spte_clear_no_track:
814  * Directly clear spte without caring the state bits of sptep,
815  * it is used to set the upper level spte.
816  */
817 static void mmu_spte_clear_no_track(u64 *sptep)
819         __update_clear_spte_fast(sptep, 0ull);
822 static u64 mmu_spte_get_lockless(u64 *sptep)
824         return __get_spte_lockless(sptep);
827 static u64 mark_spte_for_access_track(u64 spte)
829         if (spte_ad_enabled(spte))
830                 return spte & ~shadow_accessed_mask;
832         if (is_access_track_spte(spte))
833                 return spte;
835         /*
836          * Making an Access Tracking PTE will result in removal of write access
837          * from the PTE. So, verify that we will be able to restore the write
838          * access in the fast page fault path later on.
839          */
840         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
841                   !spte_can_locklessly_be_made_writable(spte),
842                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
844         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
845                           shadow_acc_track_saved_bits_shift),
846                   "kvm: Access Tracking saved bit locations are not zero\n");
848         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
849                 shadow_acc_track_saved_bits_shift;
850         spte &= ~shadow_acc_track_mask;
852         return spte;
855 /* Restore an acc-track PTE back to a regular PTE */
856 static u64 restore_acc_track_spte(u64 spte)
858         u64 new_spte = spte;
859         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
860                          & shadow_acc_track_saved_bits_mask;
862         WARN_ON_ONCE(spte_ad_enabled(spte));
863         WARN_ON_ONCE(!is_access_track_spte(spte));
865         new_spte &= ~shadow_acc_track_mask;
866         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
867                       shadow_acc_track_saved_bits_shift);
868         new_spte |= saved_bits;
870         return new_spte;
873 /* Returns the Accessed status of the PTE and resets it at the same time. */
874 static bool mmu_spte_age(u64 *sptep)
876         u64 spte = mmu_spte_get_lockless(sptep);
878         if (!is_accessed_spte(spte))
879                 return false;
881         if (spte_ad_enabled(spte)) {
882                 clear_bit((ffs(shadow_accessed_mask) - 1),
883                           (unsigned long *)sptep);
884         } else {
885                 /*
886                  * Capture the dirty status of the page, so that it doesn't get
887                  * lost when the SPTE is marked for access tracking.
888                  */
889                 if (is_writable_pte(spte))
890                         kvm_set_pfn_dirty(spte_to_pfn(spte));
892                 spte = mark_spte_for_access_track(spte);
893                 mmu_spte_update_no_track(sptep, spte);
894         }
896         return true;
899 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
901         /*
902          * Prevent page table teardown by making any free-er wait during
903          * kvm_flush_remote_tlbs() IPI to all active vcpus.
904          */
905         local_irq_disable();
907         /*
908          * Make sure a following spte read is not reordered ahead of the write
909          * to vcpu->mode.
910          */
911         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
914 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
916         /*
917          * Make sure the write to vcpu->mode is not reordered in front of
918          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
919          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
920          */
921         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
922         local_irq_enable();
925 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
926                                   struct kmem_cache *base_cache, int min)
928         void *obj;
930         if (cache->nobjs >= min)
931                 return 0;
932         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
933                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
934                 if (!obj)
935                         return -ENOMEM;
936                 cache->objects[cache->nobjs++] = obj;
937         }
938         return 0;
941 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
943         return cache->nobjs;
946 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
947                                   struct kmem_cache *cache)
949         while (mc->nobjs)
950                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
953 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
954                                        int min)
956         void *page;
958         if (cache->nobjs >= min)
959                 return 0;
960         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
961                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
962                 if (!page)
963                         return -ENOMEM;
964                 cache->objects[cache->nobjs++] = page;
965         }
966         return 0;
969 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
971         while (mc->nobjs)
972                 free_page((unsigned long)mc->objects[--mc->nobjs]);
975 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
977         int r;
979         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
980                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
981         if (r)
982                 goto out;
983         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
984         if (r)
985                 goto out;
986         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
987                                    mmu_page_header_cache, 4);
988 out:
989         return r;
992 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
994         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
995                                 pte_list_desc_cache);
996         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
997         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
998                                 mmu_page_header_cache);
1001 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1003         void *p;
1005         BUG_ON(!mc->nobjs);
1006         p = mc->objects[--mc->nobjs];
1007         return p;
1010 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1012         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1015 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1017         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1020 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1022         if (!sp->role.direct)
1023                 return sp->gfns[index];
1025         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1028 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1030         if (sp->role.direct)
1031                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1032         else
1033                 sp->gfns[index] = gfn;
1036 /*
1037  * Return the pointer to the large page information for a given gfn,
1038  * handling slots that are not large page aligned.
1039  */
1040 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1041                                               struct kvm_memory_slot *slot,
1042                                               int level)
1044         unsigned long idx;
1046         idx = gfn_to_index(gfn, slot->base_gfn, level);
1047         return &slot->arch.lpage_info[level - 2][idx];
1050 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1051                                             gfn_t gfn, int count)
1053         struct kvm_lpage_info *linfo;
1054         int i;
1056         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1057                 linfo = lpage_info_slot(gfn, slot, i);
1058                 linfo->disallow_lpage += count;
1059                 WARN_ON(linfo->disallow_lpage < 0);
1060         }
1063 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1065         update_gfn_disallow_lpage_count(slot, gfn, 1);
1068 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1070         update_gfn_disallow_lpage_count(slot, gfn, -1);
1073 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1075         struct kvm_memslots *slots;
1076         struct kvm_memory_slot *slot;
1077         gfn_t gfn;
1079         kvm->arch.indirect_shadow_pages++;
1080         gfn = sp->gfn;
1081         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1082         slot = __gfn_to_memslot(slots, gfn);
1084         /* the non-leaf shadow pages are keeping readonly. */
1085         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1086                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1087                                                     KVM_PAGE_TRACK_WRITE);
1089         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1092 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1094         struct kvm_memslots *slots;
1095         struct kvm_memory_slot *slot;
1096         gfn_t gfn;
1098         kvm->arch.indirect_shadow_pages--;
1099         gfn = sp->gfn;
1100         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1101         slot = __gfn_to_memslot(slots, gfn);
1102         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1103                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1104                                                        KVM_PAGE_TRACK_WRITE);
1106         kvm_mmu_gfn_allow_lpage(slot, gfn);
1109 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1110                                           struct kvm_memory_slot *slot)
1112         struct kvm_lpage_info *linfo;
1114         if (slot) {
1115                 linfo = lpage_info_slot(gfn, slot, level);
1116                 return !!linfo->disallow_lpage;
1117         }
1119         return true;
1122 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1123                                         int level)
1125         struct kvm_memory_slot *slot;
1127         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1128         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1131 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1133         unsigned long page_size;
1134         int i, ret = 0;
1136         page_size = kvm_host_page_size(kvm, gfn);
1138         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1139                 if (page_size >= KVM_HPAGE_SIZE(i))
1140                         ret = i;
1141                 else
1142                         break;
1143         }
1145         return ret;
1148 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1149                                           bool no_dirty_log)
1151         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1152                 return false;
1153         if (no_dirty_log && slot->dirty_bitmap)
1154                 return false;
1156         return true;
1159 static struct kvm_memory_slot *
1160 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1161                             bool no_dirty_log)
1163         struct kvm_memory_slot *slot;
1165         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1166         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1167                 slot = NULL;
1169         return slot;
1172 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1173                          bool *force_pt_level)
1175         int host_level, level, max_level;
1176         struct kvm_memory_slot *slot;
1178         if (unlikely(*force_pt_level))
1179                 return PT_PAGE_TABLE_LEVEL;
1181         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1182         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1183         if (unlikely(*force_pt_level))
1184                 return PT_PAGE_TABLE_LEVEL;
1186         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1188         if (host_level == PT_PAGE_TABLE_LEVEL)
1189                 return host_level;
1191         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1193         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1194                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1195                         break;
1197         return level - 1;
1200 /*
1201  * About rmap_head encoding:
1202  *
1203  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1204  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1205  * pte_list_desc containing more mappings.
1206  */
1208 /*
1209  * Returns the number of pointers in the rmap chain, not counting the new one.
1210  */
1211 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1212                         struct kvm_rmap_head *rmap_head)
1214         struct pte_list_desc *desc;
1215         int i, count = 0;
1217         if (!rmap_head->val) {
1218                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1219                 rmap_head->val = (unsigned long)spte;
1220         } else if (!(rmap_head->val & 1)) {
1221                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1222                 desc = mmu_alloc_pte_list_desc(vcpu);
1223                 desc->sptes[0] = (u64 *)rmap_head->val;
1224                 desc->sptes[1] = spte;
1225                 rmap_head->val = (unsigned long)desc | 1;
1226                 ++count;
1227         } else {
1228                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1229                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1230                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1231                         desc = desc->more;
1232                         count += PTE_LIST_EXT;
1233                 }
1234                 if (desc->sptes[PTE_LIST_EXT-1]) {
1235                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1236                         desc = desc->more;
1237                 }
1238                 for (i = 0; desc->sptes[i]; ++i)
1239                         ++count;
1240                 desc->sptes[i] = spte;
1241         }
1242         return count;
1245 static void
1246 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1247                            struct pte_list_desc *desc, int i,
1248                            struct pte_list_desc *prev_desc)
1250         int j;
1252         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1253                 ;
1254         desc->sptes[i] = desc->sptes[j];
1255         desc->sptes[j] = NULL;
1256         if (j != 0)
1257                 return;
1258         if (!prev_desc && !desc->more)
1259                 rmap_head->val = (unsigned long)desc->sptes[0];
1260         else
1261                 if (prev_desc)
1262                         prev_desc->more = desc->more;
1263                 else
1264                         rmap_head->val = (unsigned long)desc->more | 1;
1265         mmu_free_pte_list_desc(desc);
1268 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1270         struct pte_list_desc *desc;
1271         struct pte_list_desc *prev_desc;
1272         int i;
1274         if (!rmap_head->val) {
1275                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1276                 BUG();
1277         } else if (!(rmap_head->val & 1)) {
1278                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1279                 if ((u64 *)rmap_head->val != spte) {
1280                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1281                         BUG();
1282                 }
1283                 rmap_head->val = 0;
1284         } else {
1285                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1286                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1287                 prev_desc = NULL;
1288                 while (desc) {
1289                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1290                                 if (desc->sptes[i] == spte) {
1291                                         pte_list_desc_remove_entry(rmap_head,
1292                                                         desc, i, prev_desc);
1293                                         return;
1294                                 }
1295                         }
1296                         prev_desc = desc;
1297                         desc = desc->more;
1298                 }
1299                 pr_err("pte_list_remove: %p many->many\n", spte);
1300                 BUG();
1301         }
1304 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1305                                            struct kvm_memory_slot *slot)
1307         unsigned long idx;
1309         idx = gfn_to_index(gfn, slot->base_gfn, level);
1310         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1313 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1314                                          struct kvm_mmu_page *sp)
1316         struct kvm_memslots *slots;
1317         struct kvm_memory_slot *slot;
1319         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1320         slot = __gfn_to_memslot(slots, gfn);
1321         return __gfn_to_rmap(gfn, sp->role.level, slot);
1324 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1326         struct kvm_mmu_memory_cache *cache;
1328         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1329         return mmu_memory_cache_free_objects(cache);
1332 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1334         struct kvm_mmu_page *sp;
1335         struct kvm_rmap_head *rmap_head;
1337         sp = page_header(__pa(spte));
1338         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1339         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1340         return pte_list_add(vcpu, spte, rmap_head);
1343 static void rmap_remove(struct kvm *kvm, u64 *spte)
1345         struct kvm_mmu_page *sp;
1346         gfn_t gfn;
1347         struct kvm_rmap_head *rmap_head;
1349         sp = page_header(__pa(spte));
1350         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1351         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1352         pte_list_remove(spte, rmap_head);
1355 /*
1356  * Used by the following functions to iterate through the sptes linked by a
1357  * rmap.  All fields are private and not assumed to be used outside.
1358  */
1359 struct rmap_iterator {
1360         /* private fields */
1361         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1362         int pos;                        /* index of the sptep */
1363 };
1365 /*
1366  * Iteration must be started by this function.  This should also be used after
1367  * removing/dropping sptes from the rmap link because in such cases the
1368  * information in the itererator may not be valid.
1369  *
1370  * Returns sptep if found, NULL otherwise.
1371  */
1372 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1373                            struct rmap_iterator *iter)
1375         u64 *sptep;
1377         if (!rmap_head->val)
1378                 return NULL;
1380         if (!(rmap_head->val & 1)) {
1381                 iter->desc = NULL;
1382                 sptep = (u64 *)rmap_head->val;
1383                 goto out;
1384         }
1386         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1387         iter->pos = 0;
1388         sptep = iter->desc->sptes[iter->pos];
1389 out:
1390         BUG_ON(!is_shadow_present_pte(*sptep));
1391         return sptep;
1394 /*
1395  * Must be used with a valid iterator: e.g. after rmap_get_first().
1396  *
1397  * Returns sptep if found, NULL otherwise.
1398  */
1399 static u64 *rmap_get_next(struct rmap_iterator *iter)
1401         u64 *sptep;
1403         if (iter->desc) {
1404                 if (iter->pos < PTE_LIST_EXT - 1) {
1405                         ++iter->pos;
1406                         sptep = iter->desc->sptes[iter->pos];
1407                         if (sptep)
1408                                 goto out;
1409                 }
1411                 iter->desc = iter->desc->more;
1413                 if (iter->desc) {
1414                         iter->pos = 0;
1415                         /* desc->sptes[0] cannot be NULL */
1416                         sptep = iter->desc->sptes[iter->pos];
1417                         goto out;
1418                 }
1419         }
1421         return NULL;
1422 out:
1423         BUG_ON(!is_shadow_present_pte(*sptep));
1424         return sptep;
1427 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1428         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1429              _spte_; _spte_ = rmap_get_next(_iter_))
1431 static void drop_spte(struct kvm *kvm, u64 *sptep)
1433         if (mmu_spte_clear_track_bits(sptep))
1434                 rmap_remove(kvm, sptep);
1438 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1440         if (is_large_pte(*sptep)) {
1441                 WARN_ON(page_header(__pa(sptep))->role.level ==
1442                         PT_PAGE_TABLE_LEVEL);
1443                 drop_spte(kvm, sptep);
1444                 --kvm->stat.lpages;
1445                 return true;
1446         }
1448         return false;
1451 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1453         if (__drop_large_spte(vcpu->kvm, sptep))
1454                 kvm_flush_remote_tlbs(vcpu->kvm);
1457 /*
1458  * Write-protect on the specified @sptep, @pt_protect indicates whether
1459  * spte write-protection is caused by protecting shadow page table.
1460  *
1461  * Note: write protection is difference between dirty logging and spte
1462  * protection:
1463  * - for dirty logging, the spte can be set to writable at anytime if
1464  *   its dirty bitmap is properly set.
1465  * - for spte protection, the spte can be writable only after unsync-ing
1466  *   shadow page.
1467  *
1468  * Return true if tlb need be flushed.
1469  */
1470 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1472         u64 spte = *sptep;
1474         if (!is_writable_pte(spte) &&
1475               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1476                 return false;
1478         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1480         if (pt_protect)
1481                 spte &= ~SPTE_MMU_WRITEABLE;
1482         spte = spte & ~PT_WRITABLE_MASK;
1484         return mmu_spte_update(sptep, spte);
1487 static bool __rmap_write_protect(struct kvm *kvm,
1488                                  struct kvm_rmap_head *rmap_head,
1489                                  bool pt_protect)
1491         u64 *sptep;
1492         struct rmap_iterator iter;
1493         bool flush = false;
1495         for_each_rmap_spte(rmap_head, &iter, sptep)
1496                 flush |= spte_write_protect(sptep, pt_protect);
1498         return flush;
1501 static bool spte_clear_dirty(u64 *sptep)
1503         u64 spte = *sptep;
1505         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1507         spte &= ~shadow_dirty_mask;
1509         return mmu_spte_update(sptep, spte);
1512 static bool wrprot_ad_disabled_spte(u64 *sptep)
1514         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1515                                                (unsigned long *)sptep);
1516         if (was_writable)
1517                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1519         return was_writable;
1522 /*
1523  * Gets the GFN ready for another round of dirty logging by clearing the
1524  *      - D bit on ad-enabled SPTEs, and
1525  *      - W bit on ad-disabled SPTEs.
1526  * Returns true iff any D or W bits were cleared.
1527  */
1528 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1530         u64 *sptep;
1531         struct rmap_iterator iter;
1532         bool flush = false;
1534         for_each_rmap_spte(rmap_head, &iter, sptep)
1535                 if (spte_ad_enabled(*sptep))
1536                         flush |= spte_clear_dirty(sptep);
1537                 else
1538                         flush |= wrprot_ad_disabled_spte(sptep);
1540         return flush;
1543 static bool spte_set_dirty(u64 *sptep)
1545         u64 spte = *sptep;
1547         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1549         spte |= shadow_dirty_mask;
1551         return mmu_spte_update(sptep, spte);
1554 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1556         u64 *sptep;
1557         struct rmap_iterator iter;
1558         bool flush = false;
1560         for_each_rmap_spte(rmap_head, &iter, sptep)
1561                 if (spte_ad_enabled(*sptep))
1562                         flush |= spte_set_dirty(sptep);
1564         return flush;
1567 /**
1568  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1569  * @kvm: kvm instance
1570  * @slot: slot to protect
1571  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1572  * @mask: indicates which pages we should protect
1573  *
1574  * Used when we do not need to care about huge page mappings: e.g. during dirty
1575  * logging we do not have any such mappings.
1576  */
1577 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1578                                      struct kvm_memory_slot *slot,
1579                                      gfn_t gfn_offset, unsigned long mask)
1581         struct kvm_rmap_head *rmap_head;
1583         while (mask) {
1584                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1585                                           PT_PAGE_TABLE_LEVEL, slot);
1586                 __rmap_write_protect(kvm, rmap_head, false);
1588                 /* clear the first set bit */
1589                 mask &= mask - 1;
1590         }
1593 /**
1594  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1595  * protect the page if the D-bit isn't supported.
1596  * @kvm: kvm instance
1597  * @slot: slot to clear D-bit
1598  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1599  * @mask: indicates which pages we should clear D-bit
1600  *
1601  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1602  */
1603 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1604                                      struct kvm_memory_slot *slot,
1605                                      gfn_t gfn_offset, unsigned long mask)
1607         struct kvm_rmap_head *rmap_head;
1609         while (mask) {
1610                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1611                                           PT_PAGE_TABLE_LEVEL, slot);
1612                 __rmap_clear_dirty(kvm, rmap_head);
1614                 /* clear the first set bit */
1615                 mask &= mask - 1;
1616         }
1618 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1620 /**
1621  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1622  * PT level pages.
1623  *
1624  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1625  * enable dirty logging for them.
1626  *
1627  * Used when we do not need to care about huge page mappings: e.g. during dirty
1628  * logging we do not have any such mappings.
1629  */
1630 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1631                                 struct kvm_memory_slot *slot,
1632                                 gfn_t gfn_offset, unsigned long mask)
1634         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1635                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1636                                 mask);
1637         else
1638                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1641 /**
1642  * kvm_arch_write_log_dirty - emulate dirty page logging
1643  * @vcpu: Guest mode vcpu
1644  *
1645  * Emulate arch specific page modification logging for the
1646  * nested hypervisor
1647  */
1648 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1650         if (kvm_x86_ops->write_log_dirty)
1651                 return kvm_x86_ops->write_log_dirty(vcpu);
1653         return 0;
1656 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1657                                     struct kvm_memory_slot *slot, u64 gfn)
1659         struct kvm_rmap_head *rmap_head;
1660         int i;
1661         bool write_protected = false;
1663         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1664                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1665                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1666         }
1668         return write_protected;
1671 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1673         struct kvm_memory_slot *slot;
1675         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1676         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1679 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1681         u64 *sptep;
1682         struct rmap_iterator iter;
1683         bool flush = false;
1685         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1686                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1688                 drop_spte(kvm, sptep);
1689                 flush = true;
1690         }
1692         return flush;
1695 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1696                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1697                            unsigned long data)
1699         return kvm_zap_rmapp(kvm, rmap_head);
1702 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1703                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1704                              unsigned long data)
1706         u64 *sptep;
1707         struct rmap_iterator iter;
1708         int need_flush = 0;
1709         u64 new_spte;
1710         pte_t *ptep = (pte_t *)data;
1711         kvm_pfn_t new_pfn;
1713         WARN_ON(pte_huge(*ptep));
1714         new_pfn = pte_pfn(*ptep);
1716 restart:
1717         for_each_rmap_spte(rmap_head, &iter, sptep) {
1718                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1719                             sptep, *sptep, gfn, level);
1721                 need_flush = 1;
1723                 if (pte_write(*ptep)) {
1724                         drop_spte(kvm, sptep);
1725                         goto restart;
1726                 } else {
1727                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1728                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1730                         new_spte &= ~PT_WRITABLE_MASK;
1731                         new_spte &= ~SPTE_HOST_WRITEABLE;
1733                         new_spte = mark_spte_for_access_track(new_spte);
1735                         mmu_spte_clear_track_bits(sptep);
1736                         mmu_spte_set(sptep, new_spte);
1737                 }
1738         }
1740         if (need_flush)
1741                 kvm_flush_remote_tlbs(kvm);
1743         return 0;
1746 struct slot_rmap_walk_iterator {
1747         /* input fields. */
1748         struct kvm_memory_slot *slot;
1749         gfn_t start_gfn;
1750         gfn_t end_gfn;
1751         int start_level;
1752         int end_level;
1754         /* output fields. */
1755         gfn_t gfn;
1756         struct kvm_rmap_head *rmap;
1757         int level;
1759         /* private field. */
1760         struct kvm_rmap_head *end_rmap;
1761 };
1763 static void
1764 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1766         iterator->level = level;
1767         iterator->gfn = iterator->start_gfn;
1768         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1769         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1770                                            iterator->slot);
1773 static void
1774 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1775                     struct kvm_memory_slot *slot, int start_level,
1776                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1778         iterator->slot = slot;
1779         iterator->start_level = start_level;
1780         iterator->end_level = end_level;
1781         iterator->start_gfn = start_gfn;
1782         iterator->end_gfn = end_gfn;
1784         rmap_walk_init_level(iterator, iterator->start_level);
1787 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1789         return !!iterator->rmap;
1792 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1794         if (++iterator->rmap <= iterator->end_rmap) {
1795                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1796                 return;
1797         }
1799         if (++iterator->level > iterator->end_level) {
1800                 iterator->rmap = NULL;
1801                 return;
1802         }
1804         rmap_walk_init_level(iterator, iterator->level);
1807 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1808            _start_gfn, _end_gfn, _iter_)                                \
1809         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1810                                  _end_level_, _start_gfn, _end_gfn);    \
1811              slot_rmap_walk_okay(_iter_);                               \
1812              slot_rmap_walk_next(_iter_))
1814 static int kvm_handle_hva_range(struct kvm *kvm,
1815                                 unsigned long start,
1816                                 unsigned long end,
1817                                 unsigned long data,
1818                                 int (*handler)(struct kvm *kvm,
1819                                                struct kvm_rmap_head *rmap_head,
1820                                                struct kvm_memory_slot *slot,
1821                                                gfn_t gfn,
1822                                                int level,
1823                                                unsigned long data))
1825         struct kvm_memslots *slots;
1826         struct kvm_memory_slot *memslot;
1827         struct slot_rmap_walk_iterator iterator;
1828         int ret = 0;
1829         int i;
1831         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1832                 slots = __kvm_memslots(kvm, i);
1833                 kvm_for_each_memslot(memslot, slots) {
1834                         unsigned long hva_start, hva_end;
1835                         gfn_t gfn_start, gfn_end;
1837                         hva_start = max(start, memslot->userspace_addr);
1838                         hva_end = min(end, memslot->userspace_addr +
1839                                       (memslot->npages << PAGE_SHIFT));
1840                         if (hva_start >= hva_end)
1841                                 continue;
1842                         /*
1843                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1844                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1845                          */
1846                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1847                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1849                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1850                                                  PT_MAX_HUGEPAGE_LEVEL,
1851                                                  gfn_start, gfn_end - 1,
1852                                                  &iterator)
1853                                 ret |= handler(kvm, iterator.rmap, memslot,
1854                                                iterator.gfn, iterator.level, data);
1855                 }
1856         }
1858         return ret;
1861 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1862                           unsigned long data,
1863                           int (*handler)(struct kvm *kvm,
1864                                          struct kvm_rmap_head *rmap_head,
1865                                          struct kvm_memory_slot *slot,
1866                                          gfn_t gfn, int level,
1867                                          unsigned long data))
1869         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1872 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1874         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1877 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1879         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1882 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1883                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1884                          unsigned long data)
1886         u64 *sptep;
1887         struct rmap_iterator uninitialized_var(iter);
1888         int young = 0;
1890         for_each_rmap_spte(rmap_head, &iter, sptep)
1891                 young |= mmu_spte_age(sptep);
1893         trace_kvm_age_page(gfn, level, slot, young);
1894         return young;
1897 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1898                               struct kvm_memory_slot *slot, gfn_t gfn,
1899                               int level, unsigned long data)
1901         u64 *sptep;
1902         struct rmap_iterator iter;
1904         for_each_rmap_spte(rmap_head, &iter, sptep)
1905                 if (is_accessed_spte(*sptep))
1906                         return 1;
1907         return 0;
1910 #define RMAP_RECYCLE_THRESHOLD 1000
1912 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1914         struct kvm_rmap_head *rmap_head;
1915         struct kvm_mmu_page *sp;
1917         sp = page_header(__pa(spte));
1919         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1921         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1922         kvm_flush_remote_tlbs(vcpu->kvm);
1925 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1927         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1930 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1932         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1935 #ifdef MMU_DEBUG
1936 static int is_empty_shadow_page(u64 *spt)
1938         u64 *pos;
1939         u64 *end;
1941         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1942                 if (is_shadow_present_pte(*pos)) {
1943                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1944                                pos, *pos);
1945                         return 0;
1946                 }
1947         return 1;
1949 #endif
1951 /*
1952  * This value is the sum of all of the kvm instances's
1953  * kvm->arch.n_used_mmu_pages values.  We need a global,
1954  * aggregate version in order to make the slab shrinker
1955  * faster
1956  */
1957 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1959         kvm->arch.n_used_mmu_pages += nr;
1960         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1963 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1965         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1966         hlist_del(&sp->hash_link);
1967         list_del(&sp->link);
1968         free_page((unsigned long)sp->spt);
1969         if (!sp->role.direct)
1970                 free_page((unsigned long)sp->gfns);
1971         kmem_cache_free(mmu_page_header_cache, sp);
1974 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1976         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1979 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1980                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1982         if (!parent_pte)
1983                 return;
1985         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1988 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1989                                        u64 *parent_pte)
1991         pte_list_remove(parent_pte, &sp->parent_ptes);
1994 static void drop_parent_pte(struct kvm_mmu_page *sp,
1995                             u64 *parent_pte)
1997         mmu_page_remove_parent_pte(sp, parent_pte);
1998         mmu_spte_clear_no_track(parent_pte);
2001 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2003         struct kvm_mmu_page *sp;
2005         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2006         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2007         if (!direct)
2008                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2009         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2011         /*
2012          * The active_mmu_pages list is the FIFO list, do not move the
2013          * page until it is zapped. kvm_zap_obsolete_pages depends on
2014          * this feature. See the comments in kvm_zap_obsolete_pages().
2015          */
2016         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2017         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2018         return sp;
2021 static void mark_unsync(u64 *spte);
2022 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2024         u64 *sptep;
2025         struct rmap_iterator iter;
2027         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2028                 mark_unsync(sptep);
2029         }
2032 static void mark_unsync(u64 *spte)
2034         struct kvm_mmu_page *sp;
2035         unsigned int index;
2037         sp = page_header(__pa(spte));
2038         index = spte - sp->spt;
2039         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2040                 return;
2041         if (sp->unsync_children++)
2042                 return;
2043         kvm_mmu_mark_parents_unsync(sp);
2046 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2047                                struct kvm_mmu_page *sp)
2049         return 0;
2052 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2056 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2057                                  struct kvm_mmu_page *sp, u64 *spte,
2058                                  const void *pte)
2060         WARN_ON(1);
2063 #define KVM_PAGE_ARRAY_NR 16
2065 struct kvm_mmu_pages {
2066         struct mmu_page_and_offset {
2067                 struct kvm_mmu_page *sp;
2068                 unsigned int idx;
2069         } page[KVM_PAGE_ARRAY_NR];
2070         unsigned int nr;
2071 };
2073 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2074                          int idx)
2076         int i;
2078         if (sp->unsync)
2079                 for (i=0; i < pvec->nr; i++)
2080                         if (pvec->page[i].sp == sp)
2081                                 return 0;
2083         pvec->page[pvec->nr].sp = sp;
2084         pvec->page[pvec->nr].idx = idx;
2085         pvec->nr++;
2086         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2089 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2091         --sp->unsync_children;
2092         WARN_ON((int)sp->unsync_children < 0);
2093         __clear_bit(idx, sp->unsync_child_bitmap);
2096 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2097                            struct kvm_mmu_pages *pvec)
2099         int i, ret, nr_unsync_leaf = 0;
2101         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2102                 struct kvm_mmu_page *child;
2103                 u64 ent = sp->spt[i];
2105                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2106                         clear_unsync_child_bit(sp, i);
2107                         continue;
2108                 }
2110                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2112                 if (child->unsync_children) {
2113                         if (mmu_pages_add(pvec, child, i))
2114                                 return -ENOSPC;
2116                         ret = __mmu_unsync_walk(child, pvec);
2117                         if (!ret) {
2118                                 clear_unsync_child_bit(sp, i);
2119                                 continue;
2120                         } else if (ret > 0) {
2121                                 nr_unsync_leaf += ret;
2122                         } else
2123                                 return ret;
2124                 } else if (child->unsync) {
2125                         nr_unsync_leaf++;
2126                         if (mmu_pages_add(pvec, child, i))
2127                                 return -ENOSPC;
2128                 } else
2129                         clear_unsync_child_bit(sp, i);
2130         }
2132         return nr_unsync_leaf;
2135 #define INVALID_INDEX (-1)
2137 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2138                            struct kvm_mmu_pages *pvec)
2140         pvec->nr = 0;
2141         if (!sp->unsync_children)
2142                 return 0;
2144         mmu_pages_add(pvec, sp, INVALID_INDEX);
2145         return __mmu_unsync_walk(sp, pvec);
2148 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2150         WARN_ON(!sp->unsync);
2151         trace_kvm_mmu_sync_page(sp);
2152         sp->unsync = 0;
2153         --kvm->stat.mmu_unsync;
2156 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2157                                     struct list_head *invalid_list);
2158 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2159                                     struct list_head *invalid_list);
2161 /*
2162  * NOTE: we should pay more attention on the zapped-obsolete page
2163  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2164  * since it has been deleted from active_mmu_pages but still can be found
2165  * at hast list.
2166  *
2167  * for_each_valid_sp() has skipped that kind of pages.
2168  */
2169 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2170         hlist_for_each_entry(_sp,                                       \
2171           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2172                 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2173                 } else
2175 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2176         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2177                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2179 /* @sp->gfn should be write-protected at the call site */
2180 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2181                             struct list_head *invalid_list)
2183         if (sp->role.cr4_pae != !!is_pae(vcpu)
2184             || vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2185                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2186                 return false;
2187         }
2189         return true;
2192 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2193                                  struct list_head *invalid_list,
2194                                  bool remote_flush, bool local_flush)
2196         if (!list_empty(invalid_list)) {
2197                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2198                 return;
2199         }
2201         if (remote_flush)
2202                 kvm_flush_remote_tlbs(vcpu->kvm);
2203         else if (local_flush)
2204                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2207 #ifdef CONFIG_KVM_MMU_AUDIT
2208 #include "mmu_audit.c"
2209 #else
2210 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2211 static void mmu_audit_disable(void) { }
2212 #endif
2214 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2216         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2219 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2220                          struct list_head *invalid_list)
2222         kvm_unlink_unsync_page(vcpu->kvm, sp);
2223         return __kvm_sync_page(vcpu, sp, invalid_list);
2226 /* @gfn should be write-protected at the call site */
2227 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2228                            struct list_head *invalid_list)
2230         struct kvm_mmu_page *s;
2231         bool ret = false;
2233         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2234                 if (!s->unsync)
2235                         continue;
2237                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2238                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2239         }
2241         return ret;
2244 struct mmu_page_path {
2245         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2246         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2247 };
2249 #define for_each_sp(pvec, sp, parents, i)                       \
2250                 for (i = mmu_pages_first(&pvec, &parents);      \
2251                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2252                         i = mmu_pages_next(&pvec, &parents, i))
2254 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2255                           struct mmu_page_path *parents,
2256                           int i)
2258         int n;
2260         for (n = i+1; n < pvec->nr; n++) {
2261                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2262                 unsigned idx = pvec->page[n].idx;
2263                 int level = sp->role.level;
2265                 parents->idx[level-1] = idx;
2266                 if (level == PT_PAGE_TABLE_LEVEL)
2267                         break;
2269                 parents->parent[level-2] = sp;
2270         }
2272         return n;
2275 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2276                            struct mmu_page_path *parents)
2278         struct kvm_mmu_page *sp;
2279         int level;
2281         if (pvec->nr == 0)
2282                 return 0;
2284         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2286         sp = pvec->page[0].sp;
2287         level = sp->role.level;
2288         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2290         parents->parent[level-2] = sp;
2292         /* Also set up a sentinel.  Further entries in pvec are all
2293          * children of sp, so this element is never overwritten.
2294          */
2295         parents->parent[level-1] = NULL;
2296         return mmu_pages_next(pvec, parents, 0);
2299 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2301         struct kvm_mmu_page *sp;
2302         unsigned int level = 0;
2304         do {
2305                 unsigned int idx = parents->idx[level];
2306                 sp = parents->parent[level];
2307                 if (!sp)
2308                         return;
2310                 WARN_ON(idx == INVALID_INDEX);
2311                 clear_unsync_child_bit(sp, idx);
2312                 level++;
2313         } while (!sp->unsync_children);
2316 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2317                               struct kvm_mmu_page *parent)
2319         int i;
2320         struct kvm_mmu_page *sp;
2321         struct mmu_page_path parents;
2322         struct kvm_mmu_pages pages;
2323         LIST_HEAD(invalid_list);
2324         bool flush = false;
2326         while (mmu_unsync_walk(parent, &pages)) {
2327                 bool protected = false;
2329                 for_each_sp(pages, sp, parents, i)
2330                         protected |= rmap_write_protect(vcpu, sp->gfn);
2332                 if (protected) {
2333                         kvm_flush_remote_tlbs(vcpu->kvm);
2334                         flush = false;
2335                 }
2337                 for_each_sp(pages, sp, parents, i) {
2338                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2339                         mmu_pages_clear_parents(&parents);
2340                 }
2341                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2342                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2343                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2344                         flush = false;
2345                 }
2346         }
2348         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2351 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2353         atomic_set(&sp->write_flooding_count,  0);
2356 static void clear_sp_write_flooding_count(u64 *spte)
2358         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2360         __clear_sp_write_flooding_count(sp);
2363 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2364                                              gfn_t gfn,
2365                                              gva_t gaddr,
2366                                              unsigned level,
2367                                              int direct,
2368                                              unsigned access)
2370         union kvm_mmu_page_role role;
2371         unsigned quadrant;
2372         struct kvm_mmu_page *sp;
2373         bool need_sync = false;
2374         bool flush = false;
2375         int collisions = 0;
2376         LIST_HEAD(invalid_list);
2378         role = vcpu->arch.mmu.base_role;
2379         role.level = level;
2380         role.direct = direct;
2381         if (role.direct)
2382                 role.cr4_pae = 0;
2383         role.access = access;
2384         if (!vcpu->arch.mmu.direct_map
2385             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2386                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2387                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2388                 role.quadrant = quadrant;
2389         }
2390         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2391                 if (sp->gfn != gfn) {
2392                         collisions++;
2393                         continue;
2394                 }
2396                 if (!need_sync && sp->unsync)
2397                         need_sync = true;
2399                 if (sp->role.word != role.word)
2400                         continue;
2402                 if (sp->unsync) {
2403                         /* The page is good, but __kvm_sync_page might still end
2404                          * up zapping it.  If so, break in order to rebuild it.
2405                          */
2406                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2407                                 break;
2409                         WARN_ON(!list_empty(&invalid_list));
2410                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2411                 }
2413                 if (sp->unsync_children)
2414                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2416                 __clear_sp_write_flooding_count(sp);
2417                 trace_kvm_mmu_get_page(sp, false);
2418                 goto out;
2419         }
2421         ++vcpu->kvm->stat.mmu_cache_miss;
2423         sp = kvm_mmu_alloc_page(vcpu, direct);
2425         sp->gfn = gfn;
2426         sp->role = role;
2427         hlist_add_head(&sp->hash_link,
2428                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2429         if (!direct) {
2430                 /*
2431                  * we should do write protection before syncing pages
2432                  * otherwise the content of the synced shadow page may
2433                  * be inconsistent with guest page table.
2434                  */
2435                 account_shadowed(vcpu->kvm, sp);
2436                 if (level == PT_PAGE_TABLE_LEVEL &&
2437                       rmap_write_protect(vcpu, gfn))
2438                         kvm_flush_remote_tlbs(vcpu->kvm);
2440                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2441                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2442         }
2443         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2444         clear_page(sp->spt);
2445         trace_kvm_mmu_get_page(sp, true);
2447         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2448 out:
2449         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2450                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2451         return sp;
2454 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2455                                         struct kvm_vcpu *vcpu, hpa_t root,
2456                                         u64 addr)
2458         iterator->addr = addr;
2459         iterator->shadow_addr = root;
2460         iterator->level = vcpu->arch.mmu.shadow_root_level;
2462         if (iterator->level == PT64_ROOT_4LEVEL &&
2463             vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2464             !vcpu->arch.mmu.direct_map)
2465                 --iterator->level;
2467         if (iterator->level == PT32E_ROOT_LEVEL) {
2468                 /*
2469                  * prev_root is currently only used for 64-bit hosts. So only
2470                  * the active root_hpa is valid here.
2471                  */
2472                 BUG_ON(root != vcpu->arch.mmu.root_hpa);
2474                 iterator->shadow_addr
2475                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2476                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2477                 --iterator->level;
2478                 if (!iterator->shadow_addr)
2479                         iterator->level = 0;
2480         }
2483 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2484                              struct kvm_vcpu *vcpu, u64 addr)
2486         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu.root_hpa,
2487                                     addr);
2490 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2492         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2493                 return false;
2495         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2496         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2497         return true;
2500 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2501                                u64 spte)
2503         if (is_last_spte(spte, iterator->level)) {
2504                 iterator->level = 0;
2505                 return;
2506         }
2508         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2509         --iterator->level;
2512 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2514         __shadow_walk_next(iterator, *iterator->sptep);
2517 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2518                              struct kvm_mmu_page *sp)
2520         u64 spte;
2522         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2524         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2525                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2527         if (sp_ad_disabled(sp))
2528                 spte |= shadow_acc_track_value;
2529         else
2530                 spte |= shadow_accessed_mask;
2532         mmu_spte_set(sptep, spte);
2534         mmu_page_add_parent_pte(vcpu, sp, sptep);
2536         if (sp->unsync_children || sp->unsync)
2537                 mark_unsync(sptep);
2540 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2541                                    unsigned direct_access)
2543         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2544                 struct kvm_mmu_page *child;
2546                 /*
2547                  * For the direct sp, if the guest pte's dirty bit
2548                  * changed form clean to dirty, it will corrupt the
2549                  * sp's access: allow writable in the read-only sp,
2550                  * so we should update the spte at this point to get
2551                  * a new sp with the correct access.
2552                  */
2553                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2554                 if (child->role.access == direct_access)
2555                         return;
2557                 drop_parent_pte(child, sptep);
2558                 kvm_flush_remote_tlbs(vcpu->kvm);
2559         }
2562 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2563                              u64 *spte)
2565         u64 pte;
2566         struct kvm_mmu_page *child;
2568         pte = *spte;
2569         if (is_shadow_present_pte(pte)) {
2570                 if (is_last_spte(pte, sp->role.level)) {
2571                         drop_spte(kvm, spte);
2572                         if (is_large_pte(pte))
2573                                 --kvm->stat.lpages;
2574                 } else {
2575                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2576                         drop_parent_pte(child, spte);
2577                 }
2578                 return true;
2579         }
2581         if (is_mmio_spte(pte))
2582                 mmu_spte_clear_no_track(spte);
2584         return false;
2587 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2588                                          struct kvm_mmu_page *sp)
2590         unsigned i;
2592         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2593                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2596 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2598         u64 *sptep;
2599         struct rmap_iterator iter;
2601         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2602                 drop_parent_pte(sp, sptep);
2605 static int mmu_zap_unsync_children(struct kvm *kvm,
2606                                    struct kvm_mmu_page *parent,
2607                                    struct list_head *invalid_list)
2609         int i, zapped = 0;
2610         struct mmu_page_path parents;
2611         struct kvm_mmu_pages pages;
2613         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2614                 return 0;
2616         while (mmu_unsync_walk(parent, &pages)) {
2617                 struct kvm_mmu_page *sp;
2619                 for_each_sp(pages, sp, parents, i) {
2620                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2621                         mmu_pages_clear_parents(&parents);
2622                         zapped++;
2623                 }
2624         }
2626         return zapped;
2629 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2630                                     struct list_head *invalid_list)
2632         int ret;
2634         trace_kvm_mmu_prepare_zap_page(sp);
2635         ++kvm->stat.mmu_shadow_zapped;
2636         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2637         kvm_mmu_page_unlink_children(kvm, sp);
2638         kvm_mmu_unlink_parents(kvm, sp);
2640         if (!sp->role.invalid && !sp->role.direct)
2641                 unaccount_shadowed(kvm, sp);
2643         if (sp->unsync)
2644                 kvm_unlink_unsync_page(kvm, sp);
2645         if (!sp->root_count) {
2646                 /* Count self */
2647                 ret++;
2648                 list_move(&sp->link, invalid_list);
2649                 kvm_mod_used_mmu_pages(kvm, -1);
2650         } else {
2651                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2653                 /*
2654                  * The obsolete pages can not be used on any vcpus.
2655                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2656                  */
2657                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2658                         kvm_reload_remote_mmus(kvm);
2659         }
2661         sp->role.invalid = 1;
2662         return ret;
2665 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2666                                     struct list_head *invalid_list)
2668         struct kvm_mmu_page *sp, *nsp;
2670         if (list_empty(invalid_list))
2671                 return;
2673         /*
2674          * We need to make sure everyone sees our modifications to
2675          * the page tables and see changes to vcpu->mode here. The barrier
2676          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2677          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2678          *
2679          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2680          * guest mode and/or lockless shadow page table walks.
2681          */
2682         kvm_flush_remote_tlbs(kvm);
2684         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2685                 WARN_ON(!sp->role.invalid || sp->root_count);
2686                 kvm_mmu_free_page(sp);
2687         }
2690 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2691                                         struct list_head *invalid_list)
2693         struct kvm_mmu_page *sp;
2695         if (list_empty(&kvm->arch.active_mmu_pages))
2696                 return false;
2698         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2699                              struct kvm_mmu_page, link);
2700         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2703 /*
2704  * Changing the number of mmu pages allocated to the vm
2705  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2706  */
2707 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2709         LIST_HEAD(invalid_list);
2711         spin_lock(&kvm->mmu_lock);
2713         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2714                 /* Need to free some mmu pages to achieve the goal. */
2715                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2716                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2717                                 break;
2719                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2720                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2721         }
2723         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2725         spin_unlock(&kvm->mmu_lock);
2728 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2730         struct kvm_mmu_page *sp;
2731         LIST_HEAD(invalid_list);
2732         int r;
2734         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2735         r = 0;
2736         spin_lock(&kvm->mmu_lock);
2737         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2738                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2739                          sp->role.word);
2740                 r = 1;
2741                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2742         }
2743         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2744         spin_unlock(&kvm->mmu_lock);
2746         return r;
2748 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2750 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2752         trace_kvm_mmu_unsync_page(sp);
2753         ++vcpu->kvm->stat.mmu_unsync;
2754         sp->unsync = 1;
2756         kvm_mmu_mark_parents_unsync(sp);
2759 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2760                                    bool can_unsync)
2762         struct kvm_mmu_page *sp;
2764         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2765                 return true;
2767         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2768                 if (!can_unsync)
2769                         return true;
2771                 if (sp->unsync)
2772                         continue;
2774                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2775                 kvm_unsync_page(vcpu, sp);
2776         }
2778         /*
2779          * We need to ensure that the marking of unsync pages is visible
2780          * before the SPTE is updated to allow writes because
2781          * kvm_mmu_sync_roots() checks the unsync flags without holding
2782          * the MMU lock and so can race with this. If the SPTE was updated
2783          * before the page had been marked as unsync-ed, something like the
2784          * following could happen:
2785          *
2786          * CPU 1                    CPU 2
2787          * ---------------------------------------------------------------------
2788          * 1.2 Host updates SPTE
2789          *     to be writable
2790          *                      2.1 Guest writes a GPTE for GVA X.
2791          *                          (GPTE being in the guest page table shadowed
2792          *                           by the SP from CPU 1.)
2793          *                          This reads SPTE during the page table walk.
2794          *                          Since SPTE.W is read as 1, there is no
2795          *                          fault.
2796          *
2797          *                      2.2 Guest issues TLB flush.
2798          *                          That causes a VM Exit.
2799          *
2800          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2801          *                          Since it is false, so it just returns.
2802          *
2803          *                      2.4 Guest accesses GVA X.
2804          *                          Since the mapping in the SP was not updated,
2805          *                          so the old mapping for GVA X incorrectly
2806          *                          gets used.
2807          * 1.1 Host marks SP
2808          *     as unsync
2809          *     (sp->unsync = true)
2810          *
2811          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2812          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2813          * pairs with this write barrier.
2814          */
2815         smp_wmb();
2817         return false;
2820 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2822         if (pfn_valid(pfn))
2823                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2824                         /*
2825                          * Some reserved pages, such as those from NVDIMM
2826                          * DAX devices, are not for MMIO, and can be mapped
2827                          * with cached memory type for better performance.
2828                          * However, the above check misconceives those pages
2829                          * as MMIO, and results in KVM mapping them with UC
2830                          * memory type, which would hurt the performance.
2831                          * Therefore, we check the host memory type in addition
2832                          * and only treat UC/UC-/WC pages as MMIO.
2833                          */
2834                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2836         return true;
2839 /* Bits which may be returned by set_spte() */
2840 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2841 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2843 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2844                     unsigned pte_access, int level,
2845                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2846                     bool can_unsync, bool host_writable)
2848         u64 spte = 0;
2849         int ret = 0;
2850         struct kvm_mmu_page *sp;
2852         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2853                 return 0;
2855         sp = page_header(__pa(sptep));
2856         if (sp_ad_disabled(sp))
2857                 spte |= shadow_acc_track_value;
2859         /*
2860          * For the EPT case, shadow_present_mask is 0 if hardware
2861          * supports exec-only page table entries.  In that case,
2862          * ACC_USER_MASK and shadow_user_mask are used to represent
2863          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2864          */
2865         spte |= shadow_present_mask;
2866         if (!speculative)
2867                 spte |= spte_shadow_accessed_mask(spte);
2869         if (pte_access & ACC_EXEC_MASK)
2870                 spte |= shadow_x_mask;
2871         else
2872                 spte |= shadow_nx_mask;
2874         if (pte_access & ACC_USER_MASK)
2875                 spte |= shadow_user_mask;
2877         if (level > PT_PAGE_TABLE_LEVEL)
2878                 spte |= PT_PAGE_SIZE_MASK;
2879         if (tdp_enabled)
2880                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2881                         kvm_is_mmio_pfn(pfn));
2883         if (host_writable)
2884                 spte |= SPTE_HOST_WRITEABLE;
2885         else
2886                 pte_access &= ~ACC_WRITE_MASK;
2888         if (!kvm_is_mmio_pfn(pfn))
2889                 spte |= shadow_me_mask;
2891         spte |= (u64)pfn << PAGE_SHIFT;
2893         if (pte_access & ACC_WRITE_MASK) {
2895                 /*
2896                  * Other vcpu creates new sp in the window between
2897                  * mapping_level() and acquiring mmu-lock. We can
2898                  * allow guest to retry the access, the mapping can
2899                  * be fixed if guest refault.
2900                  */
2901                 if (level > PT_PAGE_TABLE_LEVEL &&
2902                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2903                         goto done;
2905                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2907                 /*
2908                  * Optimization: for pte sync, if spte was writable the hash
2909                  * lookup is unnecessary (and expensive). Write protection
2910                  * is responsibility of mmu_get_page / kvm_sync_page.
2911                  * Same reasoning can be applied to dirty page accounting.
2912                  */
2913                 if (!can_unsync && is_writable_pte(*sptep))
2914                         goto set_pte;
2916                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2917                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2918                                  __func__, gfn);
2919                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
2920                         pte_access &= ~ACC_WRITE_MASK;
2921                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2922                 }
2923         }
2925         if (pte_access & ACC_WRITE_MASK) {
2926                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2927                 spte |= spte_shadow_dirty_mask(spte);
2928         }
2930         if (speculative)
2931                 spte = mark_spte_for_access_track(spte);
2933 set_pte:
2934         if (mmu_spte_update(sptep, spte))
2935                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2936 done:
2937         return ret;
2940 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2941                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2942                         bool speculative, bool host_writable)
2944         int was_rmapped = 0;
2945         int rmap_count;
2946         int set_spte_ret;
2947         int ret = RET_PF_RETRY;
2948         bool flush = false;
2950         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2951                  *sptep, write_fault, gfn);
2953         if (is_shadow_present_pte(*sptep)) {
2954                 /*
2955                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2956                  * the parent of the now unreachable PTE.
2957                  */
2958                 if (level > PT_PAGE_TABLE_LEVEL &&
2959                     !is_large_pte(*sptep)) {
2960                         struct kvm_mmu_page *child;
2961                         u64 pte = *sptep;
2963                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2964                         drop_parent_pte(child, sptep);
2965                         flush = true;
2966                 } else if (pfn != spte_to_pfn(*sptep)) {
2967                         pgprintk("hfn old %llx new %llx\n",
2968                                  spte_to_pfn(*sptep), pfn);
2969                         drop_spte(vcpu->kvm, sptep);
2970                         flush = true;
2971                 } else
2972                         was_rmapped = 1;
2973         }
2975         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2976                                 speculative, true, host_writable);
2977         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2978                 if (write_fault)
2979                         ret = RET_PF_EMULATE;
2980                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2981         }
2982         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2983                 kvm_flush_remote_tlbs(vcpu->kvm);
2985         if (unlikely(is_mmio_spte(*sptep)))
2986                 ret = RET_PF_EMULATE;
2988         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2989         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2990                  is_large_pte(*sptep)? "2MB" : "4kB",
2991                  *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2992                  *sptep, sptep);
2993         if (!was_rmapped && is_large_pte(*sptep))
2994                 ++vcpu->kvm->stat.lpages;
2996         if (is_shadow_present_pte(*sptep)) {
2997                 if (!was_rmapped) {
2998                         rmap_count = rmap_add(vcpu, sptep, gfn);
2999                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3000                                 rmap_recycle(vcpu, sptep, gfn);
3001                 }
3002         }
3004         kvm_release_pfn_clean(pfn);
3006         return ret;
3009 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3010                                      bool no_dirty_log)
3012         struct kvm_memory_slot *slot;
3014         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3015         if (!slot)
3016                 return KVM_PFN_ERR_FAULT;
3018         return gfn_to_pfn_memslot_atomic(slot, gfn);
3021 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3022                                     struct kvm_mmu_page *sp,
3023                                     u64 *start, u64 *end)
3025         struct page *pages[PTE_PREFETCH_NUM];
3026         struct kvm_memory_slot *slot;
3027         unsigned access = sp->role.access;
3028         int i, ret;
3029         gfn_t gfn;
3031         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3032         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3033         if (!slot)
3034                 return -1;
3036         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3037         if (ret <= 0)
3038                 return -1;
3040         for (i = 0; i < ret; i++, gfn++, start++)
3041                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3042                              page_to_pfn(pages[i]), true, true);
3044         return 0;
3047 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3048                                   struct kvm_mmu_page *sp, u64 *sptep)
3050         u64 *spte, *start = NULL;
3051         int i;
3053         WARN_ON(!sp->role.direct);
3055         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3056         spte = sp->spt + i;
3058         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3059                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3060                         if (!start)
3061                                 continue;
3062                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3063                                 break;
3064                         start = NULL;
3065                 } else if (!start)
3066                         start = spte;
3067         }
3070 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3072         struct kvm_mmu_page *sp;
3074         sp = page_header(__pa(sptep));
3076         /*
3077          * Without accessed bits, there's no way to distinguish between
3078          * actually accessed translations and prefetched, so disable pte
3079          * prefetch if accessed bits aren't available.
3080          */
3081         if (sp_ad_disabled(sp))
3082                 return;
3084         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3085                 return;
3087         __direct_pte_prefetch(vcpu, sp, sptep);
3090 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
3091                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
3093         struct kvm_shadow_walk_iterator iterator;
3094         struct kvm_mmu_page *sp;
3095         int emulate = 0;
3096         gfn_t pseudo_gfn;
3098         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3099                 return 0;
3101         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
3102                 if (iterator.level == level) {
3103                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3104                                                write, level, gfn, pfn, prefault,
3105                                                map_writable);
3106                         direct_pte_prefetch(vcpu, iterator.sptep);
3107                         ++vcpu->stat.pf_fixed;
3108                         break;
3109                 }
3111                 drop_large_spte(vcpu, iterator.sptep);
3112                 if (!is_shadow_present_pte(*iterator.sptep)) {
3113                         u64 base_addr = iterator.addr;
3115                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3116                         pseudo_gfn = base_addr >> PAGE_SHIFT;
3117                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
3118                                               iterator.level - 1, 1, ACC_ALL);
3120                         link_shadow_page(vcpu, iterator.sptep, sp);
3121                 }
3122         }
3123         return emulate;
3126 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3128         siginfo_t info;
3130         clear_siginfo(&info);
3131         info.si_signo   = SIGBUS;
3132         info.si_errno   = 0;
3133         info.si_code    = BUS_MCEERR_AR;
3134         info.si_addr    = (void __user *)address;
3135         info.si_addr_lsb = PAGE_SHIFT;
3137         send_sig_info(SIGBUS, &info, tsk);
3140 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3142         /*
3143          * Do not cache the mmio info caused by writing the readonly gfn
3144          * into the spte otherwise read access on readonly gfn also can
3145          * caused mmio page fault and treat it as mmio access.
3146          */
3147         if (pfn == KVM_PFN_ERR_RO_FAULT)
3148                 return RET_PF_EMULATE;
3150         if (pfn == KVM_PFN_ERR_HWPOISON) {
3151                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3152                 return RET_PF_RETRY;
3153         }
3155         return -EFAULT;
3158 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3159                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
3160                                         int *levelp)
3162         kvm_pfn_t pfn = *pfnp;
3163         gfn_t gfn = *gfnp;
3164         int level = *levelp;
3166         /*
3167          * Check if it's a transparent hugepage. If this would be an
3168          * hugetlbfs page, level wouldn't be set to
3169          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3170          * here.
3171          */
3172         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3173             level == PT_PAGE_TABLE_LEVEL &&
3174             PageTransCompoundMap(pfn_to_page(pfn)) &&
3175             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3176                 unsigned long mask;
3177                 /*
3178                  * mmu_notifier_retry was successful and we hold the
3179                  * mmu_lock here, so the pmd can't become splitting
3180                  * from under us, and in turn
3181                  * __split_huge_page_refcount() can't run from under
3182                  * us and we can safely transfer the refcount from
3183                  * PG_tail to PG_head as we switch the pfn to tail to
3184                  * head.
3185                  */
3186                 *levelp = level = PT_DIRECTORY_LEVEL;
3187                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3188                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3189                 if (pfn & mask) {
3190                         gfn &= ~mask;
3191                         *gfnp = gfn;
3192                         kvm_release_pfn_clean(pfn);
3193                         pfn &= ~mask;
3194                         kvm_get_pfn(pfn);
3195                         *pfnp = pfn;
3196                 }
3197         }
3200 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3201                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3203         /* The pfn is invalid, report the error! */
3204         if (unlikely(is_error_pfn(pfn))) {
3205                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3206                 return true;
3207         }
3209         if (unlikely(is_noslot_pfn(pfn)))
3210                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3212         return false;
3215 static bool page_fault_can_be_fast(u32 error_code)
3217         /*
3218          * Do not fix the mmio spte with invalid generation number which
3219          * need to be updated by slow page fault path.
3220          */
3221         if (unlikely(error_code & PFERR_RSVD_MASK))
3222                 return false;
3224         /* See if the page fault is due to an NX violation */
3225         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3226                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3227                 return false;
3229         /*
3230          * #PF can be fast if:
3231          * 1. The shadow page table entry is not present, which could mean that
3232          *    the fault is potentially caused by access tracking (if enabled).
3233          * 2. The shadow page table entry is present and the fault
3234          *    is caused by write-protect, that means we just need change the W
3235          *    bit of the spte which can be done out of mmu-lock.
3236          *
3237          * However, if access tracking is disabled we know that a non-present
3238          * page must be a genuine page fault where we have to create a new SPTE.
3239          * So, if access tracking is disabled, we return true only for write
3240          * accesses to a present page.
3241          */
3243         return shadow_acc_track_mask != 0 ||
3244                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3245                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3248 /*
3249  * Returns true if the SPTE was fixed successfully. Otherwise,
3250  * someone else modified the SPTE from its original value.
3251  */
3252 static bool
3253 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3254                         u64 *sptep, u64 old_spte, u64 new_spte)
3256         gfn_t gfn;
3258         WARN_ON(!sp->role.direct);
3260         /*
3261          * Theoretically we could also set dirty bit (and flush TLB) here in
3262          * order to eliminate unnecessary PML logging. See comments in
3263          * set_spte. But fast_page_fault is very unlikely to happen with PML
3264          * enabled, so we do not do this. This might result in the same GPA
3265          * to be logged in PML buffer again when the write really happens, and
3266          * eventually to be called by mark_page_dirty twice. But it's also no
3267          * harm. This also avoids the TLB flush needed after setting dirty bit
3268          * so non-PML cases won't be impacted.
3269          *
3270          * Compare with set_spte where instead shadow_dirty_mask is set.
3271          */
3272         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3273                 return false;
3275         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3276                 /*
3277                  * The gfn of direct spte is stable since it is
3278                  * calculated by sp->gfn.
3279                  */
3280                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3281                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3282         }
3284         return true;
3287 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3289         if (fault_err_code & PFERR_FETCH_MASK)
3290                 return is_executable_pte(spte);
3292         if (fault_err_code & PFERR_WRITE_MASK)
3293                 return is_writable_pte(spte);
3295         /* Fault was on Read access */
3296         return spte & PT_PRESENT_MASK;
3299 /*
3300  * Return value:
3301  * - true: let the vcpu to access on the same address again.
3302  * - false: let the real page fault path to fix it.
3303  */
3304 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3305                             u32 error_code)
3307         struct kvm_shadow_walk_iterator iterator;
3308         struct kvm_mmu_page *sp;
3309         bool fault_handled = false;
3310         u64 spte = 0ull;
3311         uint retry_count = 0;
3313         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3314                 return false;
3316         if (!page_fault_can_be_fast(error_code))
3317                 return false;
3319         walk_shadow_page_lockless_begin(vcpu);
3321         do {
3322                 u64 new_spte;
3324                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3325                         if (!is_shadow_present_pte(spte) ||
3326                             iterator.level < level)
3327                                 break;
3329                 sp = page_header(__pa(iterator.sptep));
3330                 if (!is_last_spte(spte, sp->role.level))
3331                         break;
3333                 /*
3334                  * Check whether the memory access that caused the fault would
3335                  * still cause it if it were to be performed right now. If not,
3336                  * then this is a spurious fault caused by TLB lazily flushed,
3337                  * or some other CPU has already fixed the PTE after the
3338                  * current CPU took the fault.
3339                  *
3340                  * Need not check the access of upper level table entries since
3341                  * they are always ACC_ALL.
3342                  */
3343                 if (is_access_allowed(error_code, spte)) {
3344                         fault_handled = true;
3345                         break;
3346                 }
3348                 new_spte = spte;
3350                 if (is_access_track_spte(spte))
3351                         new_spte = restore_acc_track_spte(new_spte);
3353                 /*
3354                  * Currently, to simplify the code, write-protection can
3355                  * be removed in the fast path only if the SPTE was
3356                  * write-protected for dirty-logging or access tracking.
3357                  */
3358                 if ((error_code & PFERR_WRITE_MASK) &&
3359                     spte_can_locklessly_be_made_writable(spte))
3360                 {
3361                         new_spte |= PT_WRITABLE_MASK;
3363                         /*
3364                          * Do not fix write-permission on the large spte.  Since
3365                          * we only dirty the first page into the dirty-bitmap in
3366                          * fast_pf_fix_direct_spte(), other pages are missed
3367                          * if its slot has dirty logging enabled.
3368                          *
3369                          * Instead, we let the slow page fault path create a
3370                          * normal spte to fix the access.
3371                          *
3372                          * See the comments in kvm_arch_commit_memory_region().
3373                          */
3374                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3375                                 break;
3376                 }
3378                 /* Verify that the fault can be handled in the fast path */
3379                 if (new_spte == spte ||
3380                     !is_access_allowed(error_code, new_spte))
3381                         break;
3383                 /*
3384                  * Currently, fast page fault only works for direct mapping
3385                  * since the gfn is not stable for indirect shadow page. See
3386                  * Documentation/virtual/kvm/locking.txt to get more detail.
3387                  */
3388                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3389                                                         iterator.sptep, spte,
3390                                                         new_spte);
3391                 if (fault_handled)
3392                         break;
3394                 if (++retry_count > 4) {
3395                         printk_once(KERN_WARNING
3396                                 "kvm: Fast #PF retrying more than 4 times.\n");
3397                         break;
3398                 }
3400         } while (true);
3402         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3403                               spte, fault_handled);
3404         walk_shadow_page_lockless_end(vcpu);
3406         return fault_handled;
3409 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3410                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3411 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3413 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3414                          gfn_t gfn, bool prefault)
3416         int r;
3417         int level;
3418         bool force_pt_level = false;
3419         kvm_pfn_t pfn;
3420         unsigned long mmu_seq;
3421         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3423         level = mapping_level(vcpu, gfn, &force_pt_level);
3424         if (likely(!force_pt_level)) {
3425                 /*
3426                  * This path builds a PAE pagetable - so we can map
3427                  * 2mb pages at maximum. Therefore check if the level
3428                  * is larger than that.
3429                  */
3430                 if (level > PT_DIRECTORY_LEVEL)
3431                         level = PT_DIRECTORY_LEVEL;
3433                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3434         }
3436         if (fast_page_fault(vcpu, v, level, error_code))
3437                 return RET_PF_RETRY;
3439         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3440         smp_rmb();
3442         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3443                 return RET_PF_RETRY;
3445         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3446                 return r;
3448         spin_lock(&vcpu->kvm->mmu_lock);
3449         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3450                 goto out_unlock;
3451         if (make_mmu_pages_available(vcpu) < 0)
3452                 goto out_unlock;
3453         if (likely(!force_pt_level))
3454                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3455         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3456         spin_unlock(&vcpu->kvm->mmu_lock);
3458         return r;
3460 out_unlock:
3461         spin_unlock(&vcpu->kvm->mmu_lock);
3462         kvm_release_pfn_clean(pfn);
3463         return RET_PF_RETRY;
3466 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3467                                struct list_head *invalid_list)
3469         struct kvm_mmu_page *sp;
3471         if (!VALID_PAGE(*root_hpa))
3472                 return;
3474         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3475         --sp->root_count;
3476         if (!sp->root_count && sp->role.invalid)
3477                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3479         *root_hpa = INVALID_PAGE;
3482 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3483 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, ulong roots_to_free)
3485         int i;
3486         LIST_HEAD(invalid_list);
3487         struct kvm_mmu *mmu = &vcpu->arch.mmu;
3488         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3490         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3492         /* Before acquiring the MMU lock, see if we need to do any real work. */
3493         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3494                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3495                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3496                             VALID_PAGE(mmu->prev_roots[i].hpa))
3497                                 break;
3499                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3500                         return;
3501         }
3503         spin_lock(&vcpu->kvm->mmu_lock);
3505         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3506                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3507                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3508                                            &invalid_list);
3510         if (free_active_root) {
3511                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3512                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3513                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3514                                            &invalid_list);
3515                 } else {
3516                         for (i = 0; i < 4; ++i)
3517                                 if (mmu->pae_root[i] != 0)
3518                                         mmu_free_root_page(vcpu->kvm,
3519                                                            &mmu->pae_root[i],
3520                                                            &invalid_list);
3521                         mmu->root_hpa = INVALID_PAGE;
3522                 }
3523         }
3525         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3526         spin_unlock(&vcpu->kvm->mmu_lock);
3528 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3530 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3532         int ret = 0;
3534         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3535                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3536                 ret = 1;
3537         }
3539         return ret;
3542 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3544         struct kvm_mmu_page *sp;
3545         unsigned i;
3547         if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3548                 spin_lock(&vcpu->kvm->mmu_lock);
3549                 if(make_mmu_pages_available(vcpu) < 0) {
3550                         spin_unlock(&vcpu->kvm->mmu_lock);
3551                         return -ENOSPC;
3552                 }
3553                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3554                                 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3555                 ++sp->root_count;
3556                 spin_unlock(&vcpu->kvm->mmu_lock);
3557                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3558         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3559                 for (i = 0; i < 4; ++i) {
3560                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3562                         MMU_WARN_ON(VALID_PAGE(root));
3563                         spin_lock(&vcpu->kvm->mmu_lock);
3564                         if (make_mmu_pages_available(vcpu) < 0) {
3565                                 spin_unlock(&vcpu->kvm->mmu_lock);
3566                                 return -ENOSPC;
3567                         }
3568                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3569                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3570                         root = __pa(sp->spt);
3571                         ++sp->root_count;
3572                         spin_unlock(&vcpu->kvm->mmu_lock);
3573                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3574                 }
3575                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3576         } else
3577                 BUG();
3579         return 0;
3582 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3584         struct kvm_mmu_page *sp;
3585         u64 pdptr, pm_mask;
3586         gfn_t root_gfn;
3587         int i;
3589         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3591         if (mmu_check_root(vcpu, root_gfn))
3592                 return 1;
3594         /*
3595          * Do we shadow a long mode page table? If so we need to
3596          * write-protect the guests page table root.
3597          */
3598         if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3599                 hpa_t root = vcpu->arch.mmu.root_hpa;
3601                 MMU_WARN_ON(VALID_PAGE(root));
3603                 spin_lock(&vcpu->kvm->mmu_lock);
3604                 if (make_mmu_pages_available(vcpu) < 0) {
3605                         spin_unlock(&vcpu->kvm->mmu_lock);
3606                         return -ENOSPC;
3607                 }
3608                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3609                                 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3610                 root = __pa(sp->spt);
3611                 ++sp->root_count;
3612                 spin_unlock(&vcpu->kvm->mmu_lock);
3613                 vcpu->arch.mmu.root_hpa = root;
3614                 return 0;
3615         }
3617         /*
3618          * We shadow a 32 bit page table. This may be a legacy 2-level
3619          * or a PAE 3-level page table. In either case we need to be aware that
3620          * the shadow page table may be a PAE or a long mode page table.
3621          */
3622         pm_mask = PT_PRESENT_MASK;
3623         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3624                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3626         for (i = 0; i < 4; ++i) {
3627                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3629                 MMU_WARN_ON(VALID_PAGE(root));
3630                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3631                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3632                         if (!(pdptr & PT_PRESENT_MASK)) {
3633                                 vcpu->arch.mmu.pae_root[i] = 0;
3634                                 continue;
3635                         }
3636                         root_gfn = pdptr >> PAGE_SHIFT;
3637                         if (mmu_check_root(vcpu, root_gfn))
3638                                 return 1;
3639                 }
3640                 spin_lock(&vcpu->kvm->mmu_lock);
3641                 if (make_mmu_pages_available(vcpu) < 0) {
3642                         spin_unlock(&vcpu->kvm->mmu_lock);
3643                         return -ENOSPC;
3644                 }
3645                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3646                                       0, ACC_ALL);
3647                 root = __pa(sp->spt);
3648                 ++sp->root_count;
3649                 spin_unlock(&vcpu->kvm->mmu_lock);
3651                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3652         }
3653         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3655         /*
3656          * If we shadow a 32 bit page table with a long mode page
3657          * table we enter this path.
3658          */
3659         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3660                 if (vcpu->arch.mmu.lm_root == NULL) {
3661                         /*
3662                          * The additional page necessary for this is only
3663                          * allocated on demand.
3664                          */
3666                         u64 *lm_root;
3668                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3669                         if (lm_root == NULL)
3670                                 return 1;
3672                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3674                         vcpu->arch.mmu.lm_root = lm_root;
3675                 }
3677                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3678         }
3680         return 0;
3683 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3685         if (vcpu->arch.mmu.direct_map)
3686                 return mmu_alloc_direct_roots(vcpu);
3687         else
3688                 return mmu_alloc_shadow_roots(vcpu);
3691 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3693         int i;
3694         struct kvm_mmu_page *sp;
3696         if (vcpu->arch.mmu.direct_map)
3697                 return;
3699         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3700                 return;
3702         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3704         if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3705                 hpa_t root = vcpu->arch.mmu.root_hpa;
3707                 sp = page_header(root);
3709                 /*
3710                  * Even if another CPU was marking the SP as unsync-ed
3711                  * simultaneously, any guest page table changes are not
3712                  * guaranteed to be visible anyway until this VCPU issues a TLB
3713                  * flush strictly after those changes are made. We only need to
3714                  * ensure that the other CPU sets these flags before any actual
3715                  * changes to the page tables are made. The comments in
3716                  * mmu_need_write_protect() describe what could go wrong if this
3717                  * requirement isn't satisfied.
3718                  */
3719                 if (!smp_load_acquire(&sp->unsync) &&
3720                     !smp_load_acquire(&sp->unsync_children))
3721                         return;
3723                 spin_lock(&vcpu->kvm->mmu_lock);
3724                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3726                 mmu_sync_children(vcpu, sp);
3728                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3729                 spin_unlock(&vcpu->kvm->mmu_lock);
3730                 return;
3731         }
3733         spin_lock(&vcpu->kvm->mmu_lock);
3734         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3736         for (i = 0; i < 4; ++i) {
3737                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3739                 if (root && VALID_PAGE(root)) {
3740                         root &= PT64_BASE_ADDR_MASK;
3741                         sp = page_header(root);
3742                         mmu_sync_children(vcpu, sp);
3743                 }
3744         }
3746         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3747         spin_unlock(&vcpu->kvm->mmu_lock);
3749 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3751 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3752                                   u32 access, struct x86_exception *exception)
3754         if (exception)
3755                 exception->error_code = 0;
3756         return vaddr;
3759 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3760                                          u32 access,
3761                                          struct x86_exception *exception)
3763         if (exception)
3764                 exception->error_code = 0;
3765         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3768 static bool
3769 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3771         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3773         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3774                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3777 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3779         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3782 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3784         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3787 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3789         /*
3790          * A nested guest cannot use the MMIO cache if it is using nested
3791          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3792          */
3793         if (mmu_is_nested(vcpu))
3794                 return false;
3796         if (direct)
3797                 return vcpu_match_mmio_gpa(vcpu, addr);
3799         return vcpu_match_mmio_gva(vcpu, addr);
3802 /* return true if reserved bit is detected on spte. */
3803 static bool
3804 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3806         struct kvm_shadow_walk_iterator iterator;
3807         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3808         int root, leaf;
3809         bool reserved = false;
3811         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3812                 goto exit;
3814         walk_shadow_page_lockless_begin(vcpu);
3816         for (shadow_walk_init(&iterator, vcpu, addr),
3817                  leaf = root = iterator.level;
3818              shadow_walk_okay(&iterator);
3819              __shadow_walk_next(&iterator, spte)) {
3820                 spte = mmu_spte_get_lockless(iterator.sptep);
3822                 sptes[leaf - 1] = spte;
3823                 leaf--;
3825                 if (!is_shadow_present_pte(spte))
3826                         break;
3828                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3829                                                     iterator.level);
3830         }
3832         walk_shadow_page_lockless_end(vcpu);
3834         if (reserved) {
3835                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3836                        __func__, addr);
3837                 while (root > leaf) {
3838                         pr_err("------ spte 0x%llx level %d.\n",
3839                                sptes[root - 1], root);
3840                         root--;
3841                 }
3842         }
3843 exit:
3844         *sptep = spte;
3845         return reserved;
3848 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3850         u64 spte;
3851         bool reserved;
3853         if (mmio_info_in_cache(vcpu, addr, direct))
3854                 return RET_PF_EMULATE;
3856         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3857         if (WARN_ON(reserved))
3858                 return -EINVAL;
3860         if (is_mmio_spte(spte)) {
3861                 gfn_t gfn = get_mmio_spte_gfn(spte);
3862                 unsigned access = get_mmio_spte_access(spte);
3864                 if (!check_mmio_spte(vcpu, spte))
3865                         return RET_PF_INVALID;
3867                 if (direct)
3868                         addr = 0;
3870                 trace_handle_mmio_page_fault(addr, gfn, access);
3871                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3872                 return RET_PF_EMULATE;
3873         }
3875         /*
3876          * If the page table is zapped by other cpus, let CPU fault again on
3877          * the address.
3878          */
3879         return RET_PF_RETRY;
3882 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3883                                          u32 error_code, gfn_t gfn)
3885         if (unlikely(error_code & PFERR_RSVD_MASK))
3886                 return false;
3888         if (!(error_code & PFERR_PRESENT_MASK) ||
3889               !(error_code & PFERR_WRITE_MASK))
3890                 return false;
3892         /*
3893          * guest is writing the page which is write tracked which can
3894          * not be fixed by page fault handler.
3895          */
3896         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3897                 return true;
3899         return false;
3902 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3904         struct kvm_shadow_walk_iterator iterator;
3905         u64 spte;
3907         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3908                 return;
3910         walk_shadow_page_lockless_begin(vcpu);
3911         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3912                 clear_sp_write_flooding_count(iterator.sptep);
3913                 if (!is_shadow_present_pte(spte))
3914                         break;
3915         }
3916         walk_shadow_page_lockless_end(vcpu);
3919 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3920                                 u32 error_code, bool prefault)
3922         gfn_t gfn = gva >> PAGE_SHIFT;
3923         int r;
3925         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3927         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3928                 return RET_PF_EMULATE;
3930         r = mmu_topup_memory_caches(vcpu);
3931         if (r)
3932                 return r;
3934         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3937         return nonpaging_map(vcpu, gva & PAGE_MASK,
3938                              error_code, gfn, prefault);
3941 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3943         struct kvm_arch_async_pf arch;
3945         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3946         arch.gfn = gfn;
3947         arch.direct_map = vcpu->arch.mmu.direct_map;
3948         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3950         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3953 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3955         if (unlikely(!lapic_in_kernel(vcpu) ||
3956                      kvm_event_needs_reinjection(vcpu) ||
3957                      vcpu->arch.exception.pending))
3958                 return false;
3960         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3961                 return false;
3963         return kvm_x86_ops->interrupt_allowed(vcpu);
3966 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3967                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3969         struct kvm_memory_slot *slot;
3970         bool async;
3972         /*
3973          * Don't expose private memslots to L2.
3974          */
3975         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
3976                 *pfn = KVM_PFN_NOSLOT;
3977                 return false;
3978         }
3980         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3981         async = false;
3982         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3983         if (!async)
3984                 return false; /* *pfn has correct page already */
3986         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3987                 trace_kvm_try_async_get_page(gva, gfn);
3988                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3989                         trace_kvm_async_pf_doublefault(gva, gfn);
3990                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3991                         return true;
3992                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3993                         return true;
3994         }
3996         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3997         return false;
4000 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4001                                 u64 fault_address, char *insn, int insn_len)
4003         int r = 1;
4005         vcpu->arch.l1tf_flush_l1d = true;
4006         switch (vcpu->arch.apf.host_apf_reason) {
4007         default:
4008                 trace_kvm_page_fault(fault_address, error_code);
4010                 if (kvm_event_needs_reinjection(vcpu))
4011                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4012                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4013                                 insn_len);
4014                 break;
4015         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4016                 vcpu->arch.apf.host_apf_reason = 0;
4017                 local_irq_disable();
4018                 kvm_async_pf_task_wait(fault_address, 0);
4019                 local_irq_enable();
4020                 break;
4021         case KVM_PV_REASON_PAGE_READY:
4022                 vcpu->arch.apf.host_apf_reason = 0;
4023                 local_irq_disable();
4024                 kvm_async_pf_task_wake(fault_address);
4025                 local_irq_enable();
4026                 break;
4027         }
4028         return r;
4030 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4032 static bool
4033 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4035         int page_num = KVM_PAGES_PER_HPAGE(level);
4037         gfn &= ~(page_num - 1);
4039         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4042 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4043                           bool prefault)
4045         kvm_pfn_t pfn;
4046         int r;
4047         int level;
4048         bool force_pt_level;
4049         gfn_t gfn = gpa >> PAGE_SHIFT;
4050         unsigned long mmu_seq;
4051         int write = error_code & PFERR_WRITE_MASK;
4052         bool map_writable;
4054         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4056         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4057                 return RET_PF_EMULATE;
4059         r = mmu_topup_memory_caches(vcpu);
4060         if (r)
4061                 return r;
4063         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4064                                                            PT_DIRECTORY_LEVEL);
4065         level = mapping_level(vcpu, gfn, &force_pt_level);
4066         if (likely(!force_pt_level)) {
4067                 if (level > PT_DIRECTORY_LEVEL &&
4068                     !check_hugepage_cache_consistency(vcpu, gfn, level))
4069                         level = PT_DIRECTORY_LEVEL;
4070                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4071         }
4073         if (fast_page_fault(vcpu, gpa, level, error_code))
4074                 return RET_PF_RETRY;
4076         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4077         smp_rmb();
4079         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4080                 return RET_PF_RETRY;
4082         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4083                 return r;
4085         spin_lock(&vcpu->kvm->mmu_lock);
4086         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4087                 goto out_unlock;
4088         if (make_mmu_pages_available(vcpu) < 0)
4089                 goto out_unlock;
4090         if (likely(!force_pt_level))
4091                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
4092         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
4093         spin_unlock(&vcpu->kvm->mmu_lock);
4095         return r;
4097 out_unlock:
4098         spin_unlock(&vcpu->kvm->mmu_lock);
4099         kvm_release_pfn_clean(pfn);
4100         return RET_PF_RETRY;
4103 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4104                                    struct kvm_mmu *context)
4106         context->page_fault = nonpaging_page_fault;
4107         context->gva_to_gpa = nonpaging_gva_to_gpa;
4108         context->sync_page = nonpaging_sync_page;
4109         context->invlpg = nonpaging_invlpg;
4110         context->update_pte = nonpaging_update_pte;
4111         context->root_level = 0;
4112         context->shadow_root_level = PT32E_ROOT_LEVEL;
4113         context->direct_map = true;
4114         context->nx = false;
4117 /*
4118  * Find out if a previously cached root matching the new CR3/role is available.
4119  * The current root is also inserted into the cache.
4120  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4121  * returned.
4122  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4123  * false is returned. This root should now be freed by the caller.
4124  */
4125 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4126                                   union kvm_mmu_page_role new_role)
4128         uint i;
4129         struct kvm_mmu_root_info root;
4130         struct kvm_mmu *mmu = &vcpu->arch.mmu;
4132         root.cr3 = mmu->get_cr3(vcpu);
4133         root.hpa = mmu->root_hpa;
4135         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4136                 swap(root, mmu->prev_roots[i]);
4138                 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4139                     page_header(root.hpa) != NULL &&
4140                     new_role.word == page_header(root.hpa)->role.word)
4141                         break;
4142         }
4144         mmu->root_hpa = root.hpa;
4146         return i < KVM_MMU_NUM_PREV_ROOTS;
4149 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4150                             union kvm_mmu_page_role new_role,
4151                             bool skip_tlb_flush)
4153         struct kvm_mmu *mmu = &vcpu->arch.mmu;
4155         /*
4156          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4157          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4158          * later if necessary.
4159          */
4160         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4161             mmu->root_level >= PT64_ROOT_4LEVEL) {
4162                 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4163                         return false;
4165                 if (cached_root_available(vcpu, new_cr3, new_role)) {
4166                         /*
4167                          * It is possible that the cached previous root page is
4168                          * obsolete because of a change in the MMU
4169                          * generation number. However, that is accompanied by
4170                          * KVM_REQ_MMU_RELOAD, which will free the root that we
4171                          * have set here and allocate a new one.
4172                          */
4174                         kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4175                         if (!skip_tlb_flush) {
4176                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4177                                 kvm_x86_ops->tlb_flush(vcpu, true);
4178                         }
4180                         /*
4181                          * The last MMIO access's GVA and GPA are cached in the
4182                          * VCPU. When switching to a new CR3, that GVA->GPA
4183                          * mapping may no longer be valid. So clear any cached
4184                          * MMIO info even when we don't need to sync the shadow
4185                          * page tables.
4186                          */
4187                         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4189                         __clear_sp_write_flooding_count(
4190                                 page_header(mmu->root_hpa));
4192                         return true;
4193                 }
4194         }
4196         return false;
4199 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4200                               union kvm_mmu_page_role new_role,
4201                               bool skip_tlb_flush)
4203         if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4204                 kvm_mmu_free_roots(vcpu, KVM_MMU_ROOT_CURRENT);
4207 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4209         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4210                           skip_tlb_flush);
4212 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4214 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4216         return kvm_read_cr3(vcpu);
4219 static void inject_page_fault(struct kvm_vcpu *vcpu,
4220                               struct x86_exception *fault)
4222         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
4225 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4226                            unsigned access, int *nr_present)
4228         if (unlikely(is_mmio_spte(*sptep))) {
4229                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4230                         mmu_spte_clear_no_track(sptep);
4231                         return true;
4232                 }
4234                 (*nr_present)++;
4235                 mark_mmio_spte(vcpu, sptep, gfn, access);
4236                 return true;
4237         }
4239         return false;
4242 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4243                                 unsigned level, unsigned gpte)
4245         /*
4246          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4247          * If it is clear, there are no large pages at this level, so clear
4248          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4249          */
4250         gpte &= level - mmu->last_nonleaf_level;
4252         /*
4253          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4254          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4255          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4256          */
4257         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4259         return gpte & PT_PAGE_SIZE_MASK;
4262 #define PTTYPE_EPT 18 /* arbitrary */
4263 #define PTTYPE PTTYPE_EPT
4264 #include "paging_tmpl.h"
4265 #undef PTTYPE
4267 #define PTTYPE 64
4268 #include "paging_tmpl.h"
4269 #undef PTTYPE
4271 #define PTTYPE 32
4272 #include "paging_tmpl.h"
4273 #undef PTTYPE
4275 static void
4276 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4277                         struct rsvd_bits_validate *rsvd_check,
4278                         int maxphyaddr, int level, bool nx, bool gbpages,
4279                         bool pse, bool amd)
4281         u64 exb_bit_rsvd = 0;
4282         u64 gbpages_bit_rsvd = 0;
4283         u64 nonleaf_bit8_rsvd = 0;
4285         rsvd_check->bad_mt_xwr = 0;
4287         if (!nx)
4288                 exb_bit_rsvd = rsvd_bits(63, 63);
4289         if (!gbpages)
4290                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4292         /*
4293          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4294          * leaf entries) on AMD CPUs only.
4295          */
4296         if (amd)
4297                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4299         switch (level) {
4300         case PT32_ROOT_LEVEL:
4301                 /* no rsvd bits for 2 level 4K page table entries */
4302                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4303                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4304                 rsvd_check->rsvd_bits_mask[1][0] =
4305                         rsvd_check->rsvd_bits_mask[0][0];
4307                 if (!pse) {
4308                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4309                         break;
4310                 }
4312                 if (is_cpuid_PSE36())
4313                         /* 36bits PSE 4MB page */
4314                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4315                 else
4316                         /* 32 bits PSE 4MB page */
4317                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4318                 break;
4319         case PT32E_ROOT_LEVEL:
4320                 rsvd_check->rsvd_bits_mask[0][2] =
4321                         rsvd_bits(maxphyaddr, 63) |
4322                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4323                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4324                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4325                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4326                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4327                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4328                         rsvd_bits(maxphyaddr, 62) |
4329                         rsvd_bits(13, 20);              /* large page */
4330                 rsvd_check->rsvd_bits_mask[1][0] =
4331                         rsvd_check->rsvd_bits_mask[0][0];
4332                 break;
4333         case PT64_ROOT_5LEVEL:
4334                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4335                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4336                         rsvd_bits(maxphyaddr, 51);
4337                 rsvd_check->rsvd_bits_mask[1][4] =
4338                         rsvd_check->rsvd_bits_mask[0][4];
4339         case PT64_ROOT_4LEVEL:
4340                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4341                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4342                         rsvd_bits(maxphyaddr, 51);
4343                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4344                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4345                         rsvd_bits(maxphyaddr, 51);
4346                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4347                         rsvd_bits(maxphyaddr, 51);
4348                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4349                         rsvd_bits(maxphyaddr, 51);
4350                 rsvd_check->rsvd_bits_mask[1][3] =
4351                         rsvd_check->rsvd_bits_mask[0][3];
4352                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4353                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4354                         rsvd_bits(13, 29);
4355                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4356                         rsvd_bits(maxphyaddr, 51) |
4357                         rsvd_bits(13, 20);              /* large page */
4358                 rsvd_check->rsvd_bits_mask[1][0] =
4359                         rsvd_check->rsvd_bits_mask[0][0];
4360                 break;
4361         }
4364 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4365                                   struct kvm_mmu *context)
4367         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4368                                 cpuid_maxphyaddr(vcpu), context->root_level,
4369                                 context->nx,
4370                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4371                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4374 static void
4375 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4376                             int maxphyaddr, bool execonly)
4378         u64 bad_mt_xwr;
4380         rsvd_check->rsvd_bits_mask[0][4] =
4381                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4382         rsvd_check->rsvd_bits_mask[0][3] =
4383                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4384         rsvd_check->rsvd_bits_mask[0][2] =
4385                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4386         rsvd_check->rsvd_bits_mask[0][1] =
4387                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4388         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4390         /* large page */
4391         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4392         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4393         rsvd_check->rsvd_bits_mask[1][2] =
4394                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4395         rsvd_check->rsvd_bits_mask[1][1] =
4396                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4397         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4399         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4400         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4401         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4402         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4403         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4404         if (!execonly) {
4405                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4406                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4407         }
4408         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4411 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4412                 struct kvm_mmu *context, bool execonly)
4414         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4415                                     cpuid_maxphyaddr(vcpu), execonly);
4418 /*
4419  * the page table on host is the shadow page table for the page
4420  * table in guest or amd nested guest, its mmu features completely
4421  * follow the features in guest.
4422  */
4423 void
4424 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4426         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4427         struct rsvd_bits_validate *shadow_zero_check;
4428         int i;
4430         /*
4431          * Passing "true" to the last argument is okay; it adds a check
4432          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4433          */
4434         shadow_zero_check = &context->shadow_zero_check;
4435         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4436                                 boot_cpu_data.x86_phys_bits,
4437                                 context->shadow_root_level, uses_nx,
4438                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4439                                 is_pse(vcpu), true);
4441         if (!shadow_me_mask)
4442                 return;
4444         for (i = context->shadow_root_level; --i >= 0;) {
4445                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4446                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4447         }
4450 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4452 static inline bool boot_cpu_is_amd(void)
4454         WARN_ON_ONCE(!tdp_enabled);
4455         return shadow_x_mask == 0;
4458 /*
4459  * the direct page table on host, use as much mmu features as
4460  * possible, however, kvm currently does not do execution-protection.
4461  */
4462 static void
4463 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4464                                 struct kvm_mmu *context)
4466         struct rsvd_bits_validate *shadow_zero_check;
4467         int i;
4469         shadow_zero_check = &context->shadow_zero_check;
4471         if (boot_cpu_is_amd())
4472                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4473                                         boot_cpu_data.x86_phys_bits,
4474                                         context->shadow_root_level, false,
4475                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4476                                         true, true);
4477         else
4478                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4479                                             boot_cpu_data.x86_phys_bits,
4480                                             false);
4482         if (!shadow_me_mask)
4483                 return;
4485         for (i = context->shadow_root_level; --i >= 0;) {
4486                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4487                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4488         }
4491 /*
4492  * as the comments in reset_shadow_zero_bits_mask() except it
4493  * is the shadow page table for intel nested guest.
4494  */
4495 static void
4496 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4497                                 struct kvm_mmu *context, bool execonly)
4499         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4500                                     boot_cpu_data.x86_phys_bits, execonly);
4503 #define BYTE_MASK(access) \
4504         ((1 & (access) ? 2 : 0) | \
4505          (2 & (access) ? 4 : 0) | \
4506          (3 & (access) ? 8 : 0) | \
4507          (4 & (access) ? 16 : 0) | \
4508          (5 & (access) ? 32 : 0) | \
4509          (6 & (access) ? 64 : 0) | \
4510          (7 & (access) ? 128 : 0))
4513 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4514                                       struct kvm_mmu *mmu, bool ept)
4516         unsigned byte;
4518         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4519         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4520         const u8 u = BYTE_MASK(ACC_USER_MASK);
4522         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4523         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4524         bool cr0_wp = is_write_protection(vcpu);
4526         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4527                 unsigned pfec = byte << 1;
4529                 /*
4530                  * Each "*f" variable has a 1 bit for each UWX value
4531                  * that causes a fault with the given PFEC.
4532                  */
4534                 /* Faults from writes to non-writable pages */
4535                 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4536                 /* Faults from user mode accesses to supervisor pages */
4537                 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4538                 /* Faults from fetches of non-executable pages*/
4539                 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4540                 /* Faults from kernel mode fetches of user pages */
4541                 u8 smepf = 0;
4542                 /* Faults from kernel mode accesses of user pages */
4543                 u8 smapf = 0;
4545                 if (!ept) {
4546                         /* Faults from kernel mode accesses to user pages */
4547                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4549                         /* Not really needed: !nx will cause pte.nx to fault */
4550                         if (!mmu->nx)
4551                                 ff = 0;
4553                         /* Allow supervisor writes if !cr0.wp */
4554                         if (!cr0_wp)
4555                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4557                         /* Disallow supervisor fetches of user code if cr4.smep */
4558                         if (cr4_smep)
4559                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4561                         /*
4562                          * SMAP:kernel-mode data accesses from user-mode
4563                          * mappings should fault. A fault is considered
4564                          * as a SMAP violation if all of the following
4565                          * conditions are ture:
4566                          *   - X86_CR4_SMAP is set in CR4
4567                          *   - A user page is accessed
4568                          *   - The access is not a fetch
4569                          *   - Page fault in kernel mode
4570                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4571                          *
4572                          * Here, we cover the first three conditions.
4573                          * The fourth is computed dynamically in permission_fault();
4574                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4575                          * *not* subject to SMAP restrictions.
4576                          */
4577                         if (cr4_smap)
4578                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4579                 }
4581                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4582         }
4585 /*
4586 * PKU is an additional mechanism by which the paging controls access to
4587 * user-mode addresses based on the value in the PKRU register.  Protection
4588 * key violations are reported through a bit in the page fault error code.
4589 * Unlike other bits of the error code, the PK bit is not known at the
4590 * call site of e.g. gva_to_gpa; it must be computed directly in
4591 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4592 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4594 * In particular the following conditions come from the error code, the
4595 * page tables and the machine state:
4596 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4597 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4598 * - PK is always zero if U=0 in the page tables
4599 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4601 * The PKRU bitmask caches the result of these four conditions.  The error
4602 * code (minus the P bit) and the page table's U bit form an index into the
4603 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4604 * with the two bits of the PKRU register corresponding to the protection key.
4605 * For the first three conditions above the bits will be 00, thus masking
4606 * away both AD and WD.  For all reads or if the last condition holds, WD
4607 * only will be masked away.
4608 */
4609 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4610                                 bool ept)
4612         unsigned bit;
4613         bool wp;
4615         if (ept) {
4616                 mmu->pkru_mask = 0;
4617                 return;
4618         }
4620         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4621         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4622                 mmu->pkru_mask = 0;
4623                 return;
4624         }
4626         wp = is_write_protection(vcpu);
4628         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4629                 unsigned pfec, pkey_bits;
4630                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4632                 pfec = bit << 1;
4633                 ff = pfec & PFERR_FETCH_MASK;
4634                 uf = pfec & PFERR_USER_MASK;
4635                 wf = pfec & PFERR_WRITE_MASK;
4637                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4638                 pte_user = pfec & PFERR_RSVD_MASK;
4640                 /*
4641                  * Only need to check the access which is not an
4642                  * instruction fetch and is to a user page.
4643                  */
4644                 check_pkey = (!ff && pte_user);
4645                 /*
4646                  * write access is controlled by PKRU if it is a
4647                  * user access or CR0.WP = 1.
4648                  */
4649                 check_write = check_pkey && wf && (uf || wp);
4651                 /* PKRU.AD stops both read and write access. */
4652                 pkey_bits = !!check_pkey;
4653                 /* PKRU.WD stops write access. */
4654                 pkey_bits |= (!!check_write) << 1;
4656                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4657         }
4660 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4662         unsigned root_level = mmu->root_level;
4664         mmu->last_nonleaf_level = root_level;
4665         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4666                 mmu->last_nonleaf_level++;
4669 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4670                                          struct kvm_mmu *context,
4671                                          int level)
4673         context->nx = is_nx(vcpu);
4674         context->root_level = level;
4676         reset_rsvds_bits_mask(vcpu, context);
4677         update_permission_bitmask(vcpu, context, false);
4678         update_pkru_bitmask(vcpu, context, false);
4679         update_last_nonleaf_level(vcpu, context);
4681         MMU_WARN_ON(!is_pae(vcpu));
4682         context->page_fault = paging64_page_fault;
4683         context->gva_to_gpa = paging64_gva_to_gpa;
4684         context->sync_page = paging64_sync_page;
4685         context->invlpg = paging64_invlpg;
4686         context->update_pte = paging64_update_pte;
4687         context->shadow_root_level = level;
4688         context->direct_map = false;
4691 static void paging64_init_context(struct kvm_vcpu *vcpu,
4692                                   struct kvm_mmu *context)
4694         int root_level = is_la57_mode(vcpu) ?
4695                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4697         paging64_init_context_common(vcpu, context, root_level);
4700 static void paging32_init_context(struct kvm_vcpu *vcpu,
4701                                   struct kvm_mmu *context)
4703         context->nx = false;
4704         context->root_level = PT32_ROOT_LEVEL;
4706         reset_rsvds_bits_mask(vcpu, context);
4707         update_permission_bitmask(vcpu, context, false);
4708         update_pkru_bitmask(vcpu, context, false);
4709         update_last_nonleaf_level(vcpu, context);
4711         context->page_fault = paging32_page_fault;
4712         context->gva_to_gpa = paging32_gva_to_gpa;
4713         context->sync_page = paging32_sync_page;
4714         context->invlpg = paging32_invlpg;
4715         context->update_pte = paging32_update_pte;
4716         context->shadow_root_level = PT32E_ROOT_LEVEL;
4717         context->direct_map = false;
4720 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4721                                    struct kvm_mmu *context)
4723         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4726 static union kvm_mmu_page_role
4727 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu)
4729         union kvm_mmu_page_role role = {0};
4731         role.guest_mode = is_guest_mode(vcpu);
4732         role.smm = is_smm(vcpu);
4733         role.ad_disabled = (shadow_accessed_mask == 0);
4734         role.level = kvm_x86_ops->get_tdp_level(vcpu);
4735         role.direct = true;
4736         role.access = ACC_ALL;
4738         return role;
4741 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4743         struct kvm_mmu *context = &vcpu->arch.mmu;
4745         context->base_role.word = mmu_base_role_mask.word &
4746                                   kvm_calc_tdp_mmu_root_page_role(vcpu).word;
4747         context->page_fault = tdp_page_fault;
4748         context->sync_page = nonpaging_sync_page;
4749         context->invlpg = nonpaging_invlpg;
4750         context->update_pte = nonpaging_update_pte;
4751         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4752         context->direct_map = true;
4753         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4754         context->get_cr3 = get_cr3;
4755         context->get_pdptr = kvm_pdptr_read;
4756         context->inject_page_fault = kvm_inject_page_fault;
4758         if (!is_paging(vcpu)) {
4759                 context->nx = false;
4760                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4761                 context->root_level = 0;
4762         } else if (is_long_mode(vcpu)) {
4763                 context->nx = is_nx(vcpu);
4764                 context->root_level = is_la57_mode(vcpu) ?
4765                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4766                 reset_rsvds_bits_mask(vcpu, context);
4767                 context->gva_to_gpa = paging64_gva_to_gpa;
4768         } else if (is_pae(vcpu)) {
4769                 context->nx = is_nx(vcpu);
4770                 context->root_level = PT32E_ROOT_LEVEL;
4771                 reset_rsvds_bits_mask(vcpu, context);
4772                 context->gva_to_gpa = paging64_gva_to_gpa;
4773         } else {
4774                 context->nx = false;
4775                 context->root_level = PT32_ROOT_LEVEL;
4776                 reset_rsvds_bits_mask(vcpu, context);
4777                 context->gva_to_gpa = paging32_gva_to_gpa;
4778         }
4780         update_permission_bitmask(vcpu, context, false);
4781         update_pkru_bitmask(vcpu, context, false);
4782         update_last_nonleaf_level(vcpu, context);
4783         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4786 static union kvm_mmu_page_role
4787 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu)
4789         union kvm_mmu_page_role role = {0};
4790         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4791         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4793         role.nxe = is_nx(vcpu);
4794         role.cr4_pae = !!is_pae(vcpu);
4795         role.cr0_wp  = is_write_protection(vcpu);
4796         role.smep_andnot_wp = smep && !is_write_protection(vcpu);
4797         role.smap_andnot_wp = smap && !is_write_protection(vcpu);
4798         role.guest_mode = is_guest_mode(vcpu);
4799         role.smm = is_smm(vcpu);
4800         role.direct = !is_paging(vcpu);
4801         role.access = ACC_ALL;
4803         if (!is_long_mode(vcpu))
4804                 role.level = PT32E_ROOT_LEVEL;
4805         else if (is_la57_mode(vcpu))
4806                 role.level = PT64_ROOT_5LEVEL;
4807         else
4808                 role.level = PT64_ROOT_4LEVEL;
4810         return role;
4813 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4815         struct kvm_mmu *context = &vcpu->arch.mmu;
4817         if (!is_paging(vcpu))
4818                 nonpaging_init_context(vcpu, context);
4819         else if (is_long_mode(vcpu))
4820                 paging64_init_context(vcpu, context);
4821         else if (is_pae(vcpu))
4822                 paging32E_init_context(vcpu, context);
4823         else
4824                 paging32_init_context(vcpu, context);
4826         context->base_role.word = mmu_base_role_mask.word &
4827                                   kvm_calc_shadow_mmu_root_page_role(vcpu).word;
4828         reset_shadow_zero_bits_mask(vcpu, context);
4830 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4832 static union kvm_mmu_page_role
4833 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty)
4835         union kvm_mmu_page_role role = vcpu->arch.mmu.base_role;
4837         role.level = PT64_ROOT_4LEVEL;
4838         role.direct = false;
4839         role.ad_disabled = !accessed_dirty;
4840         role.guest_mode = true;
4841         role.access = ACC_ALL;
4843         return role;
4846 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4847                              bool accessed_dirty, gpa_t new_eptp)
4849         struct kvm_mmu *context = &vcpu->arch.mmu;
4850         union kvm_mmu_page_role root_page_role =
4851                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty);
4853         __kvm_mmu_new_cr3(vcpu, new_eptp, root_page_role, false);
4854         context->shadow_root_level = PT64_ROOT_4LEVEL;
4856         context->nx = true;
4857         context->ept_ad = accessed_dirty;
4858         context->page_fault = ept_page_fault;
4859         context->gva_to_gpa = ept_gva_to_gpa;
4860         context->sync_page = ept_sync_page;
4861         context->invlpg = ept_invlpg;
4862         context->update_pte = ept_update_pte;
4863         context->root_level = PT64_ROOT_4LEVEL;
4864         context->direct_map = false;
4865         context->base_role.word = root_page_role.word & mmu_base_role_mask.word;
4866         update_permission_bitmask(vcpu, context, true);
4867         update_pkru_bitmask(vcpu, context, true);
4868         update_last_nonleaf_level(vcpu, context);
4869         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4870         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4872 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4874 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4876         struct kvm_mmu *context = &vcpu->arch.mmu;
4878         kvm_init_shadow_mmu(vcpu);
4879         context->set_cr3           = kvm_x86_ops->set_cr3;
4880         context->get_cr3           = get_cr3;
4881         context->get_pdptr         = kvm_pdptr_read;
4882         context->inject_page_fault = kvm_inject_page_fault;
4885 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4887         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4889         g_context->get_cr3           = get_cr3;
4890         g_context->get_pdptr         = kvm_pdptr_read;
4891         g_context->inject_page_fault = kvm_inject_page_fault;
4893         /*
4894          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4895          * L1's nested page tables (e.g. EPT12). The nested translation
4896          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4897          * L2's page tables as the first level of translation and L1's
4898          * nested page tables as the second level of translation. Basically
4899          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4900          */
4901         if (!is_paging(vcpu)) {
4902                 g_context->nx = false;
4903                 g_context->root_level = 0;
4904                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4905         } else if (is_long_mode(vcpu)) {
4906                 g_context->nx = is_nx(vcpu);
4907                 g_context->root_level = is_la57_mode(vcpu) ?
4908                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4909                 reset_rsvds_bits_mask(vcpu, g_context);
4910                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4911         } else if (is_pae(vcpu)) {
4912                 g_context->nx = is_nx(vcpu);
4913                 g_context->root_level = PT32E_ROOT_LEVEL;
4914                 reset_rsvds_bits_mask(vcpu, g_context);
4915                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4916         } else {
4917                 g_context->nx = false;
4918                 g_context->root_level = PT32_ROOT_LEVEL;
4919                 reset_rsvds_bits_mask(vcpu, g_context);
4920                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4921         }
4923         update_permission_bitmask(vcpu, g_context, false);
4924         update_pkru_bitmask(vcpu, g_context, false);
4925         update_last_nonleaf_level(vcpu, g_context);
4928 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4930         if (reset_roots) {
4931                 uint i;
4933                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4935                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4936                         vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4937         }
4939         if (mmu_is_nested(vcpu))
4940                 init_kvm_nested_mmu(vcpu);
4941         else if (tdp_enabled)
4942                 init_kvm_tdp_mmu(vcpu);
4943         else
4944                 init_kvm_softmmu(vcpu);
4946 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4948 static union kvm_mmu_page_role
4949 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4951         if (tdp_enabled)
4952                 return kvm_calc_tdp_mmu_root_page_role(vcpu);
4953         else
4954                 return kvm_calc_shadow_mmu_root_page_role(vcpu);
4957 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4959         kvm_mmu_unload(vcpu);
4960         kvm_init_mmu(vcpu, true);
4962 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4964 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4966         int r;
4968         r = mmu_topup_memory_caches(vcpu);
4969         if (r)
4970                 goto out;
4971         r = mmu_alloc_roots(vcpu);
4972         kvm_mmu_sync_roots(vcpu);
4973         if (r)
4974                 goto out;
4975         kvm_mmu_load_cr3(vcpu);
4976         kvm_x86_ops->tlb_flush(vcpu, true);
4977 out:
4978         return r;
4980 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4982 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4984         kvm_mmu_free_roots(vcpu, KVM_MMU_ROOTS_ALL);
4985         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4987 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4989 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4990                                   struct kvm_mmu_page *sp, u64 *spte,
4991                                   const void *new)
4993         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4994                 ++vcpu->kvm->stat.mmu_pde_zapped;
4995                 return;
4996         }
4998         ++vcpu->kvm->stat.mmu_pte_updated;
4999         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
5002 static bool need_remote_flush(u64 old, u64 new)
5004         if (!is_shadow_present_pte(old))
5005                 return false;
5006         if (!is_shadow_present_pte(new))
5007                 return true;
5008         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5009                 return true;
5010         old ^= shadow_nx_mask;
5011         new ^= shadow_nx_mask;
5012         return (old & ~new & PT64_PERM_MASK) != 0;
5015 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5016                                     const u8 *new, int *bytes)
5018         u64 gentry;
5019         int r;
5021         /*
5022          * Assume that the pte write on a page table of the same type
5023          * as the current vcpu paging mode since we update the sptes only
5024          * when they have the same mode.
5025          */
5026         if (is_pae(vcpu) && *bytes == 4) {
5027                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5028                 *gpa &= ~(gpa_t)7;
5029                 *bytes = 8;
5030                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
5031                 if (r)
5032                         gentry = 0;
5033                 new = (const u8 *)&gentry;
5034         }
5036         switch (*bytes) {
5037         case 4:
5038                 gentry = *(const u32 *)new;
5039                 break;
5040         case 8:
5041                 gentry = *(const u64 *)new;
5042                 break;
5043         default:
5044                 gentry = 0;
5045                 break;
5046         }
5048         return gentry;
5051 /*
5052  * If we're seeing too many writes to a page, it may no longer be a page table,
5053  * or we may be forking, in which case it is better to unmap the page.
5054  */
5055 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5057         /*
5058          * Skip write-flooding detected for the sp whose level is 1, because
5059          * it can become unsync, then the guest page is not write-protected.
5060          */
5061         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5062                 return false;
5064         atomic_inc(&sp->write_flooding_count);
5065         return atomic_read(&sp->write_flooding_count) >= 3;
5068 /*
5069  * Misaligned accesses are too much trouble to fix up; also, they usually
5070  * indicate a page is not used as a page table.
5071  */
5072 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5073                                     int bytes)
5075         unsigned offset, pte_size, misaligned;
5077         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5078                  gpa, bytes, sp->role.word);
5080         offset = offset_in_page(gpa);
5081         pte_size = sp->role.cr4_pae ? 8 : 4;
5083         /*
5084          * Sometimes, the OS only writes the last one bytes to update status
5085          * bits, for example, in linux, andb instruction is used in clear_bit().
5086          */
5087         if (!(offset & (pte_size - 1)) && bytes == 1)
5088                 return false;
5090         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5091         misaligned |= bytes < 4;
5093         return misaligned;
5096 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5098         unsigned page_offset, quadrant;
5099         u64 *spte;
5100         int level;
5102         page_offset = offset_in_page(gpa);
5103         level = sp->role.level;
5104         *nspte = 1;
5105         if (!sp->role.cr4_pae) {
5106                 page_offset <<= 1;      /* 32->64 */
5107                 /*
5108                  * A 32-bit pde maps 4MB while the shadow pdes map
5109                  * only 2MB.  So we need to double the offset again
5110                  * and zap two pdes instead of one.
5111                  */
5112                 if (level == PT32_ROOT_LEVEL) {
5113                         page_offset &= ~7; /* kill rounding error */
5114                         page_offset <<= 1;
5115                         *nspte = 2;
5116                 }
5117                 quadrant = page_offset >> PAGE_SHIFT;
5118                 page_offset &= ~PAGE_MASK;
5119                 if (quadrant != sp->role.quadrant)
5120                         return NULL;
5121         }
5123         spte = &sp->spt[page_offset / sizeof(*spte)];
5124         return spte;
5127 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5128                               const u8 *new, int bytes,
5129                               struct kvm_page_track_notifier_node *node)
5131         gfn_t gfn = gpa >> PAGE_SHIFT;
5132         struct kvm_mmu_page *sp;
5133         LIST_HEAD(invalid_list);
5134         u64 entry, gentry, *spte;
5135         int npte;
5136         bool remote_flush, local_flush;
5138         /*
5139          * If we don't have indirect shadow pages, it means no page is
5140          * write-protected, so we can exit simply.
5141          */
5142         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5143                 return;
5145         remote_flush = local_flush = false;
5147         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5149         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
5151         /*
5152          * No need to care whether allocation memory is successful
5153          * or not since pte prefetch is skiped if it does not have
5154          * enough objects in the cache.
5155          */
5156         mmu_topup_memory_caches(vcpu);
5158         spin_lock(&vcpu->kvm->mmu_lock);
5159         ++vcpu->kvm->stat.mmu_pte_write;
5160         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5162         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5163                 if (detect_write_misaligned(sp, gpa, bytes) ||
5164                       detect_write_flooding(sp)) {
5165                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5166                         ++vcpu->kvm->stat.mmu_flooded;
5167                         continue;
5168                 }
5170                 spte = get_written_sptes(sp, gpa, &npte);
5171                 if (!spte)
5172                         continue;
5174                 local_flush = true;
5175                 while (npte--) {
5176                         entry = *spte;
5177                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5178                         if (gentry &&
5179                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
5180                               & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5181                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5182                         if (need_remote_flush(entry, *spte))
5183                                 remote_flush = true;
5184                         ++spte;
5185                 }
5186         }
5187         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5188         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5189         spin_unlock(&vcpu->kvm->mmu_lock);
5192 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5194         gpa_t gpa;
5195         int r;
5197         if (vcpu->arch.mmu.direct_map)
5198                 return 0;
5200         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5202         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5204         return r;
5206 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5208 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5210         LIST_HEAD(invalid_list);
5212         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5213                 return 0;
5215         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5216                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5217                         break;
5219                 ++vcpu->kvm->stat.mmu_recycled;
5220         }
5221         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5223         if (!kvm_mmu_available_pages(vcpu->kvm))
5224                 return -ENOSPC;
5225         return 0;
5228 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5229                        void *insn, int insn_len)
5231         int r, emulation_type = 0;
5232         enum emulation_result er;
5233         bool direct = vcpu->arch.mmu.direct_map;
5235         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5236         if (vcpu->arch.mmu.direct_map) {
5237                 vcpu->arch.gpa_available = true;
5238                 vcpu->arch.gpa_val = cr2;
5239         }
5241         r = RET_PF_INVALID;
5242         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5243                 r = handle_mmio_page_fault(vcpu, cr2, direct);
5244                 if (r == RET_PF_EMULATE)
5245                         goto emulate;
5246         }
5248         if (r == RET_PF_INVALID) {
5249                 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
5250                                               false);
5251                 WARN_ON(r == RET_PF_INVALID);
5252         }
5254         if (r == RET_PF_RETRY)
5255                 return 1;
5256         if (r < 0)
5257                 return r;
5259         /*
5260          * Before emulating the instruction, check if the error code
5261          * was due to a RO violation while translating the guest page.
5262          * This can occur when using nested virtualization with nested
5263          * paging in both guests. If true, we simply unprotect the page
5264          * and resume the guest.
5265          */
5266         if (vcpu->arch.mmu.direct_map &&
5267             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5268                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5269                 return 1;
5270         }
5272         /*
5273          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5274          * optimistically try to just unprotect the page and let the processor
5275          * re-execute the instruction that caused the page fault.  Do not allow
5276          * retrying MMIO emulation, as it's not only pointless but could also
5277          * cause us to enter an infinite loop because the processor will keep
5278          * faulting on the non-existent MMIO address.  Retrying an instruction
5279          * from a nested guest is also pointless and dangerous as we are only
5280          * explicitly shadowing L1's page tables, i.e. unprotecting something
5281          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5282          */
5283         if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5284                 emulation_type = EMULTYPE_ALLOW_RETRY;
5285 emulate:
5286         /*
5287          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5288          * This can happen if a guest gets a page-fault on data access but the HW
5289          * table walker is not able to read the instruction page (e.g instruction
5290          * page is not present in memory). In those cases we simply restart the
5291          * guest.
5292          */
5293         if (unlikely(insn && !insn_len))
5294                 return 1;
5296         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5298         switch (er) {
5299         case EMULATE_DONE:
5300                 return 1;
5301         case EMULATE_USER_EXIT:
5302                 ++vcpu->stat.mmio_exits;
5303                 /* fall through */
5304         case EMULATE_FAIL:
5305                 return 0;
5306         default:
5307                 BUG();
5308         }
5310 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5312 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5314         struct kvm_mmu *mmu = &vcpu->arch.mmu;
5315         int i;
5317         /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5318         if (is_noncanonical_address(gva, vcpu))
5319                 return;
5321         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5323         /*
5324          * INVLPG is required to invalidate any global mappings for the VA,
5325          * irrespective of PCID. Since it would take us roughly similar amount
5326          * of work to determine whether any of the prev_root mappings of the VA
5327          * is marked global, or to just sync it blindly, so we might as well
5328          * just always sync it.
5329          *
5330          * Mappings not reachable via the current cr3 or the prev_roots will be
5331          * synced when switching to that cr3, so nothing needs to be done here
5332          * for them.
5333          */
5334         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5335                 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5336                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5338         kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5339         ++vcpu->stat.invlpg;
5341 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5343 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5345         struct kvm_mmu *mmu = &vcpu->arch.mmu;
5346         bool tlb_flush = false;
5347         uint i;
5349         if (pcid == kvm_get_active_pcid(vcpu)) {
5350                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5351                 tlb_flush = true;
5352         }
5354         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5355                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5356                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5357                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5358                         tlb_flush = true;
5359                 }
5360         }
5362         if (tlb_flush)
5363                 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5365         ++vcpu->stat.invlpg;
5367         /*
5368          * Mappings not reachable via the current cr3 or the prev_roots will be
5369          * synced when switching to that cr3, so nothing needs to be done here
5370          * for them.
5371          */
5373 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5375 void kvm_enable_tdp(void)
5377         tdp_enabled = true;
5379 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5381 void kvm_disable_tdp(void)
5383         tdp_enabled = false;
5385 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5387 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5389         free_page((unsigned long)vcpu->arch.mmu.pae_root);
5390         free_page((unsigned long)vcpu->arch.mmu.lm_root);
5393 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5395         struct page *page;
5396         int i;
5398         if (tdp_enabled)
5399                 return 0;
5401         /*
5402          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5403          * Therefore we need to allocate shadow page tables in the first
5404          * 4GB of memory, which happens to fit the DMA32 zone.
5405          */
5406         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5407         if (!page)
5408                 return -ENOMEM;
5410         vcpu->arch.mmu.pae_root = page_address(page);
5411         for (i = 0; i < 4; ++i)
5412                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5414         return 0;
5417 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5419         uint i;
5421         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5422         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5423         vcpu->arch.mmu.translate_gpa = translate_gpa;
5424         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5426         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5427                 vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5429         return alloc_mmu_pages(vcpu);
5432 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5434         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5436         /*
5437          * kvm_mmu_setup() is called only on vCPU initialization.  
5438          * Therefore, no need to reset mmu roots as they are not yet
5439          * initialized.
5440          */
5441         kvm_init_mmu(vcpu, false);
5444 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5445                         struct kvm_memory_slot *slot,
5446                         struct kvm_page_track_notifier_node *node)
5448         kvm_mmu_invalidate_zap_all_pages(kvm);
5451 void kvm_mmu_init_vm(struct kvm *kvm)
5453         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5455         node->track_write = kvm_mmu_pte_write;
5456         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5457         kvm_page_track_register_notifier(kvm, node);
5460 void kvm_mmu_uninit_vm(struct kvm *kvm)
5462         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5464         kvm_page_track_unregister_notifier(kvm, node);
5467 /* The return value indicates if tlb flush on all vcpus is needed. */
5468 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5470 /* The caller should hold mmu-lock before calling this function. */
5471 static __always_inline bool
5472 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5473                         slot_level_handler fn, int start_level, int end_level,
5474                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5476         struct slot_rmap_walk_iterator iterator;
5477         bool flush = false;
5479         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5480                         end_gfn, &iterator) {
5481                 if (iterator.rmap)
5482                         flush |= fn(kvm, iterator.rmap);
5484                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5485                         if (flush && lock_flush_tlb) {
5486                                 kvm_flush_remote_tlbs(kvm);
5487                                 flush = false;
5488                         }
5489                         cond_resched_lock(&kvm->mmu_lock);
5490                 }
5491         }
5493         if (flush && lock_flush_tlb) {
5494                 kvm_flush_remote_tlbs(kvm);
5495                 flush = false;
5496         }
5498         return flush;
5501 static __always_inline bool
5502 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5503                   slot_level_handler fn, int start_level, int end_level,
5504                   bool lock_flush_tlb)
5506         return slot_handle_level_range(kvm, memslot, fn, start_level,
5507                         end_level, memslot->base_gfn,
5508                         memslot->base_gfn + memslot->npages - 1,
5509                         lock_flush_tlb);
5512 static __always_inline bool
5513 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5514                       slot_level_handler fn, bool lock_flush_tlb)
5516         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5517                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5520 static __always_inline bool
5521 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5522                         slot_level_handler fn, bool lock_flush_tlb)
5524         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5525                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5528 static __always_inline bool
5529 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5530                  slot_level_handler fn, bool lock_flush_tlb)
5532         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5533                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5536 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5538         struct kvm_memslots *slots;
5539         struct kvm_memory_slot *memslot;
5540         int i;
5542         spin_lock(&kvm->mmu_lock);
5543         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5544                 slots = __kvm_memslots(kvm, i);
5545                 kvm_for_each_memslot(memslot, slots) {
5546                         gfn_t start, end;
5548                         start = max(gfn_start, memslot->base_gfn);
5549                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5550                         if (start >= end)
5551                                 continue;
5553                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5554                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5555                                                 start, end - 1, true);
5556                 }
5557         }
5559         spin_unlock(&kvm->mmu_lock);
5562 static bool slot_rmap_write_protect(struct kvm *kvm,
5563                                     struct kvm_rmap_head *rmap_head)
5565         return __rmap_write_protect(kvm, rmap_head, false);
5568 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5569                                       struct kvm_memory_slot *memslot)
5571         bool flush;
5573         spin_lock(&kvm->mmu_lock);
5574         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5575                                       false);
5576         spin_unlock(&kvm->mmu_lock);
5578         /*
5579          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5580          * which do tlb flush out of mmu-lock should be serialized by
5581          * kvm->slots_lock otherwise tlb flush would be missed.
5582          */
5583         lockdep_assert_held(&kvm->slots_lock);
5585         /*
5586          * We can flush all the TLBs out of the mmu lock without TLB
5587          * corruption since we just change the spte from writable to
5588          * readonly so that we only need to care the case of changing
5589          * spte from present to present (changing the spte from present
5590          * to nonpresent will flush all the TLBs immediately), in other
5591          * words, the only case we care is mmu_spte_update() where we
5592          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5593          * instead of PT_WRITABLE_MASK, that means it does not depend
5594          * on PT_WRITABLE_MASK anymore.
5595          */
5596         if (flush)
5597                 kvm_flush_remote_tlbs(kvm);
5600 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5601                                          struct kvm_rmap_head *rmap_head)
5603         u64 *sptep;
5604         struct rmap_iterator iter;
5605         int need_tlb_flush = 0;
5606         kvm_pfn_t pfn;
5607         struct kvm_mmu_page *sp;
5609 restart:
5610         for_each_rmap_spte(rmap_head, &iter, sptep) {
5611                 sp = page_header(__pa(sptep));
5612                 pfn = spte_to_pfn(*sptep);
5614                 /*
5615                  * We cannot do huge page mapping for indirect shadow pages,
5616                  * which are found on the last rmap (level = 1) when not using
5617                  * tdp; such shadow pages are synced with the page table in
5618                  * the guest, and the guest page table is using 4K page size
5619                  * mapping if the indirect sp has level = 1.
5620                  */
5621                 if (sp->role.direct &&
5622                         !kvm_is_reserved_pfn(pfn) &&
5623                         PageTransCompoundMap(pfn_to_page(pfn))) {
5624                         drop_spte(kvm, sptep);
5625                         need_tlb_flush = 1;
5626                         goto restart;
5627                 }
5628         }
5630         return need_tlb_flush;
5633 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5634                                    const struct kvm_memory_slot *memslot)
5636         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5637         spin_lock(&kvm->mmu_lock);
5638         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5639                          kvm_mmu_zap_collapsible_spte, true);
5640         spin_unlock(&kvm->mmu_lock);
5643 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5644                                    struct kvm_memory_slot *memslot)
5646         bool flush;
5648         spin_lock(&kvm->mmu_lock);
5649         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5650         spin_unlock(&kvm->mmu_lock);
5652         lockdep_assert_held(&kvm->slots_lock);
5654         /*
5655          * It's also safe to flush TLBs out of mmu lock here as currently this
5656          * function is only used for dirty logging, in which case flushing TLB
5657          * out of mmu lock also guarantees no dirty pages will be lost in
5658          * dirty_bitmap.
5659          */
5660         if (flush)
5661                 kvm_flush_remote_tlbs(kvm);
5663 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5665 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5666                                         struct kvm_memory_slot *memslot)
5668         bool flush;
5670         spin_lock(&kvm->mmu_lock);
5671         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5672                                         false);
5673         spin_unlock(&kvm->mmu_lock);
5675         /* see kvm_mmu_slot_remove_write_access */
5676         lockdep_assert_held(&kvm->slots_lock);
5678         if (flush)
5679                 kvm_flush_remote_tlbs(kvm);
5681 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5683 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5684                             struct kvm_memory_slot *memslot)
5686         bool flush;
5688         spin_lock(&kvm->mmu_lock);
5689         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5690         spin_unlock(&kvm->mmu_lock);
5692         lockdep_assert_held(&kvm->slots_lock);
5694         /* see kvm_mmu_slot_leaf_clear_dirty */
5695         if (flush)
5696                 kvm_flush_remote_tlbs(kvm);
5698 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5700 #define BATCH_ZAP_PAGES 10
5701 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5703         struct kvm_mmu_page *sp, *node;
5704         int batch = 0;
5706 restart:
5707         list_for_each_entry_safe_reverse(sp, node,
5708               &kvm->arch.active_mmu_pages, link) {
5709                 int ret;
5711                 /*
5712                  * No obsolete page exists before new created page since
5713                  * active_mmu_pages is the FIFO list.
5714                  */
5715                 if (!is_obsolete_sp(kvm, sp))
5716                         break;
5718                 /*
5719                  * Since we are reversely walking the list and the invalid
5720                  * list will be moved to the head, skip the invalid page
5721                  * can help us to avoid the infinity list walking.
5722                  */
5723                 if (sp->role.invalid)
5724                         continue;
5726                 /*
5727                  * Need not flush tlb since we only zap the sp with invalid
5728                  * generation number.
5729                  */
5730                 if (batch >= BATCH_ZAP_PAGES &&
5731                       cond_resched_lock(&kvm->mmu_lock)) {
5732                         batch = 0;
5733                         goto restart;
5734                 }
5736                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5737                                 &kvm->arch.zapped_obsolete_pages);
5738                 batch += ret;
5740                 if (ret)
5741                         goto restart;
5742         }
5744         /*
5745          * Should flush tlb before free page tables since lockless-walking
5746          * may use the pages.
5747          */
5748         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5751 /*
5752  * Fast invalidate all shadow pages and use lock-break technique
5753  * to zap obsolete pages.
5754  *
5755  * It's required when memslot is being deleted or VM is being
5756  * destroyed, in these cases, we should ensure that KVM MMU does
5757  * not use any resource of the being-deleted slot or all slots
5758  * after calling the function.
5759  */
5760 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5762         spin_lock(&kvm->mmu_lock);
5763         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5764         kvm->arch.mmu_valid_gen++;
5766         /*
5767          * Notify all vcpus to reload its shadow page table
5768          * and flush TLB. Then all vcpus will switch to new
5769          * shadow page table with the new mmu_valid_gen.
5770          *
5771          * Note: we should do this under the protection of
5772          * mmu-lock, otherwise, vcpu would purge shadow page
5773          * but miss tlb flush.
5774          */
5775         kvm_reload_remote_mmus(kvm);
5777         kvm_zap_obsolete_pages(kvm);
5778         spin_unlock(&kvm->mmu_lock);
5781 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5783         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5786 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5788         /*
5789          * The very rare case: if the generation-number is round,
5790          * zap all shadow pages.
5791          */
5792         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5793                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5794                 kvm_mmu_invalidate_zap_all_pages(kvm);
5795         }
5798 static unsigned long
5799 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5801         struct kvm *kvm;
5802         int nr_to_scan = sc->nr_to_scan;
5803         unsigned long freed = 0;
5805         spin_lock(&kvm_lock);
5807         list_for_each_entry(kvm, &vm_list, vm_list) {
5808                 int idx;
5809                 LIST_HEAD(invalid_list);
5811                 /*
5812                  * Never scan more than sc->nr_to_scan VM instances.
5813                  * Will not hit this condition practically since we do not try
5814                  * to shrink more than one VM and it is very unlikely to see
5815                  * !n_used_mmu_pages so many times.
5816                  */
5817                 if (!nr_to_scan--)
5818                         break;
5819                 /*
5820                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5821                  * here. We may skip a VM instance errorneosly, but we do not
5822                  * want to shrink a VM that only started to populate its MMU
5823                  * anyway.
5824                  */
5825                 if (!kvm->arch.n_used_mmu_pages &&
5826                       !kvm_has_zapped_obsolete_pages(kvm))
5827                         continue;
5829                 idx = srcu_read_lock(&kvm->srcu);
5830                 spin_lock(&kvm->mmu_lock);
5832                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5833                         kvm_mmu_commit_zap_page(kvm,
5834                               &kvm->arch.zapped_obsolete_pages);
5835                         goto unlock;
5836                 }
5838                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5839                         freed++;
5840                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5842 unlock:
5843                 spin_unlock(&kvm->mmu_lock);
5844                 srcu_read_unlock(&kvm->srcu, idx);
5846                 /*
5847                  * unfair on small ones
5848                  * per-vm shrinkers cry out
5849                  * sadness comes quickly
5850                  */
5851                 list_move_tail(&kvm->vm_list, &vm_list);
5852                 break;
5853         }
5855         spin_unlock(&kvm_lock);
5856         return freed;
5859 static unsigned long
5860 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5862         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5865 static struct shrinker mmu_shrinker = {
5866         .count_objects = mmu_shrink_count,
5867         .scan_objects = mmu_shrink_scan,
5868         .seeks = DEFAULT_SEEKS * 10,
5869 };
5871 static void mmu_destroy_caches(void)
5873         kmem_cache_destroy(pte_list_desc_cache);
5874         kmem_cache_destroy(mmu_page_header_cache);
5877 int kvm_mmu_module_init(void)
5879         int ret = -ENOMEM;
5881         kvm_mmu_reset_all_pte_masks();
5883         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5884                                             sizeof(struct pte_list_desc),
5885                                             0, SLAB_ACCOUNT, NULL);
5886         if (!pte_list_desc_cache)
5887                 goto out;
5889         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5890                                                   sizeof(struct kvm_mmu_page),
5891                                                   0, SLAB_ACCOUNT, NULL);
5892         if (!mmu_page_header_cache)
5893                 goto out;
5895         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5896                 goto out;
5898         ret = register_shrinker(&mmu_shrinker);
5899         if (ret)
5900                 goto out;
5902         return 0;
5904 out:
5905         mmu_destroy_caches();
5906         return ret;
5909 /*
5910  * Caculate mmu pages needed for kvm.
5911  */
5912 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5914         unsigned int nr_mmu_pages;
5915         unsigned int  nr_pages = 0;
5916         struct kvm_memslots *slots;
5917         struct kvm_memory_slot *memslot;
5918         int i;
5920         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5921                 slots = __kvm_memslots(kvm, i);
5923                 kvm_for_each_memslot(memslot, slots)
5924                         nr_pages += memslot->npages;
5925         }
5927         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5928         nr_mmu_pages = max(nr_mmu_pages,
5929                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5931         return nr_mmu_pages;
5934 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5936         kvm_mmu_unload(vcpu);
5937         free_mmu_pages(vcpu);
5938         mmu_free_memory_caches(vcpu);
5941 void kvm_mmu_module_exit(void)
5943         mmu_destroy_caches();
5944         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5945         unregister_shrinker(&mmu_shrinker);
5946         mmu_audit_disable();