]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - rpmsg/rpmsg.git/blob - arch/x86/kvm/x86.c
Merge tag 'devicetree-fixes-for-4.19-3' of git://git.kernel.org/pub/scm/linux/kernel...
[rpmsg/rpmsg.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
59 #include <trace/events/kvm.h>
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
153 #define KVM_NR_SHARED_MSRS 16
155 struct kvm_shared_msrs_global {
156         int nr;
157         u32 msrs[KVM_NR_SHARED_MSRS];
158 };
160 struct kvm_shared_msrs {
161         struct user_return_notifier urn;
162         bool registered;
163         struct kvm_shared_msr_values {
164                 u64 host;
165                 u64 curr;
166         } values[KVM_NR_SHARED_MSRS];
167 };
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173         { "pf_fixed", VCPU_STAT(pf_fixed) },
174         { "pf_guest", VCPU_STAT(pf_guest) },
175         { "tlb_flush", VCPU_STAT(tlb_flush) },
176         { "invlpg", VCPU_STAT(invlpg) },
177         { "exits", VCPU_STAT(exits) },
178         { "io_exits", VCPU_STAT(io_exits) },
179         { "mmio_exits", VCPU_STAT(mmio_exits) },
180         { "signal_exits", VCPU_STAT(signal_exits) },
181         { "irq_window", VCPU_STAT(irq_window_exits) },
182         { "nmi_window", VCPU_STAT(nmi_window_exits) },
183         { "halt_exits", VCPU_STAT(halt_exits) },
184         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
188         { "hypercalls", VCPU_STAT(hypercalls) },
189         { "request_irq", VCPU_STAT(request_irq_exits) },
190         { "irq_exits", VCPU_STAT(irq_exits) },
191         { "host_state_reload", VCPU_STAT(host_state_reload) },
192         { "fpu_reload", VCPU_STAT(fpu_reload) },
193         { "insn_emulation", VCPU_STAT(insn_emulation) },
194         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195         { "irq_injections", VCPU_STAT(irq_injections) },
196         { "nmi_injections", VCPU_STAT(nmi_injections) },
197         { "req_event", VCPU_STAT(req_event) },
198         { "l1d_flush", VCPU_STAT(l1d_flush) },
199         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
200         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
201         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
202         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
203         { "mmu_flooded", VM_STAT(mmu_flooded) },
204         { "mmu_recycled", VM_STAT(mmu_recycled) },
205         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
206         { "mmu_unsync", VM_STAT(mmu_unsync) },
207         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
208         { "largepages", VM_STAT(lpages) },
209         { "max_mmu_page_hash_collisions",
210                 VM_STAT(max_mmu_page_hash_collisions) },
211         { NULL }
212 };
214 u64 __read_mostly host_xcr0;
216 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
220         int i;
221         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
222                 vcpu->arch.apf.gfns[i] = ~0;
225 static void kvm_on_user_return(struct user_return_notifier *urn)
227         unsigned slot;
228         struct kvm_shared_msrs *locals
229                 = container_of(urn, struct kvm_shared_msrs, urn);
230         struct kvm_shared_msr_values *values;
231         unsigned long flags;
233         /*
234          * Disabling irqs at this point since the following code could be
235          * interrupted and executed through kvm_arch_hardware_disable()
236          */
237         local_irq_save(flags);
238         if (locals->registered) {
239                 locals->registered = false;
240                 user_return_notifier_unregister(urn);
241         }
242         local_irq_restore(flags);
243         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
244                 values = &locals->values[slot];
245                 if (values->host != values->curr) {
246                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
247                         values->curr = values->host;
248                 }
249         }
252 static void shared_msr_update(unsigned slot, u32 msr)
254         u64 value;
255         unsigned int cpu = smp_processor_id();
256         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
258         /* only read, and nobody should modify it at this time,
259          * so don't need lock */
260         if (slot >= shared_msrs_global.nr) {
261                 printk(KERN_ERR "kvm: invalid MSR slot!");
262                 return;
263         }
264         rdmsrl_safe(msr, &value);
265         smsr->values[slot].host = value;
266         smsr->values[slot].curr = value;
269 void kvm_define_shared_msr(unsigned slot, u32 msr)
271         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272         shared_msrs_global.msrs[slot] = msr;
273         if (slot >= shared_msrs_global.nr)
274                 shared_msrs_global.nr = slot + 1;
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
278 static void kvm_shared_msr_cpu_online(void)
280         unsigned i;
282         for (i = 0; i < shared_msrs_global.nr; ++i)
283                 shared_msr_update(i, shared_msrs_global.msrs[i]);
286 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
288         unsigned int cpu = smp_processor_id();
289         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
290         int err;
292         if (((value ^ smsr->values[slot].curr) & mask) == 0)
293                 return 0;
294         smsr->values[slot].curr = value;
295         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
296         if (err)
297                 return 1;
299         if (!smsr->registered) {
300                 smsr->urn.on_user_return = kvm_on_user_return;
301                 user_return_notifier_register(&smsr->urn);
302                 smsr->registered = true;
303         }
304         return 0;
306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
308 static void drop_user_return_notifiers(void)
310         unsigned int cpu = smp_processor_id();
311         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
313         if (smsr->registered)
314                 kvm_on_user_return(&smsr->urn);
317 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
319         return vcpu->arch.apic_base;
321 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
323 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
325         return kvm_apic_mode(kvm_get_apic_base(vcpu));
327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
329 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
331         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
332         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
333         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
334                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
336         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
337                 return 1;
338         if (!msr_info->host_initiated) {
339                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
340                         return 1;
341                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
342                         return 1;
343         }
345         kvm_lapic_set_base(vcpu, msr_info->data);
346         return 0;
348 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
350 asmlinkage __visible void kvm_spurious_fault(void)
352         /* Fault while not rebooting.  We want the trace. */
353         BUG();
355 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
357 #define EXCPT_BENIGN            0
358 #define EXCPT_CONTRIBUTORY      1
359 #define EXCPT_PF                2
361 static int exception_class(int vector)
363         switch (vector) {
364         case PF_VECTOR:
365                 return EXCPT_PF;
366         case DE_VECTOR:
367         case TS_VECTOR:
368         case NP_VECTOR:
369         case SS_VECTOR:
370         case GP_VECTOR:
371                 return EXCPT_CONTRIBUTORY;
372         default:
373                 break;
374         }
375         return EXCPT_BENIGN;
378 #define EXCPT_FAULT             0
379 #define EXCPT_TRAP              1
380 #define EXCPT_ABORT             2
381 #define EXCPT_INTERRUPT         3
383 static int exception_type(int vector)
385         unsigned int mask;
387         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
388                 return EXCPT_INTERRUPT;
390         mask = 1 << vector;
392         /* #DB is trap, as instruction watchpoints are handled elsewhere */
393         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
394                 return EXCPT_TRAP;
396         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
397                 return EXCPT_ABORT;
399         /* Reserved exceptions will result in fault */
400         return EXCPT_FAULT;
403 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
404                 unsigned nr, bool has_error, u32 error_code,
405                 bool reinject)
407         u32 prev_nr;
408         int class1, class2;
410         kvm_make_request(KVM_REQ_EVENT, vcpu);
412         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
413         queue:
414                 if (has_error && !is_protmode(vcpu))
415                         has_error = false;
416                 if (reinject) {
417                         /*
418                          * On vmentry, vcpu->arch.exception.pending is only
419                          * true if an event injection was blocked by
420                          * nested_run_pending.  In that case, however,
421                          * vcpu_enter_guest requests an immediate exit,
422                          * and the guest shouldn't proceed far enough to
423                          * need reinjection.
424                          */
425                         WARN_ON_ONCE(vcpu->arch.exception.pending);
426                         vcpu->arch.exception.injected = true;
427                 } else {
428                         vcpu->arch.exception.pending = true;
429                         vcpu->arch.exception.injected = false;
430                 }
431                 vcpu->arch.exception.has_error_code = has_error;
432                 vcpu->arch.exception.nr = nr;
433                 vcpu->arch.exception.error_code = error_code;
434                 return;
435         }
437         /* to check exception */
438         prev_nr = vcpu->arch.exception.nr;
439         if (prev_nr == DF_VECTOR) {
440                 /* triple fault -> shutdown */
441                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
442                 return;
443         }
444         class1 = exception_class(prev_nr);
445         class2 = exception_class(nr);
446         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
447                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
448                 /*
449                  * Generate double fault per SDM Table 5-5.  Set
450                  * exception.pending = true so that the double fault
451                  * can trigger a nested vmexit.
452                  */
453                 vcpu->arch.exception.pending = true;
454                 vcpu->arch.exception.injected = false;
455                 vcpu->arch.exception.has_error_code = true;
456                 vcpu->arch.exception.nr = DF_VECTOR;
457                 vcpu->arch.exception.error_code = 0;
458         } else
459                 /* replace previous exception with a new one in a hope
460                    that instruction re-execution will regenerate lost
461                    exception */
462                 goto queue;
465 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
467         kvm_multiple_exception(vcpu, nr, false, 0, false);
469 EXPORT_SYMBOL_GPL(kvm_queue_exception);
471 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
473         kvm_multiple_exception(vcpu, nr, false, 0, true);
475 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
477 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
479         if (err)
480                 kvm_inject_gp(vcpu, 0);
481         else
482                 return kvm_skip_emulated_instruction(vcpu);
484         return 1;
486 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
488 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
490         ++vcpu->stat.pf_guest;
491         vcpu->arch.exception.nested_apf =
492                 is_guest_mode(vcpu) && fault->async_page_fault;
493         if (vcpu->arch.exception.nested_apf)
494                 vcpu->arch.apf.nested_apf_token = fault->address;
495         else
496                 vcpu->arch.cr2 = fault->address;
497         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
499 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
501 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
503         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
504                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
505         else
506                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
508         return fault->nested_page_fault;
511 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
513         atomic_inc(&vcpu->arch.nmi_queued);
514         kvm_make_request(KVM_REQ_NMI, vcpu);
516 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
518 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
520         kvm_multiple_exception(vcpu, nr, true, error_code, false);
522 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
524 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
526         kvm_multiple_exception(vcpu, nr, true, error_code, true);
528 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
530 /*
531  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
532  * a #GP and return false.
533  */
534 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
536         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
537                 return true;
538         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
539         return false;
541 EXPORT_SYMBOL_GPL(kvm_require_cpl);
543 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
545         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
546                 return true;
548         kvm_queue_exception(vcpu, UD_VECTOR);
549         return false;
551 EXPORT_SYMBOL_GPL(kvm_require_dr);
553 /*
554  * This function will be used to read from the physical memory of the currently
555  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
556  * can read from guest physical or from the guest's guest physical memory.
557  */
558 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
559                             gfn_t ngfn, void *data, int offset, int len,
560                             u32 access)
562         struct x86_exception exception;
563         gfn_t real_gfn;
564         gpa_t ngpa;
566         ngpa     = gfn_to_gpa(ngfn);
567         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
568         if (real_gfn == UNMAPPED_GVA)
569                 return -EFAULT;
571         real_gfn = gpa_to_gfn(real_gfn);
573         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
575 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
577 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
578                                void *data, int offset, int len, u32 access)
580         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
581                                        data, offset, len, access);
584 /*
585  * Load the pae pdptrs.  Return true is they are all valid.
586  */
587 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
589         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
590         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
591         int i;
592         int ret;
593         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
595         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
596                                       offset * sizeof(u64), sizeof(pdpte),
597                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
598         if (ret < 0) {
599                 ret = 0;
600                 goto out;
601         }
602         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
603                 if ((pdpte[i] & PT_PRESENT_MASK) &&
604                     (pdpte[i] &
605                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
606                         ret = 0;
607                         goto out;
608                 }
609         }
610         ret = 1;
612         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
613         __set_bit(VCPU_EXREG_PDPTR,
614                   (unsigned long *)&vcpu->arch.regs_avail);
615         __set_bit(VCPU_EXREG_PDPTR,
616                   (unsigned long *)&vcpu->arch.regs_dirty);
617 out:
619         return ret;
621 EXPORT_SYMBOL_GPL(load_pdptrs);
623 bool pdptrs_changed(struct kvm_vcpu *vcpu)
625         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
626         bool changed = true;
627         int offset;
628         gfn_t gfn;
629         int r;
631         if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
632                 return false;
634         if (!test_bit(VCPU_EXREG_PDPTR,
635                       (unsigned long *)&vcpu->arch.regs_avail))
636                 return true;
638         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
639         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
640         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
641                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
642         if (r < 0)
643                 goto out;
644         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
645 out:
647         return changed;
649 EXPORT_SYMBOL_GPL(pdptrs_changed);
651 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
653         unsigned long old_cr0 = kvm_read_cr0(vcpu);
654         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
656         cr0 |= X86_CR0_ET;
658 #ifdef CONFIG_X86_64
659         if (cr0 & 0xffffffff00000000UL)
660                 return 1;
661 #endif
663         cr0 &= ~CR0_RESERVED_BITS;
665         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
666                 return 1;
668         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
669                 return 1;
671         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
672 #ifdef CONFIG_X86_64
673                 if ((vcpu->arch.efer & EFER_LME)) {
674                         int cs_db, cs_l;
676                         if (!is_pae(vcpu))
677                                 return 1;
678                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
679                         if (cs_l)
680                                 return 1;
681                 } else
682 #endif
683                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
684                                                  kvm_read_cr3(vcpu)))
685                         return 1;
686         }
688         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
689                 return 1;
691         kvm_x86_ops->set_cr0(vcpu, cr0);
693         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
694                 kvm_clear_async_pf_completion_queue(vcpu);
695                 kvm_async_pf_hash_reset(vcpu);
696         }
698         if ((cr0 ^ old_cr0) & update_bits)
699                 kvm_mmu_reset_context(vcpu);
701         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
702             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
703             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
704                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
706         return 0;
708 EXPORT_SYMBOL_GPL(kvm_set_cr0);
710 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
712         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
714 EXPORT_SYMBOL_GPL(kvm_lmsw);
716 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
718         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
719                         !vcpu->guest_xcr0_loaded) {
720                 /* kvm_set_xcr() also depends on this */
721                 if (vcpu->arch.xcr0 != host_xcr0)
722                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
723                 vcpu->guest_xcr0_loaded = 1;
724         }
727 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
729         if (vcpu->guest_xcr0_loaded) {
730                 if (vcpu->arch.xcr0 != host_xcr0)
731                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
732                 vcpu->guest_xcr0_loaded = 0;
733         }
736 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
738         u64 xcr0 = xcr;
739         u64 old_xcr0 = vcpu->arch.xcr0;
740         u64 valid_bits;
742         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
743         if (index != XCR_XFEATURE_ENABLED_MASK)
744                 return 1;
745         if (!(xcr0 & XFEATURE_MASK_FP))
746                 return 1;
747         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
748                 return 1;
750         /*
751          * Do not allow the guest to set bits that we do not support
752          * saving.  However, xcr0 bit 0 is always set, even if the
753          * emulated CPU does not support XSAVE (see fx_init).
754          */
755         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
756         if (xcr0 & ~valid_bits)
757                 return 1;
759         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
760             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
761                 return 1;
763         if (xcr0 & XFEATURE_MASK_AVX512) {
764                 if (!(xcr0 & XFEATURE_MASK_YMM))
765                         return 1;
766                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
767                         return 1;
768         }
769         vcpu->arch.xcr0 = xcr0;
771         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
772                 kvm_update_cpuid(vcpu);
773         return 0;
776 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
778         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
779             __kvm_set_xcr(vcpu, index, xcr)) {
780                 kvm_inject_gp(vcpu, 0);
781                 return 1;
782         }
783         return 0;
785 EXPORT_SYMBOL_GPL(kvm_set_xcr);
787 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
789         unsigned long old_cr4 = kvm_read_cr4(vcpu);
790         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
791                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
793         if (cr4 & CR4_RESERVED_BITS)
794                 return 1;
796         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
797                 return 1;
799         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
800                 return 1;
802         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
803                 return 1;
805         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
806                 return 1;
808         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
809                 return 1;
811         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
812                 return 1;
814         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
815                 return 1;
817         if (is_long_mode(vcpu)) {
818                 if (!(cr4 & X86_CR4_PAE))
819                         return 1;
820         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
821                    && ((cr4 ^ old_cr4) & pdptr_bits)
822                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
823                                    kvm_read_cr3(vcpu)))
824                 return 1;
826         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
827                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
828                         return 1;
830                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
831                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
832                         return 1;
833         }
835         if (kvm_x86_ops->set_cr4(vcpu, cr4))
836                 return 1;
838         if (((cr4 ^ old_cr4) & pdptr_bits) ||
839             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
840                 kvm_mmu_reset_context(vcpu);
842         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
843                 kvm_update_cpuid(vcpu);
845         return 0;
847 EXPORT_SYMBOL_GPL(kvm_set_cr4);
849 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
851         bool skip_tlb_flush = false;
852 #ifdef CONFIG_X86_64
853         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
855         if (pcid_enabled) {
856                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
857                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
858         }
859 #endif
861         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
862                 if (!skip_tlb_flush) {
863                         kvm_mmu_sync_roots(vcpu);
864                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
865                 }
866                 return 0;
867         }
869         if (is_long_mode(vcpu) &&
870             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
871                 return 1;
872         else if (is_pae(vcpu) && is_paging(vcpu) &&
873                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
874                 return 1;
876         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
877         vcpu->arch.cr3 = cr3;
878         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
880         return 0;
882 EXPORT_SYMBOL_GPL(kvm_set_cr3);
884 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
886         if (cr8 & CR8_RESERVED_BITS)
887                 return 1;
888         if (lapic_in_kernel(vcpu))
889                 kvm_lapic_set_tpr(vcpu, cr8);
890         else
891                 vcpu->arch.cr8 = cr8;
892         return 0;
894 EXPORT_SYMBOL_GPL(kvm_set_cr8);
896 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
898         if (lapic_in_kernel(vcpu))
899                 return kvm_lapic_get_cr8(vcpu);
900         else
901                 return vcpu->arch.cr8;
903 EXPORT_SYMBOL_GPL(kvm_get_cr8);
905 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
907         int i;
909         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
910                 for (i = 0; i < KVM_NR_DB_REGS; i++)
911                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
912                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
913         }
916 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
918         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
919                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
922 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
924         unsigned long dr7;
926         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
927                 dr7 = vcpu->arch.guest_debug_dr7;
928         else
929                 dr7 = vcpu->arch.dr7;
930         kvm_x86_ops->set_dr7(vcpu, dr7);
931         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
932         if (dr7 & DR7_BP_EN_MASK)
933                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
936 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
938         u64 fixed = DR6_FIXED_1;
940         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
941                 fixed |= DR6_RTM;
942         return fixed;
945 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
947         switch (dr) {
948         case 0 ... 3:
949                 vcpu->arch.db[dr] = val;
950                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
951                         vcpu->arch.eff_db[dr] = val;
952                 break;
953         case 4:
954                 /* fall through */
955         case 6:
956                 if (val & 0xffffffff00000000ULL)
957                         return -1; /* #GP */
958                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
959                 kvm_update_dr6(vcpu);
960                 break;
961         case 5:
962                 /* fall through */
963         default: /* 7 */
964                 if (val & 0xffffffff00000000ULL)
965                         return -1; /* #GP */
966                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
967                 kvm_update_dr7(vcpu);
968                 break;
969         }
971         return 0;
974 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
976         if (__kvm_set_dr(vcpu, dr, val)) {
977                 kvm_inject_gp(vcpu, 0);
978                 return 1;
979         }
980         return 0;
982 EXPORT_SYMBOL_GPL(kvm_set_dr);
984 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
986         switch (dr) {
987         case 0 ... 3:
988                 *val = vcpu->arch.db[dr];
989                 break;
990         case 4:
991                 /* fall through */
992         case 6:
993                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
994                         *val = vcpu->arch.dr6;
995                 else
996                         *val = kvm_x86_ops->get_dr6(vcpu);
997                 break;
998         case 5:
999                 /* fall through */
1000         default: /* 7 */
1001                 *val = vcpu->arch.dr7;
1002                 break;
1003         }
1004         return 0;
1006 EXPORT_SYMBOL_GPL(kvm_get_dr);
1008 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1010         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1011         u64 data;
1012         int err;
1014         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1015         if (err)
1016                 return err;
1017         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1018         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1019         return err;
1021 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1023 /*
1024  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1025  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1026  *
1027  * This list is modified at module load time to reflect the
1028  * capabilities of the host cpu. This capabilities test skips MSRs that are
1029  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1030  * may depend on host virtualization features rather than host cpu features.
1031  */
1033 static u32 msrs_to_save[] = {
1034         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1035         MSR_STAR,
1036 #ifdef CONFIG_X86_64
1037         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1038 #endif
1039         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1040         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1041         MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1042 };
1044 static unsigned num_msrs_to_save;
1046 static u32 emulated_msrs[] = {
1047         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1048         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1049         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1050         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1051         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1052         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1053         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1054         HV_X64_MSR_RESET,
1055         HV_X64_MSR_VP_INDEX,
1056         HV_X64_MSR_VP_RUNTIME,
1057         HV_X64_MSR_SCONTROL,
1058         HV_X64_MSR_STIMER0_CONFIG,
1059         HV_X64_MSR_VP_ASSIST_PAGE,
1060         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1061         HV_X64_MSR_TSC_EMULATION_STATUS,
1063         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1064         MSR_KVM_PV_EOI_EN,
1066         MSR_IA32_TSC_ADJUST,
1067         MSR_IA32_TSCDEADLINE,
1068         MSR_IA32_MISC_ENABLE,
1069         MSR_IA32_MCG_STATUS,
1070         MSR_IA32_MCG_CTL,
1071         MSR_IA32_MCG_EXT_CTL,
1072         MSR_IA32_SMBASE,
1073         MSR_SMI_COUNT,
1074         MSR_PLATFORM_INFO,
1075         MSR_MISC_FEATURES_ENABLES,
1076         MSR_AMD64_VIRT_SPEC_CTRL,
1077 };
1079 static unsigned num_emulated_msrs;
1081 /*
1082  * List of msr numbers which are used to expose MSR-based features that
1083  * can be used by a hypervisor to validate requested CPU features.
1084  */
1085 static u32 msr_based_features[] = {
1086         MSR_IA32_VMX_BASIC,
1087         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1088         MSR_IA32_VMX_PINBASED_CTLS,
1089         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1090         MSR_IA32_VMX_PROCBASED_CTLS,
1091         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1092         MSR_IA32_VMX_EXIT_CTLS,
1093         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1094         MSR_IA32_VMX_ENTRY_CTLS,
1095         MSR_IA32_VMX_MISC,
1096         MSR_IA32_VMX_CR0_FIXED0,
1097         MSR_IA32_VMX_CR0_FIXED1,
1098         MSR_IA32_VMX_CR4_FIXED0,
1099         MSR_IA32_VMX_CR4_FIXED1,
1100         MSR_IA32_VMX_VMCS_ENUM,
1101         MSR_IA32_VMX_PROCBASED_CTLS2,
1102         MSR_IA32_VMX_EPT_VPID_CAP,
1103         MSR_IA32_VMX_VMFUNC,
1105         MSR_F10H_DECFG,
1106         MSR_IA32_UCODE_REV,
1107         MSR_IA32_ARCH_CAPABILITIES,
1108 };
1110 static unsigned int num_msr_based_features;
1112 u64 kvm_get_arch_capabilities(void)
1114         u64 data;
1116         rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1118         /*
1119          * If we're doing cache flushes (either "always" or "cond")
1120          * we will do one whenever the guest does a vmlaunch/vmresume.
1121          * If an outer hypervisor is doing the cache flush for us
1122          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1123          * capability to the guest too, and if EPT is disabled we're not
1124          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1125          * require a nested hypervisor to do a flush of its own.
1126          */
1127         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1128                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1130         return data;
1132 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1134 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1136         switch (msr->index) {
1137         case MSR_IA32_ARCH_CAPABILITIES:
1138                 msr->data = kvm_get_arch_capabilities();
1139                 break;
1140         case MSR_IA32_UCODE_REV:
1141                 rdmsrl_safe(msr->index, &msr->data);
1142                 break;
1143         default:
1144                 if (kvm_x86_ops->get_msr_feature(msr))
1145                         return 1;
1146         }
1147         return 0;
1150 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1152         struct kvm_msr_entry msr;
1153         int r;
1155         msr.index = index;
1156         r = kvm_get_msr_feature(&msr);
1157         if (r)
1158                 return r;
1160         *data = msr.data;
1162         return 0;
1165 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1167         if (efer & efer_reserved_bits)
1168                 return false;
1170         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1171                         return false;
1173         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1174                         return false;
1176         return true;
1178 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1180 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1182         u64 old_efer = vcpu->arch.efer;
1184         if (!kvm_valid_efer(vcpu, efer))
1185                 return 1;
1187         if (is_paging(vcpu)
1188             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1189                 return 1;
1191         efer &= ~EFER_LMA;
1192         efer |= vcpu->arch.efer & EFER_LMA;
1194         kvm_x86_ops->set_efer(vcpu, efer);
1196         /* Update reserved bits */
1197         if ((efer ^ old_efer) & EFER_NX)
1198                 kvm_mmu_reset_context(vcpu);
1200         return 0;
1203 void kvm_enable_efer_bits(u64 mask)
1205        efer_reserved_bits &= ~mask;
1207 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1209 /*
1210  * Writes msr value into into the appropriate "register".
1211  * Returns 0 on success, non-0 otherwise.
1212  * Assumes vcpu_load() was already called.
1213  */
1214 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1216         switch (msr->index) {
1217         case MSR_FS_BASE:
1218         case MSR_GS_BASE:
1219         case MSR_KERNEL_GS_BASE:
1220         case MSR_CSTAR:
1221         case MSR_LSTAR:
1222                 if (is_noncanonical_address(msr->data, vcpu))
1223                         return 1;
1224                 break;
1225         case MSR_IA32_SYSENTER_EIP:
1226         case MSR_IA32_SYSENTER_ESP:
1227                 /*
1228                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1229                  * non-canonical address is written on Intel but not on
1230                  * AMD (which ignores the top 32-bits, because it does
1231                  * not implement 64-bit SYSENTER).
1232                  *
1233                  * 64-bit code should hence be able to write a non-canonical
1234                  * value on AMD.  Making the address canonical ensures that
1235                  * vmentry does not fail on Intel after writing a non-canonical
1236                  * value, and that something deterministic happens if the guest
1237                  * invokes 64-bit SYSENTER.
1238                  */
1239                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1240         }
1241         return kvm_x86_ops->set_msr(vcpu, msr);
1243 EXPORT_SYMBOL_GPL(kvm_set_msr);
1245 /*
1246  * Adapt set_msr() to msr_io()'s calling convention
1247  */
1248 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1250         struct msr_data msr;
1251         int r;
1253         msr.index = index;
1254         msr.host_initiated = true;
1255         r = kvm_get_msr(vcpu, &msr);
1256         if (r)
1257                 return r;
1259         *data = msr.data;
1260         return 0;
1263 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1265         struct msr_data msr;
1267         msr.data = *data;
1268         msr.index = index;
1269         msr.host_initiated = true;
1270         return kvm_set_msr(vcpu, &msr);
1273 #ifdef CONFIG_X86_64
1274 struct pvclock_gtod_data {
1275         seqcount_t      seq;
1277         struct { /* extract of a clocksource struct */
1278                 int vclock_mode;
1279                 u64     cycle_last;
1280                 u64     mask;
1281                 u32     mult;
1282                 u32     shift;
1283         } clock;
1285         u64             boot_ns;
1286         u64             nsec_base;
1287         u64             wall_time_sec;
1288 };
1290 static struct pvclock_gtod_data pvclock_gtod_data;
1292 static void update_pvclock_gtod(struct timekeeper *tk)
1294         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1295         u64 boot_ns;
1297         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1299         write_seqcount_begin(&vdata->seq);
1301         /* copy pvclock gtod data */
1302         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1303         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1304         vdata->clock.mask               = tk->tkr_mono.mask;
1305         vdata->clock.mult               = tk->tkr_mono.mult;
1306         vdata->clock.shift              = tk->tkr_mono.shift;
1308         vdata->boot_ns                  = boot_ns;
1309         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1311         vdata->wall_time_sec            = tk->xtime_sec;
1313         write_seqcount_end(&vdata->seq);
1315 #endif
1317 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1319         /*
1320          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1321          * vcpu_enter_guest.  This function is only called from
1322          * the physical CPU that is running vcpu.
1323          */
1324         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1327 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1329         int version;
1330         int r;
1331         struct pvclock_wall_clock wc;
1332         struct timespec64 boot;
1334         if (!wall_clock)
1335                 return;
1337         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1338         if (r)
1339                 return;
1341         if (version & 1)
1342                 ++version;  /* first time write, random junk */
1344         ++version;
1346         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1347                 return;
1349         /*
1350          * The guest calculates current wall clock time by adding
1351          * system time (updated by kvm_guest_time_update below) to the
1352          * wall clock specified here.  guest system time equals host
1353          * system time for us, thus we must fill in host boot time here.
1354          */
1355         getboottime64(&boot);
1357         if (kvm->arch.kvmclock_offset) {
1358                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1359                 boot = timespec64_sub(boot, ts);
1360         }
1361         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1362         wc.nsec = boot.tv_nsec;
1363         wc.version = version;
1365         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1367         version++;
1368         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1371 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1373         do_shl32_div32(dividend, divisor);
1374         return dividend;
1377 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1378                                s8 *pshift, u32 *pmultiplier)
1380         uint64_t scaled64;
1381         int32_t  shift = 0;
1382         uint64_t tps64;
1383         uint32_t tps32;
1385         tps64 = base_hz;
1386         scaled64 = scaled_hz;
1387         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1388                 tps64 >>= 1;
1389                 shift--;
1390         }
1392         tps32 = (uint32_t)tps64;
1393         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1394                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1395                         scaled64 >>= 1;
1396                 else
1397                         tps32 <<= 1;
1398                 shift++;
1399         }
1401         *pshift = shift;
1402         *pmultiplier = div_frac(scaled64, tps32);
1404         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1405                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1408 #ifdef CONFIG_X86_64
1409 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1410 #endif
1412 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1413 static unsigned long max_tsc_khz;
1415 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1417         u64 v = (u64)khz * (1000000 + ppm);
1418         do_div(v, 1000000);
1419         return v;
1422 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1424         u64 ratio;
1426         /* Guest TSC same frequency as host TSC? */
1427         if (!scale) {
1428                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1429                 return 0;
1430         }
1432         /* TSC scaling supported? */
1433         if (!kvm_has_tsc_control) {
1434                 if (user_tsc_khz > tsc_khz) {
1435                         vcpu->arch.tsc_catchup = 1;
1436                         vcpu->arch.tsc_always_catchup = 1;
1437                         return 0;
1438                 } else {
1439                         WARN(1, "user requested TSC rate below hardware speed\n");
1440                         return -1;
1441                 }
1442         }
1444         /* TSC scaling required  - calculate ratio */
1445         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1446                                 user_tsc_khz, tsc_khz);
1448         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1449                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1450                           user_tsc_khz);
1451                 return -1;
1452         }
1454         vcpu->arch.tsc_scaling_ratio = ratio;
1455         return 0;
1458 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1460         u32 thresh_lo, thresh_hi;
1461         int use_scaling = 0;
1463         /* tsc_khz can be zero if TSC calibration fails */
1464         if (user_tsc_khz == 0) {
1465                 /* set tsc_scaling_ratio to a safe value */
1466                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1467                 return -1;
1468         }
1470         /* Compute a scale to convert nanoseconds in TSC cycles */
1471         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1472                            &vcpu->arch.virtual_tsc_shift,
1473                            &vcpu->arch.virtual_tsc_mult);
1474         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1476         /*
1477          * Compute the variation in TSC rate which is acceptable
1478          * within the range of tolerance and decide if the
1479          * rate being applied is within that bounds of the hardware
1480          * rate.  If so, no scaling or compensation need be done.
1481          */
1482         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1483         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1484         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1485                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1486                 use_scaling = 1;
1487         }
1488         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1491 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1493         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1494                                       vcpu->arch.virtual_tsc_mult,
1495                                       vcpu->arch.virtual_tsc_shift);
1496         tsc += vcpu->arch.this_tsc_write;
1497         return tsc;
1500 static inline int gtod_is_based_on_tsc(int mode)
1502         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1505 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1507 #ifdef CONFIG_X86_64
1508         bool vcpus_matched;
1509         struct kvm_arch *ka = &vcpu->kvm->arch;
1510         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1512         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1513                          atomic_read(&vcpu->kvm->online_vcpus));
1515         /*
1516          * Once the masterclock is enabled, always perform request in
1517          * order to update it.
1518          *
1519          * In order to enable masterclock, the host clocksource must be TSC
1520          * and the vcpus need to have matched TSCs.  When that happens,
1521          * perform request to enable masterclock.
1522          */
1523         if (ka->use_master_clock ||
1524             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1525                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1527         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1528                             atomic_read(&vcpu->kvm->online_vcpus),
1529                             ka->use_master_clock, gtod->clock.vclock_mode);
1530 #endif
1533 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1535         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1536         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1539 /*
1540  * Multiply tsc by a fixed point number represented by ratio.
1541  *
1542  * The most significant 64-N bits (mult) of ratio represent the
1543  * integral part of the fixed point number; the remaining N bits
1544  * (frac) represent the fractional part, ie. ratio represents a fixed
1545  * point number (mult + frac * 2^(-N)).
1546  *
1547  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1548  */
1549 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1551         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1554 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1556         u64 _tsc = tsc;
1557         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1559         if (ratio != kvm_default_tsc_scaling_ratio)
1560                 _tsc = __scale_tsc(ratio, tsc);
1562         return _tsc;
1564 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1566 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1568         u64 tsc;
1570         tsc = kvm_scale_tsc(vcpu, rdtsc());
1572         return target_tsc - tsc;
1575 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1577         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1579         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1581 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1583 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1585         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1586         vcpu->arch.tsc_offset = offset;
1589 static inline bool kvm_check_tsc_unstable(void)
1591 #ifdef CONFIG_X86_64
1592         /*
1593          * TSC is marked unstable when we're running on Hyper-V,
1594          * 'TSC page' clocksource is good.
1595          */
1596         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1597                 return false;
1598 #endif
1599         return check_tsc_unstable();
1602 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1604         struct kvm *kvm = vcpu->kvm;
1605         u64 offset, ns, elapsed;
1606         unsigned long flags;
1607         bool matched;
1608         bool already_matched;
1609         u64 data = msr->data;
1610         bool synchronizing = false;
1612         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1613         offset = kvm_compute_tsc_offset(vcpu, data);
1614         ns = ktime_get_boot_ns();
1615         elapsed = ns - kvm->arch.last_tsc_nsec;
1617         if (vcpu->arch.virtual_tsc_khz) {
1618                 if (data == 0 && msr->host_initiated) {
1619                         /*
1620                          * detection of vcpu initialization -- need to sync
1621                          * with other vCPUs. This particularly helps to keep
1622                          * kvm_clock stable after CPU hotplug
1623                          */
1624                         synchronizing = true;
1625                 } else {
1626                         u64 tsc_exp = kvm->arch.last_tsc_write +
1627                                                 nsec_to_cycles(vcpu, elapsed);
1628                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1629                         /*
1630                          * Special case: TSC write with a small delta (1 second)
1631                          * of virtual cycle time against real time is
1632                          * interpreted as an attempt to synchronize the CPU.
1633                          */
1634                         synchronizing = data < tsc_exp + tsc_hz &&
1635                                         data + tsc_hz > tsc_exp;
1636                 }
1637         }
1639         /*
1640          * For a reliable TSC, we can match TSC offsets, and for an unstable
1641          * TSC, we add elapsed time in this computation.  We could let the
1642          * compensation code attempt to catch up if we fall behind, but
1643          * it's better to try to match offsets from the beginning.
1644          */
1645         if (synchronizing &&
1646             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1647                 if (!kvm_check_tsc_unstable()) {
1648                         offset = kvm->arch.cur_tsc_offset;
1649                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1650                 } else {
1651                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1652                         data += delta;
1653                         offset = kvm_compute_tsc_offset(vcpu, data);
1654                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1655                 }
1656                 matched = true;
1657                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1658         } else {
1659                 /*
1660                  * We split periods of matched TSC writes into generations.
1661                  * For each generation, we track the original measured
1662                  * nanosecond time, offset, and write, so if TSCs are in
1663                  * sync, we can match exact offset, and if not, we can match
1664                  * exact software computation in compute_guest_tsc()
1665                  *
1666                  * These values are tracked in kvm->arch.cur_xxx variables.
1667                  */
1668                 kvm->arch.cur_tsc_generation++;
1669                 kvm->arch.cur_tsc_nsec = ns;
1670                 kvm->arch.cur_tsc_write = data;
1671                 kvm->arch.cur_tsc_offset = offset;
1672                 matched = false;
1673                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1674                          kvm->arch.cur_tsc_generation, data);
1675         }
1677         /*
1678          * We also track th most recent recorded KHZ, write and time to
1679          * allow the matching interval to be extended at each write.
1680          */
1681         kvm->arch.last_tsc_nsec = ns;
1682         kvm->arch.last_tsc_write = data;
1683         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1685         vcpu->arch.last_guest_tsc = data;
1687         /* Keep track of which generation this VCPU has synchronized to */
1688         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1689         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1690         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1692         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1693                 update_ia32_tsc_adjust_msr(vcpu, offset);
1695         kvm_vcpu_write_tsc_offset(vcpu, offset);
1696         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1698         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1699         if (!matched) {
1700                 kvm->arch.nr_vcpus_matched_tsc = 0;
1701         } else if (!already_matched) {
1702                 kvm->arch.nr_vcpus_matched_tsc++;
1703         }
1705         kvm_track_tsc_matching(vcpu);
1706         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1709 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1711 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1712                                            s64 adjustment)
1714         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1717 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1719         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1720                 WARN_ON(adjustment < 0);
1721         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1722         adjust_tsc_offset_guest(vcpu, adjustment);
1725 #ifdef CONFIG_X86_64
1727 static u64 read_tsc(void)
1729         u64 ret = (u64)rdtsc_ordered();
1730         u64 last = pvclock_gtod_data.clock.cycle_last;
1732         if (likely(ret >= last))
1733                 return ret;
1735         /*
1736          * GCC likes to generate cmov here, but this branch is extremely
1737          * predictable (it's just a function of time and the likely is
1738          * very likely) and there's a data dependence, so force GCC
1739          * to generate a branch instead.  I don't barrier() because
1740          * we don't actually need a barrier, and if this function
1741          * ever gets inlined it will generate worse code.
1742          */
1743         asm volatile ("");
1744         return last;
1747 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1749         long v;
1750         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1751         u64 tsc_pg_val;
1753         switch (gtod->clock.vclock_mode) {
1754         case VCLOCK_HVCLOCK:
1755                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1756                                                   tsc_timestamp);
1757                 if (tsc_pg_val != U64_MAX) {
1758                         /* TSC page valid */
1759                         *mode = VCLOCK_HVCLOCK;
1760                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1761                                 gtod->clock.mask;
1762                 } else {
1763                         /* TSC page invalid */
1764                         *mode = VCLOCK_NONE;
1765                 }
1766                 break;
1767         case VCLOCK_TSC:
1768                 *mode = VCLOCK_TSC;
1769                 *tsc_timestamp = read_tsc();
1770                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1771                         gtod->clock.mask;
1772                 break;
1773         default:
1774                 *mode = VCLOCK_NONE;
1775         }
1777         if (*mode == VCLOCK_NONE)
1778                 *tsc_timestamp = v = 0;
1780         return v * gtod->clock.mult;
1783 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1785         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1786         unsigned long seq;
1787         int mode;
1788         u64 ns;
1790         do {
1791                 seq = read_seqcount_begin(&gtod->seq);
1792                 ns = gtod->nsec_base;
1793                 ns += vgettsc(tsc_timestamp, &mode);
1794                 ns >>= gtod->clock.shift;
1795                 ns += gtod->boot_ns;
1796         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1797         *t = ns;
1799         return mode;
1802 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1804         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1805         unsigned long seq;
1806         int mode;
1807         u64 ns;
1809         do {
1810                 seq = read_seqcount_begin(&gtod->seq);
1811                 ts->tv_sec = gtod->wall_time_sec;
1812                 ns = gtod->nsec_base;
1813                 ns += vgettsc(tsc_timestamp, &mode);
1814                 ns >>= gtod->clock.shift;
1815         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1817         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1818         ts->tv_nsec = ns;
1820         return mode;
1823 /* returns true if host is using TSC based clocksource */
1824 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1826         /* checked again under seqlock below */
1827         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1828                 return false;
1830         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1831                                                       tsc_timestamp));
1834 /* returns true if host is using TSC based clocksource */
1835 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1836                                            u64 *tsc_timestamp)
1838         /* checked again under seqlock below */
1839         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1840                 return false;
1842         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1844 #endif
1846 /*
1847  *
1848  * Assuming a stable TSC across physical CPUS, and a stable TSC
1849  * across virtual CPUs, the following condition is possible.
1850  * Each numbered line represents an event visible to both
1851  * CPUs at the next numbered event.
1852  *
1853  * "timespecX" represents host monotonic time. "tscX" represents
1854  * RDTSC value.
1855  *
1856  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1857  *
1858  * 1.  read timespec0,tsc0
1859  * 2.                                   | timespec1 = timespec0 + N
1860  *                                      | tsc1 = tsc0 + M
1861  * 3. transition to guest               | transition to guest
1862  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1863  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1864  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1865  *
1866  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1867  *
1868  *      - ret0 < ret1
1869  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1870  *              ...
1871  *      - 0 < N - M => M < N
1872  *
1873  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1874  * always the case (the difference between two distinct xtime instances
1875  * might be smaller then the difference between corresponding TSC reads,
1876  * when updating guest vcpus pvclock areas).
1877  *
1878  * To avoid that problem, do not allow visibility of distinct
1879  * system_timestamp/tsc_timestamp values simultaneously: use a master
1880  * copy of host monotonic time values. Update that master copy
1881  * in lockstep.
1882  *
1883  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1884  *
1885  */
1887 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1889 #ifdef CONFIG_X86_64
1890         struct kvm_arch *ka = &kvm->arch;
1891         int vclock_mode;
1892         bool host_tsc_clocksource, vcpus_matched;
1894         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1895                         atomic_read(&kvm->online_vcpus));
1897         /*
1898          * If the host uses TSC clock, then passthrough TSC as stable
1899          * to the guest.
1900          */
1901         host_tsc_clocksource = kvm_get_time_and_clockread(
1902                                         &ka->master_kernel_ns,
1903                                         &ka->master_cycle_now);
1905         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1906                                 && !ka->backwards_tsc_observed
1907                                 && !ka->boot_vcpu_runs_old_kvmclock;
1909         if (ka->use_master_clock)
1910                 atomic_set(&kvm_guest_has_master_clock, 1);
1912         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1913         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1914                                         vcpus_matched);
1915 #endif
1918 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1920         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1923 static void kvm_gen_update_masterclock(struct kvm *kvm)
1925 #ifdef CONFIG_X86_64
1926         int i;
1927         struct kvm_vcpu *vcpu;
1928         struct kvm_arch *ka = &kvm->arch;
1930         spin_lock(&ka->pvclock_gtod_sync_lock);
1931         kvm_make_mclock_inprogress_request(kvm);
1932         /* no guest entries from this point */
1933         pvclock_update_vm_gtod_copy(kvm);
1935         kvm_for_each_vcpu(i, vcpu, kvm)
1936                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1938         /* guest entries allowed */
1939         kvm_for_each_vcpu(i, vcpu, kvm)
1940                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1942         spin_unlock(&ka->pvclock_gtod_sync_lock);
1943 #endif
1946 u64 get_kvmclock_ns(struct kvm *kvm)
1948         struct kvm_arch *ka = &kvm->arch;
1949         struct pvclock_vcpu_time_info hv_clock;
1950         u64 ret;
1952         spin_lock(&ka->pvclock_gtod_sync_lock);
1953         if (!ka->use_master_clock) {
1954                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1955                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1956         }
1958         hv_clock.tsc_timestamp = ka->master_cycle_now;
1959         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1960         spin_unlock(&ka->pvclock_gtod_sync_lock);
1962         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1963         get_cpu();
1965         if (__this_cpu_read(cpu_tsc_khz)) {
1966                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1967                                    &hv_clock.tsc_shift,
1968                                    &hv_clock.tsc_to_system_mul);
1969                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1970         } else
1971                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1973         put_cpu();
1975         return ret;
1978 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1980         struct kvm_vcpu_arch *vcpu = &v->arch;
1981         struct pvclock_vcpu_time_info guest_hv_clock;
1983         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1984                 &guest_hv_clock, sizeof(guest_hv_clock))))
1985                 return;
1987         /* This VCPU is paused, but it's legal for a guest to read another
1988          * VCPU's kvmclock, so we really have to follow the specification where
1989          * it says that version is odd if data is being modified, and even after
1990          * it is consistent.
1991          *
1992          * Version field updates must be kept separate.  This is because
1993          * kvm_write_guest_cached might use a "rep movs" instruction, and
1994          * writes within a string instruction are weakly ordered.  So there
1995          * are three writes overall.
1996          *
1997          * As a small optimization, only write the version field in the first
1998          * and third write.  The vcpu->pv_time cache is still valid, because the
1999          * version field is the first in the struct.
2000          */
2001         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2003         if (guest_hv_clock.version & 1)
2004                 ++guest_hv_clock.version;  /* first time write, random junk */
2006         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2007         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2008                                 &vcpu->hv_clock,
2009                                 sizeof(vcpu->hv_clock.version));
2011         smp_wmb();
2013         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2014         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2016         if (vcpu->pvclock_set_guest_stopped_request) {
2017                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2018                 vcpu->pvclock_set_guest_stopped_request = false;
2019         }
2021         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2023         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2024                                 &vcpu->hv_clock,
2025                                 sizeof(vcpu->hv_clock));
2027         smp_wmb();
2029         vcpu->hv_clock.version++;
2030         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2031                                 &vcpu->hv_clock,
2032                                 sizeof(vcpu->hv_clock.version));
2035 static int kvm_guest_time_update(struct kvm_vcpu *v)
2037         unsigned long flags, tgt_tsc_khz;
2038         struct kvm_vcpu_arch *vcpu = &v->arch;
2039         struct kvm_arch *ka = &v->kvm->arch;
2040         s64 kernel_ns;
2041         u64 tsc_timestamp, host_tsc;
2042         u8 pvclock_flags;
2043         bool use_master_clock;
2045         kernel_ns = 0;
2046         host_tsc = 0;
2048         /*
2049          * If the host uses TSC clock, then passthrough TSC as stable
2050          * to the guest.
2051          */
2052         spin_lock(&ka->pvclock_gtod_sync_lock);
2053         use_master_clock = ka->use_master_clock;
2054         if (use_master_clock) {
2055                 host_tsc = ka->master_cycle_now;
2056                 kernel_ns = ka->master_kernel_ns;
2057         }
2058         spin_unlock(&ka->pvclock_gtod_sync_lock);
2060         /* Keep irq disabled to prevent changes to the clock */
2061         local_irq_save(flags);
2062         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2063         if (unlikely(tgt_tsc_khz == 0)) {
2064                 local_irq_restore(flags);
2065                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2066                 return 1;
2067         }
2068         if (!use_master_clock) {
2069                 host_tsc = rdtsc();
2070                 kernel_ns = ktime_get_boot_ns();
2071         }
2073         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2075         /*
2076          * We may have to catch up the TSC to match elapsed wall clock
2077          * time for two reasons, even if kvmclock is used.
2078          *   1) CPU could have been running below the maximum TSC rate
2079          *   2) Broken TSC compensation resets the base at each VCPU
2080          *      entry to avoid unknown leaps of TSC even when running
2081          *      again on the same CPU.  This may cause apparent elapsed
2082          *      time to disappear, and the guest to stand still or run
2083          *      very slowly.
2084          */
2085         if (vcpu->tsc_catchup) {
2086                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2087                 if (tsc > tsc_timestamp) {
2088                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2089                         tsc_timestamp = tsc;
2090                 }
2091         }
2093         local_irq_restore(flags);
2095         /* With all the info we got, fill in the values */
2097         if (kvm_has_tsc_control)
2098                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2100         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2101                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2102                                    &vcpu->hv_clock.tsc_shift,
2103                                    &vcpu->hv_clock.tsc_to_system_mul);
2104                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2105         }
2107         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2108         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2109         vcpu->last_guest_tsc = tsc_timestamp;
2111         /* If the host uses TSC clocksource, then it is stable */
2112         pvclock_flags = 0;
2113         if (use_master_clock)
2114                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2116         vcpu->hv_clock.flags = pvclock_flags;
2118         if (vcpu->pv_time_enabled)
2119                 kvm_setup_pvclock_page(v);
2120         if (v == kvm_get_vcpu(v->kvm, 0))
2121                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2122         return 0;
2125 /*
2126  * kvmclock updates which are isolated to a given vcpu, such as
2127  * vcpu->cpu migration, should not allow system_timestamp from
2128  * the rest of the vcpus to remain static. Otherwise ntp frequency
2129  * correction applies to one vcpu's system_timestamp but not
2130  * the others.
2131  *
2132  * So in those cases, request a kvmclock update for all vcpus.
2133  * We need to rate-limit these requests though, as they can
2134  * considerably slow guests that have a large number of vcpus.
2135  * The time for a remote vcpu to update its kvmclock is bound
2136  * by the delay we use to rate-limit the updates.
2137  */
2139 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2141 static void kvmclock_update_fn(struct work_struct *work)
2143         int i;
2144         struct delayed_work *dwork = to_delayed_work(work);
2145         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2146                                            kvmclock_update_work);
2147         struct kvm *kvm = container_of(ka, struct kvm, arch);
2148         struct kvm_vcpu *vcpu;
2150         kvm_for_each_vcpu(i, vcpu, kvm) {
2151                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2152                 kvm_vcpu_kick(vcpu);
2153         }
2156 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2158         struct kvm *kvm = v->kvm;
2160         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2161         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2162                                         KVMCLOCK_UPDATE_DELAY);
2165 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2167 static void kvmclock_sync_fn(struct work_struct *work)
2169         struct delayed_work *dwork = to_delayed_work(work);
2170         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2171                                            kvmclock_sync_work);
2172         struct kvm *kvm = container_of(ka, struct kvm, arch);
2174         if (!kvmclock_periodic_sync)
2175                 return;
2177         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2178         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2179                                         KVMCLOCK_SYNC_PERIOD);
2182 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2184         u64 mcg_cap = vcpu->arch.mcg_cap;
2185         unsigned bank_num = mcg_cap & 0xff;
2186         u32 msr = msr_info->index;
2187         u64 data = msr_info->data;
2189         switch (msr) {
2190         case MSR_IA32_MCG_STATUS:
2191                 vcpu->arch.mcg_status = data;
2192                 break;
2193         case MSR_IA32_MCG_CTL:
2194                 if (!(mcg_cap & MCG_CTL_P) &&
2195                     (data || !msr_info->host_initiated))
2196                         return 1;
2197                 if (data != 0 && data != ~(u64)0)
2198                         return 1;
2199                 vcpu->arch.mcg_ctl = data;
2200                 break;
2201         default:
2202                 if (msr >= MSR_IA32_MC0_CTL &&
2203                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2204                         u32 offset = msr - MSR_IA32_MC0_CTL;
2205                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2206                          * some Linux kernels though clear bit 10 in bank 4 to
2207                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2208                          * this to avoid an uncatched #GP in the guest
2209                          */
2210                         if ((offset & 0x3) == 0 &&
2211                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2212                                 return -1;
2213                         if (!msr_info->host_initiated &&
2214                                 (offset & 0x3) == 1 && data != 0)
2215                                 return -1;
2216                         vcpu->arch.mce_banks[offset] = data;
2217                         break;
2218                 }
2219                 return 1;
2220         }
2221         return 0;
2224 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2226         struct kvm *kvm = vcpu->kvm;
2227         int lm = is_long_mode(vcpu);
2228         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2229                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2230         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2231                 : kvm->arch.xen_hvm_config.blob_size_32;
2232         u32 page_num = data & ~PAGE_MASK;
2233         u64 page_addr = data & PAGE_MASK;
2234         u8 *page;
2235         int r;
2237         r = -E2BIG;
2238         if (page_num >= blob_size)
2239                 goto out;
2240         r = -ENOMEM;
2241         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2242         if (IS_ERR(page)) {
2243                 r = PTR_ERR(page);
2244                 goto out;
2245         }
2246         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2247                 goto out_free;
2248         r = 0;
2249 out_free:
2250         kfree(page);
2251 out:
2252         return r;
2255 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2257         gpa_t gpa = data & ~0x3f;
2259         /* Bits 3:5 are reserved, Should be zero */
2260         if (data & 0x38)
2261                 return 1;
2263         vcpu->arch.apf.msr_val = data;
2265         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2266                 kvm_clear_async_pf_completion_queue(vcpu);
2267                 kvm_async_pf_hash_reset(vcpu);
2268                 return 0;
2269         }
2271         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2272                                         sizeof(u32)))
2273                 return 1;
2275         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2276         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2277         kvm_async_pf_wakeup_all(vcpu);
2278         return 0;
2281 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2283         vcpu->arch.pv_time_enabled = false;
2286 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2288         ++vcpu->stat.tlb_flush;
2289         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2292 static void record_steal_time(struct kvm_vcpu *vcpu)
2294         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2295                 return;
2297         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2298                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2299                 return;
2301         /*
2302          * Doing a TLB flush here, on the guest's behalf, can avoid
2303          * expensive IPIs.
2304          */
2305         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2306                 kvm_vcpu_flush_tlb(vcpu, false);
2308         if (vcpu->arch.st.steal.version & 1)
2309                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2311         vcpu->arch.st.steal.version += 1;
2313         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2314                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2316         smp_wmb();
2318         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2319                 vcpu->arch.st.last_steal;
2320         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2322         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2323                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2325         smp_wmb();
2327         vcpu->arch.st.steal.version += 1;
2329         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2330                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2333 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2335         bool pr = false;
2336         u32 msr = msr_info->index;
2337         u64 data = msr_info->data;
2339         switch (msr) {
2340         case MSR_AMD64_NB_CFG:
2341         case MSR_IA32_UCODE_WRITE:
2342         case MSR_VM_HSAVE_PA:
2343         case MSR_AMD64_PATCH_LOADER:
2344         case MSR_AMD64_BU_CFG2:
2345         case MSR_AMD64_DC_CFG:
2346                 break;
2348         case MSR_IA32_UCODE_REV:
2349                 if (msr_info->host_initiated)
2350                         vcpu->arch.microcode_version = data;
2351                 break;
2352         case MSR_EFER:
2353                 return set_efer(vcpu, data);
2354         case MSR_K7_HWCR:
2355                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2356                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2357                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2358                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2359                 if (data != 0) {
2360                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2361                                     data);
2362                         return 1;
2363                 }
2364                 break;
2365         case MSR_FAM10H_MMIO_CONF_BASE:
2366                 if (data != 0) {
2367                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2368                                     "0x%llx\n", data);
2369                         return 1;
2370                 }
2371                 break;
2372         case MSR_IA32_DEBUGCTLMSR:
2373                 if (!data) {
2374                         /* We support the non-activated case already */
2375                         break;
2376                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2377                         /* Values other than LBR and BTF are vendor-specific,
2378                            thus reserved and should throw a #GP */
2379                         return 1;
2380                 }
2381                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2382                             __func__, data);
2383                 break;
2384         case 0x200 ... 0x2ff:
2385                 return kvm_mtrr_set_msr(vcpu, msr, data);
2386         case MSR_IA32_APICBASE:
2387                 return kvm_set_apic_base(vcpu, msr_info);
2388         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2389                 return kvm_x2apic_msr_write(vcpu, msr, data);
2390         case MSR_IA32_TSCDEADLINE:
2391                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2392                 break;
2393         case MSR_IA32_TSC_ADJUST:
2394                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2395                         if (!msr_info->host_initiated) {
2396                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2397                                 adjust_tsc_offset_guest(vcpu, adj);
2398                         }
2399                         vcpu->arch.ia32_tsc_adjust_msr = data;
2400                 }
2401                 break;
2402         case MSR_IA32_MISC_ENABLE:
2403                 vcpu->arch.ia32_misc_enable_msr = data;
2404                 break;
2405         case MSR_IA32_SMBASE:
2406                 if (!msr_info->host_initiated)
2407                         return 1;
2408                 vcpu->arch.smbase = data;
2409                 break;
2410         case MSR_IA32_TSC:
2411                 kvm_write_tsc(vcpu, msr_info);
2412                 break;
2413         case MSR_SMI_COUNT:
2414                 if (!msr_info->host_initiated)
2415                         return 1;
2416                 vcpu->arch.smi_count = data;
2417                 break;
2418         case MSR_KVM_WALL_CLOCK_NEW:
2419         case MSR_KVM_WALL_CLOCK:
2420                 vcpu->kvm->arch.wall_clock = data;
2421                 kvm_write_wall_clock(vcpu->kvm, data);
2422                 break;
2423         case MSR_KVM_SYSTEM_TIME_NEW:
2424         case MSR_KVM_SYSTEM_TIME: {
2425                 struct kvm_arch *ka = &vcpu->kvm->arch;
2427                 kvmclock_reset(vcpu);
2429                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2430                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2432                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2433                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2435                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2436                 }
2438                 vcpu->arch.time = data;
2439                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2441                 /* we verify if the enable bit is set... */
2442                 if (!(data & 1))
2443                         break;
2445                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2446                      &vcpu->arch.pv_time, data & ~1ULL,
2447                      sizeof(struct pvclock_vcpu_time_info)))
2448                         vcpu->arch.pv_time_enabled = false;
2449                 else
2450                         vcpu->arch.pv_time_enabled = true;
2452                 break;
2453         }
2454         case MSR_KVM_ASYNC_PF_EN:
2455                 if (kvm_pv_enable_async_pf(vcpu, data))
2456                         return 1;
2457                 break;
2458         case MSR_KVM_STEAL_TIME:
2460                 if (unlikely(!sched_info_on()))
2461                         return 1;
2463                 if (data & KVM_STEAL_RESERVED_MASK)
2464                         return 1;
2466                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2467                                                 data & KVM_STEAL_VALID_BITS,
2468                                                 sizeof(struct kvm_steal_time)))
2469                         return 1;
2471                 vcpu->arch.st.msr_val = data;
2473                 if (!(data & KVM_MSR_ENABLED))
2474                         break;
2476                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2478                 break;
2479         case MSR_KVM_PV_EOI_EN:
2480                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2481                         return 1;
2482                 break;
2484         case MSR_IA32_MCG_CTL:
2485         case MSR_IA32_MCG_STATUS:
2486         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2487                 return set_msr_mce(vcpu, msr_info);
2489         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2490         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2491                 pr = true; /* fall through */
2492         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2493         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2494                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2495                         return kvm_pmu_set_msr(vcpu, msr_info);
2497                 if (pr || data != 0)
2498                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2499                                     "0x%x data 0x%llx\n", msr, data);
2500                 break;
2501         case MSR_K7_CLK_CTL:
2502                 /*
2503                  * Ignore all writes to this no longer documented MSR.
2504                  * Writes are only relevant for old K7 processors,
2505                  * all pre-dating SVM, but a recommended workaround from
2506                  * AMD for these chips. It is possible to specify the
2507                  * affected processor models on the command line, hence
2508                  * the need to ignore the workaround.
2509                  */
2510                 break;
2511         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2512         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2513         case HV_X64_MSR_CRASH_CTL:
2514         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2515         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2516         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2517         case HV_X64_MSR_TSC_EMULATION_STATUS:
2518                 return kvm_hv_set_msr_common(vcpu, msr, data,
2519                                              msr_info->host_initiated);
2520         case MSR_IA32_BBL_CR_CTL3:
2521                 /* Drop writes to this legacy MSR -- see rdmsr
2522                  * counterpart for further detail.
2523                  */
2524                 if (report_ignored_msrs)
2525                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2526                                 msr, data);
2527                 break;
2528         case MSR_AMD64_OSVW_ID_LENGTH:
2529                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2530                         return 1;
2531                 vcpu->arch.osvw.length = data;
2532                 break;
2533         case MSR_AMD64_OSVW_STATUS:
2534                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2535                         return 1;
2536                 vcpu->arch.osvw.status = data;
2537                 break;
2538         case MSR_PLATFORM_INFO:
2539                 if (!msr_info->host_initiated ||
2540                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2541                      cpuid_fault_enabled(vcpu)))
2542                         return 1;
2543                 vcpu->arch.msr_platform_info = data;
2544                 break;
2545         case MSR_MISC_FEATURES_ENABLES:
2546                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2547                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2548                      !supports_cpuid_fault(vcpu)))
2549                         return 1;
2550                 vcpu->arch.msr_misc_features_enables = data;
2551                 break;
2552         default:
2553                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2554                         return xen_hvm_config(vcpu, data);
2555                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2556                         return kvm_pmu_set_msr(vcpu, msr_info);
2557                 if (!ignore_msrs) {
2558                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2559                                     msr, data);
2560                         return 1;
2561                 } else {
2562                         if (report_ignored_msrs)
2563                                 vcpu_unimpl(vcpu,
2564                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2565                                         msr, data);
2566                         break;
2567                 }
2568         }
2569         return 0;
2571 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2574 /*
2575  * Reads an msr value (of 'msr_index') into 'pdata'.
2576  * Returns 0 on success, non-0 otherwise.
2577  * Assumes vcpu_load() was already called.
2578  */
2579 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2581         return kvm_x86_ops->get_msr(vcpu, msr);
2583 EXPORT_SYMBOL_GPL(kvm_get_msr);
2585 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2587         u64 data;
2588         u64 mcg_cap = vcpu->arch.mcg_cap;
2589         unsigned bank_num = mcg_cap & 0xff;
2591         switch (msr) {
2592         case MSR_IA32_P5_MC_ADDR:
2593         case MSR_IA32_P5_MC_TYPE:
2594                 data = 0;
2595                 break;
2596         case MSR_IA32_MCG_CAP:
2597                 data = vcpu->arch.mcg_cap;
2598                 break;
2599         case MSR_IA32_MCG_CTL:
2600                 if (!(mcg_cap & MCG_CTL_P) && !host)
2601                         return 1;
2602                 data = vcpu->arch.mcg_ctl;
2603                 break;
2604         case MSR_IA32_MCG_STATUS:
2605                 data = vcpu->arch.mcg_status;
2606                 break;
2607         default:
2608                 if (msr >= MSR_IA32_MC0_CTL &&
2609                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2610                         u32 offset = msr - MSR_IA32_MC0_CTL;
2611                         data = vcpu->arch.mce_banks[offset];
2612                         break;
2613                 }
2614                 return 1;
2615         }
2616         *pdata = data;
2617         return 0;
2620 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2622         switch (msr_info->index) {
2623         case MSR_IA32_PLATFORM_ID:
2624         case MSR_IA32_EBL_CR_POWERON:
2625         case MSR_IA32_DEBUGCTLMSR:
2626         case MSR_IA32_LASTBRANCHFROMIP:
2627         case MSR_IA32_LASTBRANCHTOIP:
2628         case MSR_IA32_LASTINTFROMIP:
2629         case MSR_IA32_LASTINTTOIP:
2630         case MSR_K8_SYSCFG:
2631         case MSR_K8_TSEG_ADDR:
2632         case MSR_K8_TSEG_MASK:
2633         case MSR_K7_HWCR:
2634         case MSR_VM_HSAVE_PA:
2635         case MSR_K8_INT_PENDING_MSG:
2636         case MSR_AMD64_NB_CFG:
2637         case MSR_FAM10H_MMIO_CONF_BASE:
2638         case MSR_AMD64_BU_CFG2:
2639         case MSR_IA32_PERF_CTL:
2640         case MSR_AMD64_DC_CFG:
2641                 msr_info->data = 0;
2642                 break;
2643         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2644         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2645         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2646         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2647         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2648                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2649                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2650                 msr_info->data = 0;
2651                 break;
2652         case MSR_IA32_UCODE_REV:
2653                 msr_info->data = vcpu->arch.microcode_version;
2654                 break;
2655         case MSR_IA32_TSC:
2656                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2657                 break;
2658         case MSR_MTRRcap:
2659         case 0x200 ... 0x2ff:
2660                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2661         case 0xcd: /* fsb frequency */
2662                 msr_info->data = 3;
2663                 break;
2664                 /*
2665                  * MSR_EBC_FREQUENCY_ID
2666                  * Conservative value valid for even the basic CPU models.
2667                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2668                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2669                  * and 266MHz for model 3, or 4. Set Core Clock
2670                  * Frequency to System Bus Frequency Ratio to 1 (bits
2671                  * 31:24) even though these are only valid for CPU
2672                  * models > 2, however guests may end up dividing or
2673                  * multiplying by zero otherwise.
2674                  */
2675         case MSR_EBC_FREQUENCY_ID:
2676                 msr_info->data = 1 << 24;
2677                 break;
2678         case MSR_IA32_APICBASE:
2679                 msr_info->data = kvm_get_apic_base(vcpu);
2680                 break;
2681         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2682                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2683                 break;
2684         case MSR_IA32_TSCDEADLINE:
2685                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2686                 break;
2687         case MSR_IA32_TSC_ADJUST:
2688                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2689                 break;
2690         case MSR_IA32_MISC_ENABLE:
2691                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2692                 break;
2693         case MSR_IA32_SMBASE:
2694                 if (!msr_info->host_initiated)
2695                         return 1;
2696                 msr_info->data = vcpu->arch.smbase;
2697                 break;
2698         case MSR_SMI_COUNT:
2699                 msr_info->data = vcpu->arch.smi_count;
2700                 break;
2701         case MSR_IA32_PERF_STATUS:
2702                 /* TSC increment by tick */
2703                 msr_info->data = 1000ULL;
2704                 /* CPU multiplier */
2705                 msr_info->data |= (((uint64_t)4ULL) << 40);
2706                 break;
2707         case MSR_EFER:
2708                 msr_info->data = vcpu->arch.efer;
2709                 break;
2710         case MSR_KVM_WALL_CLOCK:
2711         case MSR_KVM_WALL_CLOCK_NEW:
2712                 msr_info->data = vcpu->kvm->arch.wall_clock;
2713                 break;
2714         case MSR_KVM_SYSTEM_TIME:
2715         case MSR_KVM_SYSTEM_TIME_NEW:
2716                 msr_info->data = vcpu->arch.time;
2717                 break;
2718         case MSR_KVM_ASYNC_PF_EN:
2719                 msr_info->data = vcpu->arch.apf.msr_val;
2720                 break;
2721         case MSR_KVM_STEAL_TIME:
2722                 msr_info->data = vcpu->arch.st.msr_val;
2723                 break;
2724         case MSR_KVM_PV_EOI_EN:
2725                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2726                 break;
2727         case MSR_IA32_P5_MC_ADDR:
2728         case MSR_IA32_P5_MC_TYPE:
2729         case MSR_IA32_MCG_CAP:
2730         case MSR_IA32_MCG_CTL:
2731         case MSR_IA32_MCG_STATUS:
2732         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2733                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2734                                    msr_info->host_initiated);
2735         case MSR_K7_CLK_CTL:
2736                 /*
2737                  * Provide expected ramp-up count for K7. All other
2738                  * are set to zero, indicating minimum divisors for
2739                  * every field.
2740                  *
2741                  * This prevents guest kernels on AMD host with CPU
2742                  * type 6, model 8 and higher from exploding due to
2743                  * the rdmsr failing.
2744                  */
2745                 msr_info->data = 0x20000000;
2746                 break;
2747         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2748         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2749         case HV_X64_MSR_CRASH_CTL:
2750         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2751         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2752         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2753         case HV_X64_MSR_TSC_EMULATION_STATUS:
2754                 return kvm_hv_get_msr_common(vcpu,
2755                                              msr_info->index, &msr_info->data,
2756                                              msr_info->host_initiated);
2757                 break;
2758         case MSR_IA32_BBL_CR_CTL3:
2759                 /* This legacy MSR exists but isn't fully documented in current
2760                  * silicon.  It is however accessed by winxp in very narrow
2761                  * scenarios where it sets bit #19, itself documented as
2762                  * a "reserved" bit.  Best effort attempt to source coherent
2763                  * read data here should the balance of the register be
2764                  * interpreted by the guest:
2765                  *
2766                  * L2 cache control register 3: 64GB range, 256KB size,
2767                  * enabled, latency 0x1, configured
2768                  */
2769                 msr_info->data = 0xbe702111;
2770                 break;
2771         case MSR_AMD64_OSVW_ID_LENGTH:
2772                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2773                         return 1;
2774                 msr_info->data = vcpu->arch.osvw.length;
2775                 break;
2776         case MSR_AMD64_OSVW_STATUS:
2777                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2778                         return 1;
2779                 msr_info->data = vcpu->arch.osvw.status;
2780                 break;
2781         case MSR_PLATFORM_INFO:
2782                 if (!msr_info->host_initiated &&
2783                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2784                         return 1;
2785                 msr_info->data = vcpu->arch.msr_platform_info;
2786                 break;
2787         case MSR_MISC_FEATURES_ENABLES:
2788                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2789                 break;
2790         default:
2791                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2792                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2793                 if (!ignore_msrs) {
2794                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2795                                                msr_info->index);
2796                         return 1;
2797                 } else {
2798                         if (report_ignored_msrs)
2799                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2800                                         msr_info->index);
2801                         msr_info->data = 0;
2802                 }
2803                 break;
2804         }
2805         return 0;
2807 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2809 /*
2810  * Read or write a bunch of msrs. All parameters are kernel addresses.
2811  *
2812  * @return number of msrs set successfully.
2813  */
2814 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2815                     struct kvm_msr_entry *entries,
2816                     int (*do_msr)(struct kvm_vcpu *vcpu,
2817                                   unsigned index, u64 *data))
2819         int i;
2821         for (i = 0; i < msrs->nmsrs; ++i)
2822                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2823                         break;
2825         return i;
2828 /*
2829  * Read or write a bunch of msrs. Parameters are user addresses.
2830  *
2831  * @return number of msrs set successfully.
2832  */
2833 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2834                   int (*do_msr)(struct kvm_vcpu *vcpu,
2835                                 unsigned index, u64 *data),
2836                   int writeback)
2838         struct kvm_msrs msrs;
2839         struct kvm_msr_entry *entries;
2840         int r, n;
2841         unsigned size;
2843         r = -EFAULT;
2844         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2845                 goto out;
2847         r = -E2BIG;
2848         if (msrs.nmsrs >= MAX_IO_MSRS)
2849                 goto out;
2851         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2852         entries = memdup_user(user_msrs->entries, size);
2853         if (IS_ERR(entries)) {
2854                 r = PTR_ERR(entries);
2855                 goto out;
2856         }
2858         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2859         if (r < 0)
2860                 goto out_free;
2862         r = -EFAULT;
2863         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2864                 goto out_free;
2866         r = n;
2868 out_free:
2869         kfree(entries);
2870 out:
2871         return r;
2874 static inline bool kvm_can_mwait_in_guest(void)
2876         return boot_cpu_has(X86_FEATURE_MWAIT) &&
2877                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2878                 boot_cpu_has(X86_FEATURE_ARAT);
2881 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2883         int r = 0;
2885         switch (ext) {
2886         case KVM_CAP_IRQCHIP:
2887         case KVM_CAP_HLT:
2888         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2889         case KVM_CAP_SET_TSS_ADDR:
2890         case KVM_CAP_EXT_CPUID:
2891         case KVM_CAP_EXT_EMUL_CPUID:
2892         case KVM_CAP_CLOCKSOURCE:
2893         case KVM_CAP_PIT:
2894         case KVM_CAP_NOP_IO_DELAY:
2895         case KVM_CAP_MP_STATE:
2896         case KVM_CAP_SYNC_MMU:
2897         case KVM_CAP_USER_NMI:
2898         case KVM_CAP_REINJECT_CONTROL:
2899         case KVM_CAP_IRQ_INJECT_STATUS:
2900         case KVM_CAP_IOEVENTFD:
2901         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2902         case KVM_CAP_PIT2:
2903         case KVM_CAP_PIT_STATE2:
2904         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2905         case KVM_CAP_XEN_HVM:
2906         case KVM_CAP_VCPU_EVENTS:
2907         case KVM_CAP_HYPERV:
2908         case KVM_CAP_HYPERV_VAPIC:
2909         case KVM_CAP_HYPERV_SPIN:
2910         case KVM_CAP_HYPERV_SYNIC:
2911         case KVM_CAP_HYPERV_SYNIC2:
2912         case KVM_CAP_HYPERV_VP_INDEX:
2913         case KVM_CAP_HYPERV_EVENTFD:
2914         case KVM_CAP_HYPERV_TLBFLUSH:
2915         case KVM_CAP_PCI_SEGMENT:
2916         case KVM_CAP_DEBUGREGS:
2917         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2918         case KVM_CAP_XSAVE:
2919         case KVM_CAP_ASYNC_PF:
2920         case KVM_CAP_GET_TSC_KHZ:
2921         case KVM_CAP_KVMCLOCK_CTRL:
2922         case KVM_CAP_READONLY_MEM:
2923         case KVM_CAP_HYPERV_TIME:
2924         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2925         case KVM_CAP_TSC_DEADLINE_TIMER:
2926         case KVM_CAP_ENABLE_CAP_VM:
2927         case KVM_CAP_DISABLE_QUIRKS:
2928         case KVM_CAP_SET_BOOT_CPU_ID:
2929         case KVM_CAP_SPLIT_IRQCHIP:
2930         case KVM_CAP_IMMEDIATE_EXIT:
2931         case KVM_CAP_GET_MSR_FEATURES:
2932         case KVM_CAP_MSR_PLATFORM_INFO:
2933                 r = 1;
2934                 break;
2935         case KVM_CAP_SYNC_REGS:
2936                 r = KVM_SYNC_X86_VALID_FIELDS;
2937                 break;
2938         case KVM_CAP_ADJUST_CLOCK:
2939                 r = KVM_CLOCK_TSC_STABLE;
2940                 break;
2941         case KVM_CAP_X86_DISABLE_EXITS:
2942                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
2943                 if(kvm_can_mwait_in_guest())
2944                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
2945                 break;
2946         case KVM_CAP_X86_SMM:
2947                 /* SMBASE is usually relocated above 1M on modern chipsets,
2948                  * and SMM handlers might indeed rely on 4G segment limits,
2949                  * so do not report SMM to be available if real mode is
2950                  * emulated via vm86 mode.  Still, do not go to great lengths
2951                  * to avoid userspace's usage of the feature, because it is a
2952                  * fringe case that is not enabled except via specific settings
2953                  * of the module parameters.
2954                  */
2955                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2956                 break;
2957         case KVM_CAP_VAPIC:
2958                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2959                 break;
2960         case KVM_CAP_NR_VCPUS:
2961                 r = KVM_SOFT_MAX_VCPUS;
2962                 break;
2963         case KVM_CAP_MAX_VCPUS:
2964                 r = KVM_MAX_VCPUS;
2965                 break;
2966         case KVM_CAP_NR_MEMSLOTS:
2967                 r = KVM_USER_MEM_SLOTS;
2968                 break;
2969         case KVM_CAP_PV_MMU:    /* obsolete */
2970                 r = 0;
2971                 break;
2972         case KVM_CAP_MCE:
2973                 r = KVM_MAX_MCE_BANKS;
2974                 break;
2975         case KVM_CAP_XCRS:
2976                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2977                 break;
2978         case KVM_CAP_TSC_CONTROL:
2979                 r = kvm_has_tsc_control;
2980                 break;
2981         case KVM_CAP_X2APIC_API:
2982                 r = KVM_X2APIC_API_VALID_FLAGS;
2983                 break;
2984         case KVM_CAP_NESTED_STATE:
2985                 r = kvm_x86_ops->get_nested_state ?
2986                         kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
2987                 break;
2988         default:
2989                 break;
2990         }
2991         return r;
2995 long kvm_arch_dev_ioctl(struct file *filp,
2996                         unsigned int ioctl, unsigned long arg)
2998         void __user *argp = (void __user *)arg;
2999         long r;
3001         switch (ioctl) {
3002         case KVM_GET_MSR_INDEX_LIST: {
3003                 struct kvm_msr_list __user *user_msr_list = argp;
3004                 struct kvm_msr_list msr_list;
3005                 unsigned n;
3007                 r = -EFAULT;
3008                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3009                         goto out;
3010                 n = msr_list.nmsrs;
3011                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3012                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3013                         goto out;
3014                 r = -E2BIG;
3015                 if (n < msr_list.nmsrs)
3016                         goto out;
3017                 r = -EFAULT;
3018                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3019                                  num_msrs_to_save * sizeof(u32)))
3020                         goto out;
3021                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3022                                  &emulated_msrs,
3023                                  num_emulated_msrs * sizeof(u32)))
3024                         goto out;
3025                 r = 0;
3026                 break;
3027         }
3028         case KVM_GET_SUPPORTED_CPUID:
3029         case KVM_GET_EMULATED_CPUID: {
3030                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3031                 struct kvm_cpuid2 cpuid;
3033                 r = -EFAULT;
3034                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3035                         goto out;
3037                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3038                                             ioctl);
3039                 if (r)
3040                         goto out;
3042                 r = -EFAULT;
3043                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3044                         goto out;
3045                 r = 0;
3046                 break;
3047         }
3048         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3049                 r = -EFAULT;
3050                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3051                                  sizeof(kvm_mce_cap_supported)))
3052                         goto out;
3053                 r = 0;
3054                 break;
3055         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3056                 struct kvm_msr_list __user *user_msr_list = argp;
3057                 struct kvm_msr_list msr_list;
3058                 unsigned int n;
3060                 r = -EFAULT;
3061                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3062                         goto out;
3063                 n = msr_list.nmsrs;
3064                 msr_list.nmsrs = num_msr_based_features;
3065                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3066                         goto out;
3067                 r = -E2BIG;
3068                 if (n < msr_list.nmsrs)
3069                         goto out;
3070                 r = -EFAULT;
3071                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3072                                  num_msr_based_features * sizeof(u32)))
3073                         goto out;
3074                 r = 0;
3075                 break;
3076         }
3077         case KVM_GET_MSRS:
3078                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3079                 break;
3080         }
3081         default:
3082                 r = -EINVAL;
3083         }
3084 out:
3085         return r;
3088 static void wbinvd_ipi(void *garbage)
3090         wbinvd();
3093 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3095         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3098 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3100         /* Address WBINVD may be executed by guest */
3101         if (need_emulate_wbinvd(vcpu)) {
3102                 if (kvm_x86_ops->has_wbinvd_exit())
3103                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3104                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3105                         smp_call_function_single(vcpu->cpu,
3106                                         wbinvd_ipi, NULL, 1);
3107         }
3109         kvm_x86_ops->vcpu_load(vcpu, cpu);
3111         /* Apply any externally detected TSC adjustments (due to suspend) */
3112         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3113                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3114                 vcpu->arch.tsc_offset_adjustment = 0;
3115                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3116         }
3118         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3119                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3120                                 rdtsc() - vcpu->arch.last_host_tsc;
3121                 if (tsc_delta < 0)
3122                         mark_tsc_unstable("KVM discovered backwards TSC");
3124                 if (kvm_check_tsc_unstable()) {
3125                         u64 offset = kvm_compute_tsc_offset(vcpu,
3126                                                 vcpu->arch.last_guest_tsc);
3127                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3128                         vcpu->arch.tsc_catchup = 1;
3129                 }
3131                 if (kvm_lapic_hv_timer_in_use(vcpu))
3132                         kvm_lapic_restart_hv_timer(vcpu);
3134                 /*
3135                  * On a host with synchronized TSC, there is no need to update
3136                  * kvmclock on vcpu->cpu migration
3137                  */
3138                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3139                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3140                 if (vcpu->cpu != cpu)
3141                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3142                 vcpu->cpu = cpu;
3143         }
3145         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3148 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3150         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3151                 return;
3153         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3155         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3156                         &vcpu->arch.st.steal.preempted,
3157                         offsetof(struct kvm_steal_time, preempted),
3158                         sizeof(vcpu->arch.st.steal.preempted));
3161 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3163         int idx;
3165         if (vcpu->preempted)
3166                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3168         /*
3169          * Disable page faults because we're in atomic context here.
3170          * kvm_write_guest_offset_cached() would call might_fault()
3171          * that relies on pagefault_disable() to tell if there's a
3172          * bug. NOTE: the write to guest memory may not go through if
3173          * during postcopy live migration or if there's heavy guest
3174          * paging.
3175          */
3176         pagefault_disable();
3177         /*
3178          * kvm_memslots() will be called by
3179          * kvm_write_guest_offset_cached() so take the srcu lock.
3180          */
3181         idx = srcu_read_lock(&vcpu->kvm->srcu);
3182         kvm_steal_time_set_preempted(vcpu);
3183         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3184         pagefault_enable();
3185         kvm_x86_ops->vcpu_put(vcpu);
3186         vcpu->arch.last_host_tsc = rdtsc();
3187         /*
3188          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3189          * on every vmexit, but if not, we might have a stale dr6 from the
3190          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3191          */
3192         set_debugreg(0, 6);
3195 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3196                                     struct kvm_lapic_state *s)
3198         if (vcpu->arch.apicv_active)
3199                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3201         return kvm_apic_get_state(vcpu, s);
3204 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3205                                     struct kvm_lapic_state *s)
3207         int r;
3209         r = kvm_apic_set_state(vcpu, s);
3210         if (r)
3211                 return r;
3212         update_cr8_intercept(vcpu);
3214         return 0;
3217 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3219         return (!lapic_in_kernel(vcpu) ||
3220                 kvm_apic_accept_pic_intr(vcpu));
3223 /*
3224  * if userspace requested an interrupt window, check that the
3225  * interrupt window is open.
3226  *
3227  * No need to exit to userspace if we already have an interrupt queued.
3228  */
3229 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3231         return kvm_arch_interrupt_allowed(vcpu) &&
3232                 !kvm_cpu_has_interrupt(vcpu) &&
3233                 !kvm_event_needs_reinjection(vcpu) &&
3234                 kvm_cpu_accept_dm_intr(vcpu);
3237 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3238                                     struct kvm_interrupt *irq)
3240         if (irq->irq >= KVM_NR_INTERRUPTS)
3241                 return -EINVAL;
3243         if (!irqchip_in_kernel(vcpu->kvm)) {
3244                 kvm_queue_interrupt(vcpu, irq->irq, false);
3245                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3246                 return 0;
3247         }
3249         /*
3250          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3251          * fail for in-kernel 8259.
3252          */
3253         if (pic_in_kernel(vcpu->kvm))
3254                 return -ENXIO;
3256         if (vcpu->arch.pending_external_vector != -1)
3257                 return -EEXIST;
3259         vcpu->arch.pending_external_vector = irq->irq;
3260         kvm_make_request(KVM_REQ_EVENT, vcpu);
3261         return 0;
3264 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3266         kvm_inject_nmi(vcpu);
3268         return 0;
3271 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3273         kvm_make_request(KVM_REQ_SMI, vcpu);
3275         return 0;
3278 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3279                                            struct kvm_tpr_access_ctl *tac)
3281         if (tac->flags)
3282                 return -EINVAL;
3283         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3284         return 0;
3287 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3288                                         u64 mcg_cap)
3290         int r;
3291         unsigned bank_num = mcg_cap & 0xff, bank;
3293         r = -EINVAL;
3294         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3295                 goto out;
3296         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3297                 goto out;
3298         r = 0;
3299         vcpu->arch.mcg_cap = mcg_cap;
3300         /* Init IA32_MCG_CTL to all 1s */
3301         if (mcg_cap & MCG_CTL_P)
3302                 vcpu->arch.mcg_ctl = ~(u64)0;
3303         /* Init IA32_MCi_CTL to all 1s */
3304         for (bank = 0; bank < bank_num; bank++)
3305                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3307         if (kvm_x86_ops->setup_mce)
3308                 kvm_x86_ops->setup_mce(vcpu);
3309 out:
3310         return r;
3313 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3314                                       struct kvm_x86_mce *mce)
3316         u64 mcg_cap = vcpu->arch.mcg_cap;
3317         unsigned bank_num = mcg_cap & 0xff;
3318         u64 *banks = vcpu->arch.mce_banks;
3320         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3321                 return -EINVAL;
3322         /*
3323          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3324          * reporting is disabled
3325          */
3326         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3327             vcpu->arch.mcg_ctl != ~(u64)0)
3328                 return 0;
3329         banks += 4 * mce->bank;
3330         /*
3331          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3332          * reporting is disabled for the bank
3333          */
3334         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3335                 return 0;
3336         if (mce->status & MCI_STATUS_UC) {
3337                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3338                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3339                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3340                         return 0;
3341                 }
3342                 if (banks[1] & MCI_STATUS_VAL)
3343                         mce->status |= MCI_STATUS_OVER;
3344                 banks[2] = mce->addr;
3345                 banks[3] = mce->misc;
3346                 vcpu->arch.mcg_status = mce->mcg_status;
3347                 banks[1] = mce->status;
3348                 kvm_queue_exception(vcpu, MC_VECTOR);
3349         } else if (!(banks[1] & MCI_STATUS_VAL)
3350                    || !(banks[1] & MCI_STATUS_UC)) {
3351                 if (banks[1] & MCI_STATUS_VAL)
3352                         mce->status |= MCI_STATUS_OVER;
3353                 banks[2] = mce->addr;
3354                 banks[3] = mce->misc;
3355                 banks[1] = mce->status;
3356         } else
3357                 banks[1] |= MCI_STATUS_OVER;
3358         return 0;
3361 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3362                                                struct kvm_vcpu_events *events)
3364         process_nmi(vcpu);
3365         /*
3366          * FIXME: pass injected and pending separately.  This is only
3367          * needed for nested virtualization, whose state cannot be
3368          * migrated yet.  For now we can combine them.
3369          */
3370         events->exception.injected =
3371                 (vcpu->arch.exception.pending ||
3372                  vcpu->arch.exception.injected) &&
3373                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3374         events->exception.nr = vcpu->arch.exception.nr;
3375         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3376         events->exception.pad = 0;
3377         events->exception.error_code = vcpu->arch.exception.error_code;
3379         events->interrupt.injected =
3380                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3381         events->interrupt.nr = vcpu->arch.interrupt.nr;
3382         events->interrupt.soft = 0;
3383         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3385         events->nmi.injected = vcpu->arch.nmi_injected;
3386         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3387         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3388         events->nmi.pad = 0;
3390         events->sipi_vector = 0; /* never valid when reporting to user space */
3392         events->smi.smm = is_smm(vcpu);
3393         events->smi.pending = vcpu->arch.smi_pending;
3394         events->smi.smm_inside_nmi =
3395                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3396         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3398         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3399                          | KVM_VCPUEVENT_VALID_SHADOW
3400                          | KVM_VCPUEVENT_VALID_SMM);
3401         memset(&events->reserved, 0, sizeof(events->reserved));
3404 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3406 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3407                                               struct kvm_vcpu_events *events)
3409         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3410                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3411                               | KVM_VCPUEVENT_VALID_SHADOW
3412                               | KVM_VCPUEVENT_VALID_SMM))
3413                 return -EINVAL;
3415         if (events->exception.injected &&
3416             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3417              is_guest_mode(vcpu)))
3418                 return -EINVAL;
3420         /* INITs are latched while in SMM */
3421         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3422             (events->smi.smm || events->smi.pending) &&
3423             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3424                 return -EINVAL;
3426         process_nmi(vcpu);
3427         vcpu->arch.exception.injected = false;
3428         vcpu->arch.exception.pending = events->exception.injected;
3429         vcpu->arch.exception.nr = events->exception.nr;
3430         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3431         vcpu->arch.exception.error_code = events->exception.error_code;
3433         vcpu->arch.interrupt.injected = events->interrupt.injected;
3434         vcpu->arch.interrupt.nr = events->interrupt.nr;
3435         vcpu->arch.interrupt.soft = events->interrupt.soft;
3436         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3437                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3438                                                   events->interrupt.shadow);
3440         vcpu->arch.nmi_injected = events->nmi.injected;
3441         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3442                 vcpu->arch.nmi_pending = events->nmi.pending;
3443         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3445         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3446             lapic_in_kernel(vcpu))
3447                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3449         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3450                 u32 hflags = vcpu->arch.hflags;
3451                 if (events->smi.smm)
3452                         hflags |= HF_SMM_MASK;
3453                 else
3454                         hflags &= ~HF_SMM_MASK;
3455                 kvm_set_hflags(vcpu, hflags);
3457                 vcpu->arch.smi_pending = events->smi.pending;
3459                 if (events->smi.smm) {
3460                         if (events->smi.smm_inside_nmi)
3461                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3462                         else
3463                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3464                         if (lapic_in_kernel(vcpu)) {
3465                                 if (events->smi.latched_init)
3466                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3467                                 else
3468                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3469                         }
3470                 }
3471         }
3473         kvm_make_request(KVM_REQ_EVENT, vcpu);
3475         return 0;
3478 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3479                                              struct kvm_debugregs *dbgregs)
3481         unsigned long val;
3483         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3484         kvm_get_dr(vcpu, 6, &val);
3485         dbgregs->dr6 = val;
3486         dbgregs->dr7 = vcpu->arch.dr7;
3487         dbgregs->flags = 0;
3488         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3491 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3492                                             struct kvm_debugregs *dbgregs)
3494         if (dbgregs->flags)
3495                 return -EINVAL;
3497         if (dbgregs->dr6 & ~0xffffffffull)
3498                 return -EINVAL;
3499         if (dbgregs->dr7 & ~0xffffffffull)
3500                 return -EINVAL;
3502         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3503         kvm_update_dr0123(vcpu);
3504         vcpu->arch.dr6 = dbgregs->dr6;
3505         kvm_update_dr6(vcpu);
3506         vcpu->arch.dr7 = dbgregs->dr7;
3507         kvm_update_dr7(vcpu);
3509         return 0;
3512 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3514 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3516         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3517         u64 xstate_bv = xsave->header.xfeatures;
3518         u64 valid;
3520         /*
3521          * Copy legacy XSAVE area, to avoid complications with CPUID
3522          * leaves 0 and 1 in the loop below.
3523          */
3524         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3526         /* Set XSTATE_BV */
3527         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3528         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3530         /*
3531          * Copy each region from the possibly compacted offset to the
3532          * non-compacted offset.
3533          */
3534         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3535         while (valid) {
3536                 u64 feature = valid & -valid;
3537                 int index = fls64(feature) - 1;
3538                 void *src = get_xsave_addr(xsave, feature);
3540                 if (src) {
3541                         u32 size, offset, ecx, edx;
3542                         cpuid_count(XSTATE_CPUID, index,
3543                                     &size, &offset, &ecx, &edx);
3544                         if (feature == XFEATURE_MASK_PKRU)
3545                                 memcpy(dest + offset, &vcpu->arch.pkru,
3546                                        sizeof(vcpu->arch.pkru));
3547                         else
3548                                 memcpy(dest + offset, src, size);
3550                 }
3552                 valid -= feature;
3553         }
3556 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3558         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3559         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3560         u64 valid;
3562         /*
3563          * Copy legacy XSAVE area, to avoid complications with CPUID
3564          * leaves 0 and 1 in the loop below.
3565          */
3566         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3568         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3569         xsave->header.xfeatures = xstate_bv;
3570         if (boot_cpu_has(X86_FEATURE_XSAVES))
3571                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3573         /*
3574          * Copy each region from the non-compacted offset to the
3575          * possibly compacted offset.
3576          */
3577         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3578         while (valid) {
3579                 u64 feature = valid & -valid;
3580                 int index = fls64(feature) - 1;
3581                 void *dest = get_xsave_addr(xsave, feature);
3583                 if (dest) {
3584                         u32 size, offset, ecx, edx;
3585                         cpuid_count(XSTATE_CPUID, index,
3586                                     &size, &offset, &ecx, &edx);
3587                         if (feature == XFEATURE_MASK_PKRU)
3588                                 memcpy(&vcpu->arch.pkru, src + offset,
3589                                        sizeof(vcpu->arch.pkru));
3590                         else
3591                                 memcpy(dest, src + offset, size);
3592                 }
3594                 valid -= feature;
3595         }
3598 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3599                                          struct kvm_xsave *guest_xsave)
3601         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3602                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3603                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3604         } else {
3605                 memcpy(guest_xsave->region,
3606                         &vcpu->arch.guest_fpu.state.fxsave,
3607                         sizeof(struct fxregs_state));
3608                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3609                         XFEATURE_MASK_FPSSE;
3610         }
3613 #define XSAVE_MXCSR_OFFSET 24
3615 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3616                                         struct kvm_xsave *guest_xsave)
3618         u64 xstate_bv =
3619                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3620         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3622         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3623                 /*
3624                  * Here we allow setting states that are not present in
3625                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3626                  * with old userspace.
3627                  */
3628                 if (xstate_bv & ~kvm_supported_xcr0() ||
3629                         mxcsr & ~mxcsr_feature_mask)
3630                         return -EINVAL;
3631                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3632         } else {
3633                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3634                         mxcsr & ~mxcsr_feature_mask)
3635                         return -EINVAL;
3636                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3637                         guest_xsave->region, sizeof(struct fxregs_state));
3638         }
3639         return 0;
3642 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3643                                         struct kvm_xcrs *guest_xcrs)
3645         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3646                 guest_xcrs->nr_xcrs = 0;
3647                 return;
3648         }
3650         guest_xcrs->nr_xcrs = 1;
3651         guest_xcrs->flags = 0;
3652         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3653         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3656 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3657                                        struct kvm_xcrs *guest_xcrs)
3659         int i, r = 0;
3661         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3662                 return -EINVAL;
3664         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3665                 return -EINVAL;
3667         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3668                 /* Only support XCR0 currently */
3669                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3670                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3671                                 guest_xcrs->xcrs[i].value);
3672                         break;
3673                 }
3674         if (r)
3675                 r = -EINVAL;
3676         return r;
3679 /*
3680  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3681  * stopped by the hypervisor.  This function will be called from the host only.
3682  * EINVAL is returned when the host attempts to set the flag for a guest that
3683  * does not support pv clocks.
3684  */
3685 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3687         if (!vcpu->arch.pv_time_enabled)
3688                 return -EINVAL;
3689         vcpu->arch.pvclock_set_guest_stopped_request = true;
3690         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3691         return 0;
3694 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3695                                      struct kvm_enable_cap *cap)
3697         if (cap->flags)
3698                 return -EINVAL;
3700         switch (cap->cap) {
3701         case KVM_CAP_HYPERV_SYNIC2:
3702                 if (cap->args[0])
3703                         return -EINVAL;
3704         case KVM_CAP_HYPERV_SYNIC:
3705                 if (!irqchip_in_kernel(vcpu->kvm))
3706                         return -EINVAL;
3707                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3708                                              KVM_CAP_HYPERV_SYNIC2);
3709         default:
3710                 return -EINVAL;
3711         }
3714 long kvm_arch_vcpu_ioctl(struct file *filp,
3715                          unsigned int ioctl, unsigned long arg)
3717         struct kvm_vcpu *vcpu = filp->private_data;
3718         void __user *argp = (void __user *)arg;
3719         int r;
3720         union {
3721                 struct kvm_lapic_state *lapic;
3722                 struct kvm_xsave *xsave;
3723                 struct kvm_xcrs *xcrs;
3724                 void *buffer;
3725         } u;
3727         vcpu_load(vcpu);
3729         u.buffer = NULL;
3730         switch (ioctl) {
3731         case KVM_GET_LAPIC: {
3732                 r = -EINVAL;
3733                 if (!lapic_in_kernel(vcpu))
3734                         goto out;
3735                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3737                 r = -ENOMEM;
3738                 if (!u.lapic)
3739                         goto out;
3740                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3741                 if (r)
3742                         goto out;
3743                 r = -EFAULT;
3744                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3745                         goto out;
3746                 r = 0;
3747                 break;
3748         }
3749         case KVM_SET_LAPIC: {
3750                 r = -EINVAL;
3751                 if (!lapic_in_kernel(vcpu))
3752                         goto out;
3753                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3754                 if (IS_ERR(u.lapic)) {
3755                         r = PTR_ERR(u.lapic);
3756                         goto out_nofree;
3757                 }
3759                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3760                 break;
3761         }
3762         case KVM_INTERRUPT: {
3763                 struct kvm_interrupt irq;
3765                 r = -EFAULT;
3766                 if (copy_from_user(&irq, argp, sizeof irq))
3767                         goto out;
3768                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3769                 break;
3770         }
3771         case KVM_NMI: {
3772                 r = kvm_vcpu_ioctl_nmi(vcpu);
3773                 break;
3774         }
3775         case KVM_SMI: {
3776                 r = kvm_vcpu_ioctl_smi(vcpu);
3777                 break;
3778         }
3779         case KVM_SET_CPUID: {
3780                 struct kvm_cpuid __user *cpuid_arg = argp;
3781                 struct kvm_cpuid cpuid;
3783                 r = -EFAULT;
3784                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3785                         goto out;
3786                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3787                 break;
3788         }
3789         case KVM_SET_CPUID2: {
3790                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3791                 struct kvm_cpuid2 cpuid;
3793                 r = -EFAULT;
3794                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3795                         goto out;
3796                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3797                                               cpuid_arg->entries);
3798                 break;
3799         }
3800         case KVM_GET_CPUID2: {
3801                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3802                 struct kvm_cpuid2 cpuid;
3804                 r = -EFAULT;
3805                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3806                         goto out;
3807                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3808                                               cpuid_arg->entries);
3809                 if (r)
3810                         goto out;
3811                 r = -EFAULT;
3812                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3813                         goto out;
3814                 r = 0;
3815                 break;
3816         }
3817         case KVM_GET_MSRS: {
3818                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3819                 r = msr_io(vcpu, argp, do_get_msr, 1);
3820                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3821                 break;
3822         }
3823         case KVM_SET_MSRS: {
3824                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3825                 r = msr_io(vcpu, argp, do_set_msr, 0);
3826                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3827                 break;
3828         }
3829         case KVM_TPR_ACCESS_REPORTING: {
3830                 struct kvm_tpr_access_ctl tac;
3832                 r = -EFAULT;
3833                 if (copy_from_user(&tac, argp, sizeof tac))
3834                         goto out;
3835                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3836                 if (r)
3837                         goto out;
3838                 r = -EFAULT;
3839                 if (copy_to_user(argp, &tac, sizeof tac))
3840                         goto out;
3841                 r = 0;
3842                 break;
3843         };
3844         case KVM_SET_VAPIC_ADDR: {
3845                 struct kvm_vapic_addr va;
3846                 int idx;
3848                 r = -EINVAL;
3849                 if (!lapic_in_kernel(vcpu))
3850                         goto out;
3851                 r = -EFAULT;
3852                 if (copy_from_user(&va, argp, sizeof va))
3853                         goto out;
3854                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3855                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3856                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3857                 break;
3858         }
3859         case KVM_X86_SETUP_MCE: {
3860                 u64 mcg_cap;
3862                 r = -EFAULT;
3863                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3864                         goto out;
3865                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3866                 break;
3867         }
3868         case KVM_X86_SET_MCE: {
3869                 struct kvm_x86_mce mce;
3871                 r = -EFAULT;
3872                 if (copy_from_user(&mce, argp, sizeof mce))
3873                         goto out;
3874                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3875                 break;
3876         }
3877         case KVM_GET_VCPU_EVENTS: {
3878                 struct kvm_vcpu_events events;
3880                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3882                 r = -EFAULT;
3883                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3884                         break;
3885                 r = 0;
3886                 break;
3887         }
3888         case KVM_SET_VCPU_EVENTS: {
3889                 struct kvm_vcpu_events events;
3891                 r = -EFAULT;
3892                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3893                         break;
3895                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3896                 break;
3897         }
3898         case KVM_GET_DEBUGREGS: {
3899                 struct kvm_debugregs dbgregs;
3901                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3903                 r = -EFAULT;
3904                 if (copy_to_user(argp, &dbgregs,
3905                                  sizeof(struct kvm_debugregs)))
3906                         break;
3907                 r = 0;
3908                 break;
3909         }
3910         case KVM_SET_DEBUGREGS: {
3911                 struct kvm_debugregs dbgregs;
3913                 r = -EFAULT;
3914                 if (copy_from_user(&dbgregs, argp,
3915                                    sizeof(struct kvm_debugregs)))
3916                         break;
3918                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3919                 break;
3920         }
3921         case KVM_GET_XSAVE: {
3922                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3923                 r = -ENOMEM;
3924                 if (!u.xsave)
3925                         break;
3927                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3929                 r = -EFAULT;
3930                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3931                         break;
3932                 r = 0;
3933                 break;
3934         }
3935         case KVM_SET_XSAVE: {
3936                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3937                 if (IS_ERR(u.xsave)) {
3938                         r = PTR_ERR(u.xsave);
3939                         goto out_nofree;
3940                 }
3942                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3943                 break;
3944         }
3945         case KVM_GET_XCRS: {
3946                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3947                 r = -ENOMEM;
3948                 if (!u.xcrs)
3949                         break;
3951                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3953                 r = -EFAULT;
3954                 if (copy_to_user(argp, u.xcrs,
3955                                  sizeof(struct kvm_xcrs)))
3956                         break;
3957                 r = 0;
3958                 break;
3959         }
3960         case KVM_SET_XCRS: {
3961                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3962                 if (IS_ERR(u.xcrs)) {
3963                         r = PTR_ERR(u.xcrs);
3964                         goto out_nofree;
3965                 }
3967                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3968                 break;
3969         }
3970         case KVM_SET_TSC_KHZ: {
3971                 u32 user_tsc_khz;
3973                 r = -EINVAL;
3974                 user_tsc_khz = (u32)arg;
3976                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3977                         goto out;
3979                 if (user_tsc_khz == 0)
3980                         user_tsc_khz = tsc_khz;
3982                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3983                         r = 0;
3985                 goto out;
3986         }
3987         case KVM_GET_TSC_KHZ: {
3988                 r = vcpu->arch.virtual_tsc_khz;
3989                 goto out;
3990         }
3991         case KVM_KVMCLOCK_CTRL: {
3992                 r = kvm_set_guest_paused(vcpu);
3993                 goto out;
3994         }
3995         case KVM_ENABLE_CAP: {
3996                 struct kvm_enable_cap cap;
3998                 r = -EFAULT;
3999                 if (copy_from_user(&cap, argp, sizeof(cap)))
4000                         goto out;
4001                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4002                 break;
4003         }
4004         case KVM_GET_NESTED_STATE: {
4005                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4006                 u32 user_data_size;
4008                 r = -EINVAL;
4009                 if (!kvm_x86_ops->get_nested_state)
4010                         break;
4012                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4013                 r = -EFAULT;
4014                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4015                         break;
4017                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4018                                                   user_data_size);
4019                 if (r < 0)
4020                         break;
4022                 if (r > user_data_size) {
4023                         if (put_user(r, &user_kvm_nested_state->size))
4024                                 r = -EFAULT;
4025                         else
4026                                 r = -E2BIG;
4027                         break;
4028                 }
4030                 r = 0;
4031                 break;
4032         }
4033         case KVM_SET_NESTED_STATE: {
4034                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4035                 struct kvm_nested_state kvm_state;
4037                 r = -EINVAL;
4038                 if (!kvm_x86_ops->set_nested_state)
4039                         break;
4041                 r = -EFAULT;
4042                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4043                         break;
4045                 r = -EINVAL;
4046                 if (kvm_state.size < sizeof(kvm_state))
4047                         break;
4049                 if (kvm_state.flags &
4050                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE))
4051                         break;
4053                 /* nested_run_pending implies guest_mode.  */
4054                 if (kvm_state.flags == KVM_STATE_NESTED_RUN_PENDING)
4055                         break;
4057                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4058                 break;
4059         }
4060         default:
4061                 r = -EINVAL;
4062         }
4063 out:
4064         kfree(u.buffer);
4065 out_nofree:
4066         vcpu_put(vcpu);
4067         return r;
4070 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4072         return VM_FAULT_SIGBUS;
4075 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4077         int ret;
4079         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4080                 return -EINVAL;
4081         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4082         return ret;
4085 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4086                                               u64 ident_addr)
4088         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4091 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4092                                           u32 kvm_nr_mmu_pages)
4094         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4095                 return -EINVAL;
4097         mutex_lock(&kvm->slots_lock);
4099         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4100         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4102         mutex_unlock(&kvm->slots_lock);
4103         return 0;
4106 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4108         return kvm->arch.n_max_mmu_pages;
4111 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4113         struct kvm_pic *pic = kvm->arch.vpic;
4114         int r;
4116         r = 0;
4117         switch (chip->chip_id) {
4118         case KVM_IRQCHIP_PIC_MASTER:
4119                 memcpy(&chip->chip.pic, &pic->pics[0],
4120                         sizeof(struct kvm_pic_state));
4121                 break;
4122         case KVM_IRQCHIP_PIC_SLAVE:
4123                 memcpy(&chip->chip.pic, &pic->pics[1],
4124                         sizeof(struct kvm_pic_state));
4125                 break;
4126         case KVM_IRQCHIP_IOAPIC:
4127                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4128                 break;
4129         default:
4130                 r = -EINVAL;
4131                 break;
4132         }
4133         return r;
4136 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4138         struct kvm_pic *pic = kvm->arch.vpic;
4139         int r;
4141         r = 0;
4142         switch (chip->chip_id) {
4143         case KVM_IRQCHIP_PIC_MASTER:
4144                 spin_lock(&pic->lock);
4145                 memcpy(&pic->pics[0], &chip->chip.pic,
4146                         sizeof(struct kvm_pic_state));
4147                 spin_unlock(&pic->lock);
4148                 break;
4149         case KVM_IRQCHIP_PIC_SLAVE:
4150                 spin_lock(&pic->lock);
4151                 memcpy(&pic->pics[1], &chip->chip.pic,
4152                         sizeof(struct kvm_pic_state));
4153                 spin_unlock(&pic->lock);
4154                 break;
4155         case KVM_IRQCHIP_IOAPIC:
4156                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4157                 break;
4158         default:
4159                 r = -EINVAL;
4160                 break;
4161         }
4162         kvm_pic_update_irq(pic);
4163         return r;
4166 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4168         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4170         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4172         mutex_lock(&kps->lock);
4173         memcpy(ps, &kps->channels, sizeof(*ps));
4174         mutex_unlock(&kps->lock);
4175         return 0;
4178 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4180         int i;
4181         struct kvm_pit *pit = kvm->arch.vpit;
4183         mutex_lock(&pit->pit_state.lock);
4184         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4185         for (i = 0; i < 3; i++)
4186                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4187         mutex_unlock(&pit->pit_state.lock);
4188         return 0;
4191 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4193         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4194         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4195                 sizeof(ps->channels));
4196         ps->flags = kvm->arch.vpit->pit_state.flags;
4197         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4198         memset(&ps->reserved, 0, sizeof(ps->reserved));
4199         return 0;
4202 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4204         int start = 0;
4205         int i;
4206         u32 prev_legacy, cur_legacy;
4207         struct kvm_pit *pit = kvm->arch.vpit;
4209         mutex_lock(&pit->pit_state.lock);
4210         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4211         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4212         if (!prev_legacy && cur_legacy)
4213                 start = 1;
4214         memcpy(&pit->pit_state.channels, &ps->channels,
4215                sizeof(pit->pit_state.channels));
4216         pit->pit_state.flags = ps->flags;
4217         for (i = 0; i < 3; i++)
4218                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4219                                    start && i == 0);
4220         mutex_unlock(&pit->pit_state.lock);
4221         return 0;
4224 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4225                                  struct kvm_reinject_control *control)
4227         struct kvm_pit *pit = kvm->arch.vpit;
4229         if (!pit)
4230                 return -ENXIO;
4232         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4233          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4234          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4235          */
4236         mutex_lock(&pit->pit_state.lock);
4237         kvm_pit_set_reinject(pit, control->pit_reinject);
4238         mutex_unlock(&pit->pit_state.lock);
4240         return 0;
4243 /**
4244  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4245  * @kvm: kvm instance
4246  * @log: slot id and address to which we copy the log
4247  *
4248  * Steps 1-4 below provide general overview of dirty page logging. See
4249  * kvm_get_dirty_log_protect() function description for additional details.
4250  *
4251  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4252  * always flush the TLB (step 4) even if previous step failed  and the dirty
4253  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4254  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4255  * writes will be marked dirty for next log read.
4256  *
4257  *   1. Take a snapshot of the bit and clear it if needed.
4258  *   2. Write protect the corresponding page.
4259  *   3. Copy the snapshot to the userspace.
4260  *   4. Flush TLB's if needed.
4261  */
4262 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4264         bool is_dirty = false;
4265         int r;
4267         mutex_lock(&kvm->slots_lock);
4269         /*
4270          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4271          */
4272         if (kvm_x86_ops->flush_log_dirty)
4273                 kvm_x86_ops->flush_log_dirty(kvm);
4275         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4277         /*
4278          * All the TLBs can be flushed out of mmu lock, see the comments in
4279          * kvm_mmu_slot_remove_write_access().
4280          */
4281         lockdep_assert_held(&kvm->slots_lock);
4282         if (is_dirty)
4283                 kvm_flush_remote_tlbs(kvm);
4285         mutex_unlock(&kvm->slots_lock);
4286         return r;
4289 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4290                         bool line_status)
4292         if (!irqchip_in_kernel(kvm))
4293                 return -ENXIO;
4295         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4296                                         irq_event->irq, irq_event->level,
4297                                         line_status);
4298         return 0;
4301 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4302                                    struct kvm_enable_cap *cap)
4304         int r;
4306         if (cap->flags)
4307                 return -EINVAL;
4309         switch (cap->cap) {
4310         case KVM_CAP_DISABLE_QUIRKS:
4311                 kvm->arch.disabled_quirks = cap->args[0];
4312                 r = 0;
4313                 break;
4314         case KVM_CAP_SPLIT_IRQCHIP: {
4315                 mutex_lock(&kvm->lock);
4316                 r = -EINVAL;
4317                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4318                         goto split_irqchip_unlock;
4319                 r = -EEXIST;
4320                 if (irqchip_in_kernel(kvm))
4321                         goto split_irqchip_unlock;
4322                 if (kvm->created_vcpus)
4323                         goto split_irqchip_unlock;
4324                 r = kvm_setup_empty_irq_routing(kvm);
4325                 if (r)
4326                         goto split_irqchip_unlock;
4327                 /* Pairs with irqchip_in_kernel. */
4328                 smp_wmb();
4329                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4330                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4331                 r = 0;
4332 split_irqchip_unlock:
4333                 mutex_unlock(&kvm->lock);
4334                 break;
4335         }
4336         case KVM_CAP_X2APIC_API:
4337                 r = -EINVAL;
4338                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4339                         break;
4341                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4342                         kvm->arch.x2apic_format = true;
4343                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4344                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4346                 r = 0;
4347                 break;
4348         case KVM_CAP_X86_DISABLE_EXITS:
4349                 r = -EINVAL;
4350                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4351                         break;
4353                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4354                         kvm_can_mwait_in_guest())
4355                         kvm->arch.mwait_in_guest = true;
4356                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4357                         kvm->arch.hlt_in_guest = true;
4358                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4359                         kvm->arch.pause_in_guest = true;
4360                 r = 0;
4361                 break;
4362         case KVM_CAP_MSR_PLATFORM_INFO:
4363                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4364                 r = 0;
4365                 break;
4366         default:
4367                 r = -EINVAL;
4368                 break;
4369         }
4370         return r;
4373 long kvm_arch_vm_ioctl(struct file *filp,
4374                        unsigned int ioctl, unsigned long arg)
4376         struct kvm *kvm = filp->private_data;
4377         void __user *argp = (void __user *)arg;
4378         int r = -ENOTTY;
4379         /*
4380          * This union makes it completely explicit to gcc-3.x
4381          * that these two variables' stack usage should be
4382          * combined, not added together.
4383          */
4384         union {
4385                 struct kvm_pit_state ps;
4386                 struct kvm_pit_state2 ps2;
4387                 struct kvm_pit_config pit_config;
4388         } u;
4390         switch (ioctl) {
4391         case KVM_SET_TSS_ADDR:
4392                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4393                 break;
4394         case KVM_SET_IDENTITY_MAP_ADDR: {
4395                 u64 ident_addr;
4397                 mutex_lock(&kvm->lock);
4398                 r = -EINVAL;
4399                 if (kvm->created_vcpus)
4400                         goto set_identity_unlock;
4401                 r = -EFAULT;
4402                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4403                         goto set_identity_unlock;
4404                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4405 set_identity_unlock:
4406                 mutex_unlock(&kvm->lock);
4407                 break;
4408         }
4409         case KVM_SET_NR_MMU_PAGES:
4410                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4411                 break;
4412         case KVM_GET_NR_MMU_PAGES:
4413                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4414                 break;
4415         case KVM_CREATE_IRQCHIP: {
4416                 mutex_lock(&kvm->lock);
4418                 r = -EEXIST;
4419                 if (irqchip_in_kernel(kvm))
4420                         goto create_irqchip_unlock;
4422                 r = -EINVAL;
4423                 if (kvm->created_vcpus)
4424                         goto create_irqchip_unlock;
4426                 r = kvm_pic_init(kvm);
4427                 if (r)
4428                         goto create_irqchip_unlock;
4430                 r = kvm_ioapic_init(kvm);
4431                 if (r) {
4432                         kvm_pic_destroy(kvm);
4433                         goto create_irqchip_unlock;
4434                 }
4436                 r = kvm_setup_default_irq_routing(kvm);
4437                 if (r) {
4438                         kvm_ioapic_destroy(kvm);
4439                         kvm_pic_destroy(kvm);
4440                         goto create_irqchip_unlock;
4441                 }
4442                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4443                 smp_wmb();
4444                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4445         create_irqchip_unlock:
4446                 mutex_unlock(&kvm->lock);
4447                 break;
4448         }
4449         case KVM_CREATE_PIT:
4450                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4451                 goto create_pit;
4452         case KVM_CREATE_PIT2:
4453                 r = -EFAULT;
4454                 if (copy_from_user(&u.pit_config, argp,
4455                                    sizeof(struct kvm_pit_config)))
4456                         goto out;
4457         create_pit:
4458                 mutex_lock(&kvm->lock);
4459                 r = -EEXIST;
4460                 if (kvm->arch.vpit)
4461                         goto create_pit_unlock;
4462                 r = -ENOMEM;
4463                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4464                 if (kvm->arch.vpit)
4465                         r = 0;
4466         create_pit_unlock:
4467                 mutex_unlock(&kvm->lock);
4468                 break;
4469         case KVM_GET_IRQCHIP: {
4470                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4471                 struct kvm_irqchip *chip;
4473                 chip = memdup_user(argp, sizeof(*chip));
4474                 if (IS_ERR(chip)) {
4475                         r = PTR_ERR(chip);
4476                         goto out;
4477                 }
4479                 r = -ENXIO;
4480                 if (!irqchip_kernel(kvm))
4481                         goto get_irqchip_out;
4482                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4483                 if (r)
4484                         goto get_irqchip_out;
4485                 r = -EFAULT;
4486                 if (copy_to_user(argp, chip, sizeof *chip))
4487                         goto get_irqchip_out;
4488                 r = 0;
4489         get_irqchip_out:
4490                 kfree(chip);
4491                 break;
4492         }
4493         case KVM_SET_IRQCHIP: {
4494                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4495                 struct kvm_irqchip *chip;
4497                 chip = memdup_user(argp, sizeof(*chip));
4498                 if (IS_ERR(chip)) {
4499                         r = PTR_ERR(chip);
4500                         goto out;
4501                 }
4503                 r = -ENXIO;
4504                 if (!irqchip_kernel(kvm))
4505                         goto set_irqchip_out;
4506                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4507                 if (r)
4508                         goto set_irqchip_out;
4509                 r = 0;
4510         set_irqchip_out:
4511                 kfree(chip);
4512                 break;
4513         }
4514         case KVM_GET_PIT: {
4515                 r = -EFAULT;
4516                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4517                         goto out;
4518                 r = -ENXIO;
4519                 if (!kvm->arch.vpit)
4520                         goto out;
4521                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4522                 if (r)
4523                         goto out;
4524                 r = -EFAULT;
4525                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4526                         goto out;
4527                 r = 0;
4528                 break;
4529         }
4530         case KVM_SET_PIT: {
4531                 r = -EFAULT;
4532                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4533                         goto out;
4534                 r = -ENXIO;
4535                 if (!kvm->arch.vpit)
4536                         goto out;
4537                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4538                 break;
4539         }
4540         case KVM_GET_PIT2: {
4541                 r = -ENXIO;
4542                 if (!kvm->arch.vpit)
4543                         goto out;
4544                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4545                 if (r)
4546                         goto out;
4547                 r = -EFAULT;
4548                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4549                         goto out;
4550                 r = 0;
4551                 break;
4552         }
4553         case KVM_SET_PIT2: {
4554                 r = -EFAULT;
4555                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4556                         goto out;
4557                 r = -ENXIO;
4558                 if (!kvm->arch.vpit)
4559                         goto out;
4560                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4561                 break;
4562         }
4563         case KVM_REINJECT_CONTROL: {
4564                 struct kvm_reinject_control control;
4565                 r =  -EFAULT;
4566                 if (copy_from_user(&control, argp, sizeof(control)))
4567                         goto out;
4568                 r = kvm_vm_ioctl_reinject(kvm, &control);
4569                 break;
4570         }
4571         case KVM_SET_BOOT_CPU_ID:
4572                 r = 0;
4573                 mutex_lock(&kvm->lock);
4574                 if (kvm->created_vcpus)
4575                         r = -EBUSY;
4576                 else
4577                         kvm->arch.bsp_vcpu_id = arg;
4578                 mutex_unlock(&kvm->lock);
4579                 break;
4580         case KVM_XEN_HVM_CONFIG: {
4581                 struct kvm_xen_hvm_config xhc;
4582                 r = -EFAULT;
4583                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4584                         goto out;
4585                 r = -EINVAL;
4586                 if (xhc.flags)
4587                         goto out;
4588                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4589                 r = 0;
4590                 break;
4591         }
4592         case KVM_SET_CLOCK: {
4593                 struct kvm_clock_data user_ns;
4594                 u64 now_ns;
4596                 r = -EFAULT;
4597                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4598                         goto out;
4600                 r = -EINVAL;
4601                 if (user_ns.flags)
4602                         goto out;
4604                 r = 0;
4605                 /*
4606                  * TODO: userspace has to take care of races with VCPU_RUN, so
4607                  * kvm_gen_update_masterclock() can be cut down to locked
4608                  * pvclock_update_vm_gtod_copy().
4609                  */
4610                 kvm_gen_update_masterclock(kvm);
4611                 now_ns = get_kvmclock_ns(kvm);
4612                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4613                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4614                 break;
4615         }
4616         case KVM_GET_CLOCK: {
4617                 struct kvm_clock_data user_ns;
4618                 u64 now_ns;
4620                 now_ns = get_kvmclock_ns(kvm);
4621                 user_ns.clock = now_ns;
4622                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4623                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4625                 r = -EFAULT;
4626                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4627                         goto out;
4628                 r = 0;
4629                 break;
4630         }
4631         case KVM_ENABLE_CAP: {
4632                 struct kvm_enable_cap cap;
4634                 r = -EFAULT;
4635                 if (copy_from_user(&cap, argp, sizeof(cap)))
4636                         goto out;
4637                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4638                 break;
4639         }
4640         case KVM_MEMORY_ENCRYPT_OP: {
4641                 r = -ENOTTY;
4642                 if (kvm_x86_ops->mem_enc_op)
4643                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4644                 break;
4645         }
4646         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4647                 struct kvm_enc_region region;
4649                 r = -EFAULT;
4650                 if (copy_from_user(&region, argp, sizeof(region)))
4651                         goto out;
4653                 r = -ENOTTY;
4654                 if (kvm_x86_ops->mem_enc_reg_region)
4655                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4656                 break;
4657         }
4658         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4659                 struct kvm_enc_region region;
4661                 r = -EFAULT;
4662                 if (copy_from_user(&region, argp, sizeof(region)))
4663                         goto out;
4665                 r = -ENOTTY;
4666                 if (kvm_x86_ops->mem_enc_unreg_region)
4667                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4668                 break;
4669         }
4670         case KVM_HYPERV_EVENTFD: {
4671                 struct kvm_hyperv_eventfd hvevfd;
4673                 r = -EFAULT;
4674                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4675                         goto out;
4676                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4677                 break;
4678         }
4679         default:
4680                 r = -ENOTTY;
4681         }
4682 out:
4683         return r;
4686 static void kvm_init_msr_list(void)
4688         u32 dummy[2];
4689         unsigned i, j;
4691         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4692                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4693                         continue;
4695                 /*
4696                  * Even MSRs that are valid in the host may not be exposed
4697                  * to the guests in some cases.
4698                  */
4699                 switch (msrs_to_save[i]) {
4700                 case MSR_IA32_BNDCFGS:
4701                         if (!kvm_mpx_supported())
4702                                 continue;
4703                         break;
4704                 case MSR_TSC_AUX:
4705                         if (!kvm_x86_ops->rdtscp_supported())
4706                                 continue;
4707                         break;
4708                 default:
4709                         break;
4710                 }
4712                 if (j < i)
4713                         msrs_to_save[j] = msrs_to_save[i];
4714                 j++;
4715         }
4716         num_msrs_to_save = j;
4718         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4719                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4720                         continue;
4722                 if (j < i)
4723                         emulated_msrs[j] = emulated_msrs[i];
4724                 j++;
4725         }
4726         num_emulated_msrs = j;
4728         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4729                 struct kvm_msr_entry msr;
4731                 msr.index = msr_based_features[i];
4732                 if (kvm_get_msr_feature(&msr))
4733                         continue;
4735                 if (j < i)
4736                         msr_based_features[j] = msr_based_features[i];
4737                 j++;
4738         }
4739         num_msr_based_features = j;
4742 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4743                            const void *v)
4745         int handled = 0;
4746         int n;
4748         do {
4749                 n = min(len, 8);
4750                 if (!(lapic_in_kernel(vcpu) &&
4751                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4752                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4753                         break;
4754                 handled += n;
4755                 addr += n;
4756                 len -= n;
4757                 v += n;
4758         } while (len);
4760         return handled;
4763 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4765         int handled = 0;
4766         int n;
4768         do {
4769                 n = min(len, 8);
4770                 if (!(lapic_in_kernel(vcpu) &&
4771                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4772                                          addr, n, v))
4773                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4774                         break;
4775                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4776                 handled += n;
4777                 addr += n;
4778                 len -= n;
4779                 v += n;
4780         } while (len);
4782         return handled;
4785 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4786                         struct kvm_segment *var, int seg)
4788         kvm_x86_ops->set_segment(vcpu, var, seg);
4791 void kvm_get_segment(struct kvm_vcpu *vcpu,
4792                      struct kvm_segment *var, int seg)
4794         kvm_x86_ops->get_segment(vcpu, var, seg);
4797 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4798                            struct x86_exception *exception)
4800         gpa_t t_gpa;
4802         BUG_ON(!mmu_is_nested(vcpu));
4804         /* NPT walks are always user-walks */
4805         access |= PFERR_USER_MASK;
4806         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4808         return t_gpa;
4811 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4812                               struct x86_exception *exception)
4814         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4815         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4818  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4819                                 struct x86_exception *exception)
4821         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4822         access |= PFERR_FETCH_MASK;
4823         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4826 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4827                                struct x86_exception *exception)
4829         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4830         access |= PFERR_WRITE_MASK;
4831         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4834 /* uses this to access any guest's mapped memory without checking CPL */
4835 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4836                                 struct x86_exception *exception)
4838         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4841 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4842                                       struct kvm_vcpu *vcpu, u32 access,
4843                                       struct x86_exception *exception)
4845         void *data = val;
4846         int r = X86EMUL_CONTINUE;
4848         while (bytes) {
4849                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4850                                                             exception);
4851                 unsigned offset = addr & (PAGE_SIZE-1);
4852                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4853                 int ret;
4855                 if (gpa == UNMAPPED_GVA)
4856                         return X86EMUL_PROPAGATE_FAULT;
4857                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4858                                                offset, toread);
4859                 if (ret < 0) {
4860                         r = X86EMUL_IO_NEEDED;
4861                         goto out;
4862                 }
4864                 bytes -= toread;
4865                 data += toread;
4866                 addr += toread;
4867         }
4868 out:
4869         return r;
4872 /* used for instruction fetching */
4873 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4874                                 gva_t addr, void *val, unsigned int bytes,
4875                                 struct x86_exception *exception)
4877         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4878         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4879         unsigned offset;
4880         int ret;
4882         /* Inline kvm_read_guest_virt_helper for speed.  */
4883         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4884                                                     exception);
4885         if (unlikely(gpa == UNMAPPED_GVA))
4886                 return X86EMUL_PROPAGATE_FAULT;
4888         offset = addr & (PAGE_SIZE-1);
4889         if (WARN_ON(offset + bytes > PAGE_SIZE))
4890                 bytes = (unsigned)PAGE_SIZE - offset;
4891         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4892                                        offset, bytes);
4893         if (unlikely(ret < 0))
4894                 return X86EMUL_IO_NEEDED;
4896         return X86EMUL_CONTINUE;
4899 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4900                                gva_t addr, void *val, unsigned int bytes,
4901                                struct x86_exception *exception)
4903         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4905         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4906                                           exception);
4908 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4910 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4911                              gva_t addr, void *val, unsigned int bytes,
4912                              struct x86_exception *exception, bool system)
4914         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4915         u32 access = 0;
4917         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4918                 access |= PFERR_USER_MASK;
4920         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4923 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4924                 unsigned long addr, void *val, unsigned int bytes)
4926         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4927         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4929         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4932 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4933                                       struct kvm_vcpu *vcpu, u32 access,
4934                                       struct x86_exception *exception)
4936         void *data = val;
4937         int r = X86EMUL_CONTINUE;
4939         while (bytes) {
4940                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4941                                                              access,
4942                                                              exception);
4943                 unsigned offset = addr & (PAGE_SIZE-1);
4944                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4945                 int ret;
4947                 if (gpa == UNMAPPED_GVA)
4948                         return X86EMUL_PROPAGATE_FAULT;
4949                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4950                 if (ret < 0) {
4951                         r = X86EMUL_IO_NEEDED;
4952                         goto out;
4953                 }
4955                 bytes -= towrite;
4956                 data += towrite;
4957                 addr += towrite;
4958         }
4959 out:
4960         return r;
4963 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4964                               unsigned int bytes, struct x86_exception *exception,
4965                               bool system)
4967         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4968         u32 access = PFERR_WRITE_MASK;
4970         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4971                 access |= PFERR_USER_MASK;
4973         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4974                                            access, exception);
4977 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4978                                 unsigned int bytes, struct x86_exception *exception)
4980         /* kvm_write_guest_virt_system can pull in tons of pages. */
4981         vcpu->arch.l1tf_flush_l1d = true;
4983         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4984                                            PFERR_WRITE_MASK, exception);
4986 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4988 int handle_ud(struct kvm_vcpu *vcpu)
4990         int emul_type = EMULTYPE_TRAP_UD;
4991         enum emulation_result er;
4992         char sig[5]; /* ud2; .ascii "kvm" */
4993         struct x86_exception e;
4995         if (force_emulation_prefix &&
4996             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
4997                                 sig, sizeof(sig), &e) == 0 &&
4998             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4999                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5000                 emul_type = 0;
5001         }
5003         er = kvm_emulate_instruction(vcpu, emul_type);
5004         if (er == EMULATE_USER_EXIT)
5005                 return 0;
5006         if (er != EMULATE_DONE)
5007                 kvm_queue_exception(vcpu, UD_VECTOR);
5008         return 1;
5010 EXPORT_SYMBOL_GPL(handle_ud);
5012 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5013                             gpa_t gpa, bool write)
5015         /* For APIC access vmexit */
5016         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5017                 return 1;
5019         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5020                 trace_vcpu_match_mmio(gva, gpa, write, true);
5021                 return 1;
5022         }
5024         return 0;
5027 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5028                                 gpa_t *gpa, struct x86_exception *exception,
5029                                 bool write)
5031         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5032                 | (write ? PFERR_WRITE_MASK : 0);
5034         /*
5035          * currently PKRU is only applied to ept enabled guest so
5036          * there is no pkey in EPT page table for L1 guest or EPT
5037          * shadow page table for L2 guest.
5038          */
5039         if (vcpu_match_mmio_gva(vcpu, gva)
5040             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5041                                  vcpu->arch.access, 0, access)) {
5042                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5043                                         (gva & (PAGE_SIZE - 1));
5044                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5045                 return 1;
5046         }
5048         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5050         if (*gpa == UNMAPPED_GVA)
5051                 return -1;
5053         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5056 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5057                         const void *val, int bytes)
5059         int ret;
5061         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5062         if (ret < 0)
5063                 return 0;
5064         kvm_page_track_write(vcpu, gpa, val, bytes);
5065         return 1;
5068 struct read_write_emulator_ops {
5069         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5070                                   int bytes);
5071         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5072                                   void *val, int bytes);
5073         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5074                                int bytes, void *val);
5075         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5076                                     void *val, int bytes);
5077         bool write;
5078 };
5080 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5082         if (vcpu->mmio_read_completed) {
5083                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5084                                vcpu->mmio_fragments[0].gpa, val);
5085                 vcpu->mmio_read_completed = 0;
5086                 return 1;
5087         }
5089         return 0;
5092 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5093                         void *val, int bytes)
5095         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5098 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5099                          void *val, int bytes)
5101         return emulator_write_phys(vcpu, gpa, val, bytes);
5104 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5106         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5107         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5110 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5111                           void *val, int bytes)
5113         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5114         return X86EMUL_IO_NEEDED;
5117 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5118                            void *val, int bytes)
5120         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5122         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5123         return X86EMUL_CONTINUE;
5126 static const struct read_write_emulator_ops read_emultor = {
5127         .read_write_prepare = read_prepare,
5128         .read_write_emulate = read_emulate,
5129         .read_write_mmio = vcpu_mmio_read,
5130         .read_write_exit_mmio = read_exit_mmio,
5131 };
5133 static const struct read_write_emulator_ops write_emultor = {
5134         .read_write_emulate = write_emulate,
5135         .read_write_mmio = write_mmio,
5136         .read_write_exit_mmio = write_exit_mmio,
5137         .write = true,
5138 };
5140 static int emulator_read_write_onepage(unsigned long addr, void *val,
5141                                        unsigned int bytes,
5142                                        struct x86_exception *exception,
5143                                        struct kvm_vcpu *vcpu,
5144                                        const struct read_write_emulator_ops *ops)
5146         gpa_t gpa;
5147         int handled, ret;
5148         bool write = ops->write;
5149         struct kvm_mmio_fragment *frag;
5150         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5152         /*
5153          * If the exit was due to a NPF we may already have a GPA.
5154          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5155          * Note, this cannot be used on string operations since string
5156          * operation using rep will only have the initial GPA from the NPF
5157          * occurred.
5158          */
5159         if (vcpu->arch.gpa_available &&
5160             emulator_can_use_gpa(ctxt) &&
5161             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5162                 gpa = vcpu->arch.gpa_val;
5163                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5164         } else {
5165                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5166                 if (ret < 0)
5167                         return X86EMUL_PROPAGATE_FAULT;
5168         }
5170         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5171                 return X86EMUL_CONTINUE;
5173         /*
5174          * Is this MMIO handled locally?
5175          */
5176         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5177         if (handled == bytes)
5178                 return X86EMUL_CONTINUE;
5180         gpa += handled;
5181         bytes -= handled;
5182         val += handled;
5184         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5185         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5186         frag->gpa = gpa;
5187         frag->data = val;
5188         frag->len = bytes;
5189         return X86EMUL_CONTINUE;
5192 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5193                         unsigned long addr,
5194                         void *val, unsigned int bytes,
5195                         struct x86_exception *exception,
5196                         const struct read_write_emulator_ops *ops)
5198         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5199         gpa_t gpa;
5200         int rc;
5202         if (ops->read_write_prepare &&
5203                   ops->read_write_prepare(vcpu, val, bytes))
5204                 return X86EMUL_CONTINUE;
5206         vcpu->mmio_nr_fragments = 0;
5208         /* Crossing a page boundary? */
5209         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5210                 int now;
5212                 now = -addr & ~PAGE_MASK;
5213                 rc = emulator_read_write_onepage(addr, val, now, exception,
5214                                                  vcpu, ops);
5216                 if (rc != X86EMUL_CONTINUE)
5217                         return rc;
5218                 addr += now;
5219                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5220                         addr = (u32)addr;
5221                 val += now;
5222                 bytes -= now;
5223         }
5225         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5226                                          vcpu, ops);
5227         if (rc != X86EMUL_CONTINUE)
5228                 return rc;
5230         if (!vcpu->mmio_nr_fragments)
5231                 return rc;
5233         gpa = vcpu->mmio_fragments[0].gpa;
5235         vcpu->mmio_needed = 1;
5236         vcpu->mmio_cur_fragment = 0;
5238         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5239         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5240         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5241         vcpu->run->mmio.phys_addr = gpa;
5243         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5246 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5247                                   unsigned long addr,
5248                                   void *val,
5249                                   unsigned int bytes,
5250                                   struct x86_exception *exception)
5252         return emulator_read_write(ctxt, addr, val, bytes,
5253                                    exception, &read_emultor);
5256 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5257                             unsigned long addr,
5258                             const void *val,
5259                             unsigned int bytes,
5260                             struct x86_exception *exception)
5262         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5263                                    exception, &write_emultor);
5266 #define CMPXCHG_TYPE(t, ptr, old, new) \
5267         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5269 #ifdef CONFIG_X86_64
5270 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5271 #else
5272 #  define CMPXCHG64(ptr, old, new) \
5273         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5274 #endif
5276 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5277                                      unsigned long addr,
5278                                      const void *old,
5279                                      const void *new,
5280                                      unsigned int bytes,
5281                                      struct x86_exception *exception)
5283         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5284         gpa_t gpa;
5285         struct page *page;
5286         char *kaddr;
5287         bool exchanged;
5289         /* guests cmpxchg8b have to be emulated atomically */
5290         if (bytes > 8 || (bytes & (bytes - 1)))
5291                 goto emul_write;
5293         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5295         if (gpa == UNMAPPED_GVA ||
5296             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5297                 goto emul_write;
5299         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5300                 goto emul_write;
5302         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5303         if (is_error_page(page))
5304                 goto emul_write;
5306         kaddr = kmap_atomic(page);
5307         kaddr += offset_in_page(gpa);
5308         switch (bytes) {
5309         case 1:
5310                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5311                 break;
5312         case 2:
5313                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5314                 break;
5315         case 4:
5316                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5317                 break;
5318         case 8:
5319                 exchanged = CMPXCHG64(kaddr, old, new);
5320                 break;
5321         default:
5322                 BUG();
5323         }
5324         kunmap_atomic(kaddr);
5325         kvm_release_page_dirty(page);
5327         if (!exchanged)
5328                 return X86EMUL_CMPXCHG_FAILED;
5330         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5331         kvm_page_track_write(vcpu, gpa, new, bytes);
5333         return X86EMUL_CONTINUE;
5335 emul_write:
5336         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5338         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5341 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5343         int r = 0, i;
5345         for (i = 0; i < vcpu->arch.pio.count; i++) {
5346                 if (vcpu->arch.pio.in)
5347                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5348                                             vcpu->arch.pio.size, pd);
5349                 else
5350                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5351                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5352                                              pd);
5353                 if (r)
5354                         break;
5355                 pd += vcpu->arch.pio.size;
5356         }
5357         return r;
5360 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5361                                unsigned short port, void *val,
5362                                unsigned int count, bool in)
5364         vcpu->arch.pio.port = port;
5365         vcpu->arch.pio.in = in;
5366         vcpu->arch.pio.count  = count;
5367         vcpu->arch.pio.size = size;
5369         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5370                 vcpu->arch.pio.count = 0;
5371                 return 1;
5372         }
5374         vcpu->run->exit_reason = KVM_EXIT_IO;
5375         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5376         vcpu->run->io.size = size;
5377         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5378         vcpu->run->io.count = count;
5379         vcpu->run->io.port = port;
5381         return 0;
5384 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5385                                     int size, unsigned short port, void *val,
5386                                     unsigned int count)
5388         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5389         int ret;
5391         if (vcpu->arch.pio.count)
5392                 goto data_avail;
5394         memset(vcpu->arch.pio_data, 0, size * count);
5396         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5397         if (ret) {
5398 data_avail:
5399                 memcpy(val, vcpu->arch.pio_data, size * count);
5400                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5401                 vcpu->arch.pio.count = 0;
5402                 return 1;
5403         }
5405         return 0;
5408 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5409                                      int size, unsigned short port,
5410                                      const void *val, unsigned int count)
5412         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5414         memcpy(vcpu->arch.pio_data, val, size * count);
5415         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5416         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5419 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5421         return kvm_x86_ops->get_segment_base(vcpu, seg);
5424 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5426         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5429 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5431         if (!need_emulate_wbinvd(vcpu))
5432                 return X86EMUL_CONTINUE;
5434         if (kvm_x86_ops->has_wbinvd_exit()) {
5435                 int cpu = get_cpu();
5437                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5438                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5439                                 wbinvd_ipi, NULL, 1);
5440                 put_cpu();
5441                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5442         } else
5443                 wbinvd();
5444         return X86EMUL_CONTINUE;
5447 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5449         kvm_emulate_wbinvd_noskip(vcpu);
5450         return kvm_skip_emulated_instruction(vcpu);
5452 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5456 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5458         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5461 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5462                            unsigned long *dest)
5464         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5467 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5468                            unsigned long value)
5471         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5474 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5476         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5479 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5481         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5482         unsigned long value;
5484         switch (cr) {
5485         case 0:
5486                 value = kvm_read_cr0(vcpu);
5487                 break;
5488         case 2:
5489                 value = vcpu->arch.cr2;
5490                 break;
5491         case 3:
5492                 value = kvm_read_cr3(vcpu);
5493                 break;
5494         case 4:
5495                 value = kvm_read_cr4(vcpu);
5496                 break;
5497         case 8:
5498                 value = kvm_get_cr8(vcpu);
5499                 break;
5500         default:
5501                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5502                 return 0;
5503         }
5505         return value;
5508 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5510         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5511         int res = 0;
5513         switch (cr) {
5514         case 0:
5515                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5516                 break;
5517         case 2:
5518                 vcpu->arch.cr2 = val;
5519                 break;
5520         case 3:
5521                 res = kvm_set_cr3(vcpu, val);
5522                 break;
5523         case 4:
5524                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5525                 break;
5526         case 8:
5527                 res = kvm_set_cr8(vcpu, val);
5528                 break;
5529         default:
5530                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5531                 res = -1;
5532         }
5534         return res;
5537 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5539         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5542 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5544         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5547 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5549         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5552 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5554         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5557 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5559         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5562 static unsigned long emulator_get_cached_segment_base(
5563         struct x86_emulate_ctxt *ctxt, int seg)
5565         return get_segment_base(emul_to_vcpu(ctxt), seg);
5568 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5569                                  struct desc_struct *desc, u32 *base3,
5570                                  int seg)
5572         struct kvm_segment var;
5574         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5575         *selector = var.selector;
5577         if (var.unusable) {
5578                 memset(desc, 0, sizeof(*desc));
5579                 if (base3)
5580                         *base3 = 0;
5581                 return false;
5582         }
5584         if (var.g)
5585                 var.limit >>= 12;
5586         set_desc_limit(desc, var.limit);
5587         set_desc_base(desc, (unsigned long)var.base);
5588 #ifdef CONFIG_X86_64
5589         if (base3)
5590                 *base3 = var.base >> 32;
5591 #endif
5592         desc->type = var.type;
5593         desc->s = var.s;
5594         desc->dpl = var.dpl;
5595         desc->p = var.present;
5596         desc->avl = var.avl;
5597         desc->l = var.l;
5598         desc->d = var.db;
5599         desc->g = var.g;
5601         return true;
5604 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5605                                  struct desc_struct *desc, u32 base3,
5606                                  int seg)
5608         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5609         struct kvm_segment var;
5611         var.selector = selector;
5612         var.base = get_desc_base(desc);
5613 #ifdef CONFIG_X86_64
5614         var.base |= ((u64)base3) << 32;
5615 #endif
5616         var.limit = get_desc_limit(desc);
5617         if (desc->g)
5618                 var.limit = (var.limit << 12) | 0xfff;
5619         var.type = desc->type;
5620         var.dpl = desc->dpl;
5621         var.db = desc->d;
5622         var.s = desc->s;
5623         var.l = desc->l;
5624         var.g = desc->g;
5625         var.avl = desc->avl;
5626         var.present = desc->p;
5627         var.unusable = !var.present;
5628         var.padding = 0;
5630         kvm_set_segment(vcpu, &var, seg);
5631         return;
5634 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5635                             u32 msr_index, u64 *pdata)
5637         struct msr_data msr;
5638         int r;
5640         msr.index = msr_index;
5641         msr.host_initiated = false;
5642         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5643         if (r)
5644                 return r;
5646         *pdata = msr.data;
5647         return 0;
5650 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5651                             u32 msr_index, u64 data)
5653         struct msr_data msr;
5655         msr.data = data;
5656         msr.index = msr_index;
5657         msr.host_initiated = false;
5658         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5661 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5663         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5665         return vcpu->arch.smbase;
5668 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5670         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5672         vcpu->arch.smbase = smbase;
5675 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5676                               u32 pmc)
5678         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5681 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5682                              u32 pmc, u64 *pdata)
5684         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5687 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5689         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5692 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5693                               struct x86_instruction_info *info,
5694                               enum x86_intercept_stage stage)
5696         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5699 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5700                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5702         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5705 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5707         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5710 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5712         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5715 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5717         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5720 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5722         return emul_to_vcpu(ctxt)->arch.hflags;
5725 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5727         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5730 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5732         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5735 static const struct x86_emulate_ops emulate_ops = {
5736         .read_gpr            = emulator_read_gpr,
5737         .write_gpr           = emulator_write_gpr,
5738         .read_std            = emulator_read_std,
5739         .write_std           = emulator_write_std,
5740         .read_phys           = kvm_read_guest_phys_system,
5741         .fetch               = kvm_fetch_guest_virt,
5742         .read_emulated       = emulator_read_emulated,
5743         .write_emulated      = emulator_write_emulated,
5744         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5745         .invlpg              = emulator_invlpg,
5746         .pio_in_emulated     = emulator_pio_in_emulated,
5747         .pio_out_emulated    = emulator_pio_out_emulated,
5748         .get_segment         = emulator_get_segment,
5749         .set_segment         = emulator_set_segment,
5750         .get_cached_segment_base = emulator_get_cached_segment_base,
5751         .get_gdt             = emulator_get_gdt,
5752         .get_idt             = emulator_get_idt,
5753         .set_gdt             = emulator_set_gdt,
5754         .set_idt             = emulator_set_idt,
5755         .get_cr              = emulator_get_cr,
5756         .set_cr              = emulator_set_cr,
5757         .cpl                 = emulator_get_cpl,
5758         .get_dr              = emulator_get_dr,
5759         .set_dr              = emulator_set_dr,
5760         .get_smbase          = emulator_get_smbase,
5761         .set_smbase          = emulator_set_smbase,
5762         .set_msr             = emulator_set_msr,
5763         .get_msr             = emulator_get_msr,
5764         .check_pmc           = emulator_check_pmc,
5765         .read_pmc            = emulator_read_pmc,
5766         .halt                = emulator_halt,
5767         .wbinvd              = emulator_wbinvd,
5768         .fix_hypercall       = emulator_fix_hypercall,
5769         .intercept           = emulator_intercept,
5770         .get_cpuid           = emulator_get_cpuid,
5771         .set_nmi_mask        = emulator_set_nmi_mask,
5772         .get_hflags          = emulator_get_hflags,
5773         .set_hflags          = emulator_set_hflags,
5774         .pre_leave_smm       = emulator_pre_leave_smm,
5775 };
5777 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5779         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5780         /*
5781          * an sti; sti; sequence only disable interrupts for the first
5782          * instruction. So, if the last instruction, be it emulated or
5783          * not, left the system with the INT_STI flag enabled, it
5784          * means that the last instruction is an sti. We should not
5785          * leave the flag on in this case. The same goes for mov ss
5786          */
5787         if (int_shadow & mask)
5788                 mask = 0;
5789         if (unlikely(int_shadow || mask)) {
5790                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5791                 if (!mask)
5792                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5793         }
5796 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5798         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5799         if (ctxt->exception.vector == PF_VECTOR)
5800                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5802         if (ctxt->exception.error_code_valid)
5803                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5804                                       ctxt->exception.error_code);
5805         else
5806                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5807         return false;
5810 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5812         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5813         int cs_db, cs_l;
5815         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5817         ctxt->eflags = kvm_get_rflags(vcpu);
5818         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5820         ctxt->eip = kvm_rip_read(vcpu);
5821         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5822                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5823                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5824                      cs_db                              ? X86EMUL_MODE_PROT32 :
5825                                                           X86EMUL_MODE_PROT16;
5826         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5827         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5828         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5830         init_decode_cache(ctxt);
5831         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5834 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5836         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5837         int ret;
5839         init_emulate_ctxt(vcpu);
5841         ctxt->op_bytes = 2;
5842         ctxt->ad_bytes = 2;
5843         ctxt->_eip = ctxt->eip + inc_eip;
5844         ret = emulate_int_real(ctxt, irq);
5846         if (ret != X86EMUL_CONTINUE)
5847                 return EMULATE_FAIL;
5849         ctxt->eip = ctxt->_eip;
5850         kvm_rip_write(vcpu, ctxt->eip);
5851         kvm_set_rflags(vcpu, ctxt->eflags);
5853         return EMULATE_DONE;
5855 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5857 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5859         int r = EMULATE_DONE;
5861         ++vcpu->stat.insn_emulation_fail;
5862         trace_kvm_emulate_insn_failed(vcpu);
5864         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5865                 return EMULATE_FAIL;
5867         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5868                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5869                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5870                 vcpu->run->internal.ndata = 0;
5871                 r = EMULATE_USER_EXIT;
5872         }
5874         kvm_queue_exception(vcpu, UD_VECTOR);
5876         return r;
5879 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5880                                   bool write_fault_to_shadow_pgtable,
5881                                   int emulation_type)
5883         gpa_t gpa = cr2;
5884         kvm_pfn_t pfn;
5886         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
5887                 return false;
5889         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5890                 return false;
5892         if (!vcpu->arch.mmu.direct_map) {
5893                 /*
5894                  * Write permission should be allowed since only
5895                  * write access need to be emulated.
5896                  */
5897                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5899                 /*
5900                  * If the mapping is invalid in guest, let cpu retry
5901                  * it to generate fault.
5902                  */
5903                 if (gpa == UNMAPPED_GVA)
5904                         return true;
5905         }
5907         /*
5908          * Do not retry the unhandleable instruction if it faults on the
5909          * readonly host memory, otherwise it will goto a infinite loop:
5910          * retry instruction -> write #PF -> emulation fail -> retry
5911          * instruction -> ...
5912          */
5913         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5915         /*
5916          * If the instruction failed on the error pfn, it can not be fixed,
5917          * report the error to userspace.
5918          */
5919         if (is_error_noslot_pfn(pfn))
5920                 return false;
5922         kvm_release_pfn_clean(pfn);
5924         /* The instructions are well-emulated on direct mmu. */
5925         if (vcpu->arch.mmu.direct_map) {
5926                 unsigned int indirect_shadow_pages;
5928                 spin_lock(&vcpu->kvm->mmu_lock);
5929                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5930                 spin_unlock(&vcpu->kvm->mmu_lock);
5932                 if (indirect_shadow_pages)
5933                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5935                 return true;
5936         }
5938         /*
5939          * if emulation was due to access to shadowed page table
5940          * and it failed try to unshadow page and re-enter the
5941          * guest to let CPU execute the instruction.
5942          */
5943         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5945         /*
5946          * If the access faults on its page table, it can not
5947          * be fixed by unprotecting shadow page and it should
5948          * be reported to userspace.
5949          */
5950         return !write_fault_to_shadow_pgtable;
5953 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5954                               unsigned long cr2,  int emulation_type)
5956         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5957         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5959         last_retry_eip = vcpu->arch.last_retry_eip;
5960         last_retry_addr = vcpu->arch.last_retry_addr;
5962         /*
5963          * If the emulation is caused by #PF and it is non-page_table
5964          * writing instruction, it means the VM-EXIT is caused by shadow
5965          * page protected, we can zap the shadow page and retry this
5966          * instruction directly.
5967          *
5968          * Note: if the guest uses a non-page-table modifying instruction
5969          * on the PDE that points to the instruction, then we will unmap
5970          * the instruction and go to an infinite loop. So, we cache the
5971          * last retried eip and the last fault address, if we meet the eip
5972          * and the address again, we can break out of the potential infinite
5973          * loop.
5974          */
5975         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5977         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
5978                 return false;
5980         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5981                 return false;
5983         if (x86_page_table_writing_insn(ctxt))
5984                 return false;
5986         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5987                 return false;
5989         vcpu->arch.last_retry_eip = ctxt->eip;
5990         vcpu->arch.last_retry_addr = cr2;
5992         if (!vcpu->arch.mmu.direct_map)
5993                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5995         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5997         return true;
6000 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6001 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6003 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6005         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6006                 /* This is a good place to trace that we are exiting SMM.  */
6007                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6009                 /* Process a latched INIT or SMI, if any.  */
6010                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6011         }
6013         kvm_mmu_reset_context(vcpu);
6016 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6018         unsigned changed = vcpu->arch.hflags ^ emul_flags;
6020         vcpu->arch.hflags = emul_flags;
6022         if (changed & HF_SMM_MASK)
6023                 kvm_smm_changed(vcpu);
6026 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6027                                 unsigned long *db)
6029         u32 dr6 = 0;
6030         int i;
6031         u32 enable, rwlen;
6033         enable = dr7;
6034         rwlen = dr7 >> 16;
6035         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6036                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6037                         dr6 |= (1 << i);
6038         return dr6;
6041 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6043         struct kvm_run *kvm_run = vcpu->run;
6045         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6046                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6047                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6048                 kvm_run->debug.arch.exception = DB_VECTOR;
6049                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6050                 *r = EMULATE_USER_EXIT;
6051         } else {
6052                 /*
6053                  * "Certain debug exceptions may clear bit 0-3.  The
6054                  * remaining contents of the DR6 register are never
6055                  * cleared by the processor".
6056                  */
6057                 vcpu->arch.dr6 &= ~15;
6058                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
6059                 kvm_queue_exception(vcpu, DB_VECTOR);
6060         }
6063 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6065         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6066         int r = EMULATE_DONE;
6068         kvm_x86_ops->skip_emulated_instruction(vcpu);
6070         /*
6071          * rflags is the old, "raw" value of the flags.  The new value has
6072          * not been saved yet.
6073          *
6074          * This is correct even for TF set by the guest, because "the
6075          * processor will not generate this exception after the instruction
6076          * that sets the TF flag".
6077          */
6078         if (unlikely(rflags & X86_EFLAGS_TF))
6079                 kvm_vcpu_do_singlestep(vcpu, &r);
6080         return r == EMULATE_DONE;
6082 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6084 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6086         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6087             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6088                 struct kvm_run *kvm_run = vcpu->run;
6089                 unsigned long eip = kvm_get_linear_rip(vcpu);
6090                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6091                                            vcpu->arch.guest_debug_dr7,
6092                                            vcpu->arch.eff_db);
6094                 if (dr6 != 0) {
6095                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6096                         kvm_run->debug.arch.pc = eip;
6097                         kvm_run->debug.arch.exception = DB_VECTOR;
6098                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6099                         *r = EMULATE_USER_EXIT;
6100                         return true;
6101                 }
6102         }
6104         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6105             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6106                 unsigned long eip = kvm_get_linear_rip(vcpu);
6107                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6108                                            vcpu->arch.dr7,
6109                                            vcpu->arch.db);
6111                 if (dr6 != 0) {
6112                         vcpu->arch.dr6 &= ~15;
6113                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6114                         kvm_queue_exception(vcpu, DB_VECTOR);
6115                         *r = EMULATE_DONE;
6116                         return true;
6117                 }
6118         }
6120         return false;
6123 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6125         switch (ctxt->opcode_len) {
6126         case 1:
6127                 switch (ctxt->b) {
6128                 case 0xe4:      /* IN */
6129                 case 0xe5:
6130                 case 0xec:
6131                 case 0xed:
6132                 case 0xe6:      /* OUT */
6133                 case 0xe7:
6134                 case 0xee:
6135                 case 0xef:
6136                 case 0x6c:      /* INS */
6137                 case 0x6d:
6138                 case 0x6e:      /* OUTS */
6139                 case 0x6f:
6140                         return true;
6141                 }
6142                 break;
6143         case 2:
6144                 switch (ctxt->b) {
6145                 case 0x33:      /* RDPMC */
6146                         return true;
6147                 }
6148                 break;
6149         }
6151         return false;
6154 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6155                             unsigned long cr2,
6156                             int emulation_type,
6157                             void *insn,
6158                             int insn_len)
6160         int r;
6161         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6162         bool writeback = true;
6163         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6165         vcpu->arch.l1tf_flush_l1d = true;
6167         /*
6168          * Clear write_fault_to_shadow_pgtable here to ensure it is
6169          * never reused.
6170          */
6171         vcpu->arch.write_fault_to_shadow_pgtable = false;
6172         kvm_clear_exception_queue(vcpu);
6174         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6175                 init_emulate_ctxt(vcpu);
6177                 /*
6178                  * We will reenter on the same instruction since
6179                  * we do not set complete_userspace_io.  This does not
6180                  * handle watchpoints yet, those would be handled in
6181                  * the emulate_ops.
6182                  */
6183                 if (!(emulation_type & EMULTYPE_SKIP) &&
6184                     kvm_vcpu_check_breakpoint(vcpu, &r))
6185                         return r;
6187                 ctxt->interruptibility = 0;
6188                 ctxt->have_exception = false;
6189                 ctxt->exception.vector = -1;
6190                 ctxt->perm_ok = false;
6192                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6194                 r = x86_decode_insn(ctxt, insn, insn_len);
6196                 trace_kvm_emulate_insn_start(vcpu);
6197                 ++vcpu->stat.insn_emulation;
6198                 if (r != EMULATION_OK)  {
6199                         if (emulation_type & EMULTYPE_TRAP_UD)
6200                                 return EMULATE_FAIL;
6201                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6202                                                 emulation_type))
6203                                 return EMULATE_DONE;
6204                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6205                                 return EMULATE_DONE;
6206                         if (emulation_type & EMULTYPE_SKIP)
6207                                 return EMULATE_FAIL;
6208                         return handle_emulation_failure(vcpu, emulation_type);
6209                 }
6210         }
6212         if ((emulation_type & EMULTYPE_VMWARE) &&
6213             !is_vmware_backdoor_opcode(ctxt))
6214                 return EMULATE_FAIL;
6216         if (emulation_type & EMULTYPE_SKIP) {
6217                 kvm_rip_write(vcpu, ctxt->_eip);
6218                 if (ctxt->eflags & X86_EFLAGS_RF)
6219                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6220                 return EMULATE_DONE;
6221         }
6223         if (retry_instruction(ctxt, cr2, emulation_type))
6224                 return EMULATE_DONE;
6226         /* this is needed for vmware backdoor interface to work since it
6227            changes registers values  during IO operation */
6228         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6229                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6230                 emulator_invalidate_register_cache(ctxt);
6231         }
6233 restart:
6234         /* Save the faulting GPA (cr2) in the address field */
6235         ctxt->exception.address = cr2;
6237         r = x86_emulate_insn(ctxt);
6239         if (r == EMULATION_INTERCEPTED)
6240                 return EMULATE_DONE;
6242         if (r == EMULATION_FAILED) {
6243                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6244                                         emulation_type))
6245                         return EMULATE_DONE;
6247                 return handle_emulation_failure(vcpu, emulation_type);
6248         }
6250         if (ctxt->have_exception) {
6251                 r = EMULATE_DONE;
6252                 if (inject_emulated_exception(vcpu))
6253                         return r;
6254         } else if (vcpu->arch.pio.count) {
6255                 if (!vcpu->arch.pio.in) {
6256                         /* FIXME: return into emulator if single-stepping.  */
6257                         vcpu->arch.pio.count = 0;
6258                 } else {
6259                         writeback = false;
6260                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6261                 }
6262                 r = EMULATE_USER_EXIT;
6263         } else if (vcpu->mmio_needed) {
6264                 if (!vcpu->mmio_is_write)
6265                         writeback = false;
6266                 r = EMULATE_USER_EXIT;
6267                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6268         } else if (r == EMULATION_RESTART)
6269                 goto restart;
6270         else
6271                 r = EMULATE_DONE;
6273         if (writeback) {
6274                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6275                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6276                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6277                 kvm_rip_write(vcpu, ctxt->eip);
6278                 if (r == EMULATE_DONE &&
6279                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6280                         kvm_vcpu_do_singlestep(vcpu, &r);
6281                 if (!ctxt->have_exception ||
6282                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6283                         __kvm_set_rflags(vcpu, ctxt->eflags);
6285                 /*
6286                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6287                  * do nothing, and it will be requested again as soon as
6288                  * the shadow expires.  But we still need to check here,
6289                  * because POPF has no interrupt shadow.
6290                  */
6291                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6292                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6293         } else
6294                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6296         return r;
6299 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6301         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6303 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6305 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6306                                         void *insn, int insn_len)
6308         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6310 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6312 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6313                             unsigned short port)
6315         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6316         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6317                                             size, port, &val, 1);
6318         /* do not return to emulator after return from userspace */
6319         vcpu->arch.pio.count = 0;
6320         return ret;
6323 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6325         unsigned long val;
6327         /* We should only ever be called with arch.pio.count equal to 1 */
6328         BUG_ON(vcpu->arch.pio.count != 1);
6330         /* For size less than 4 we merge, else we zero extend */
6331         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6332                                         : 0;
6334         /*
6335          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6336          * the copy and tracing
6337          */
6338         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6339                                  vcpu->arch.pio.port, &val, 1);
6340         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6342         return 1;
6345 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6346                            unsigned short port)
6348         unsigned long val;
6349         int ret;
6351         /* For size less than 4 we merge, else we zero extend */
6352         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6354         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6355                                        &val, 1);
6356         if (ret) {
6357                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6358                 return ret;
6359         }
6361         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6363         return 0;
6366 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6368         int ret = kvm_skip_emulated_instruction(vcpu);
6370         /*
6371          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6372          * KVM_EXIT_DEBUG here.
6373          */
6374         if (in)
6375                 return kvm_fast_pio_in(vcpu, size, port) && ret;
6376         else
6377                 return kvm_fast_pio_out(vcpu, size, port) && ret;
6379 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6381 static int kvmclock_cpu_down_prep(unsigned int cpu)
6383         __this_cpu_write(cpu_tsc_khz, 0);
6384         return 0;
6387 static void tsc_khz_changed(void *data)
6389         struct cpufreq_freqs *freq = data;
6390         unsigned long khz = 0;
6392         if (data)
6393                 khz = freq->new;
6394         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6395                 khz = cpufreq_quick_get(raw_smp_processor_id());
6396         if (!khz)
6397                 khz = tsc_khz;
6398         __this_cpu_write(cpu_tsc_khz, khz);
6401 #ifdef CONFIG_X86_64
6402 static void kvm_hyperv_tsc_notifier(void)
6404         struct kvm *kvm;
6405         struct kvm_vcpu *vcpu;
6406         int cpu;
6408         spin_lock(&kvm_lock);
6409         list_for_each_entry(kvm, &vm_list, vm_list)
6410                 kvm_make_mclock_inprogress_request(kvm);
6412         hyperv_stop_tsc_emulation();
6414         /* TSC frequency always matches when on Hyper-V */
6415         for_each_present_cpu(cpu)
6416                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6417         kvm_max_guest_tsc_khz = tsc_khz;
6419         list_for_each_entry(kvm, &vm_list, vm_list) {
6420                 struct kvm_arch *ka = &kvm->arch;
6422                 spin_lock(&ka->pvclock_gtod_sync_lock);
6424                 pvclock_update_vm_gtod_copy(kvm);
6426                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6427                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6429                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6430                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6432                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6433         }
6434         spin_unlock(&kvm_lock);
6436 #endif
6438 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6439                                      void *data)
6441         struct cpufreq_freqs *freq = data;
6442         struct kvm *kvm;
6443         struct kvm_vcpu *vcpu;
6444         int i, send_ipi = 0;
6446         /*
6447          * We allow guests to temporarily run on slowing clocks,
6448          * provided we notify them after, or to run on accelerating
6449          * clocks, provided we notify them before.  Thus time never
6450          * goes backwards.
6451          *
6452          * However, we have a problem.  We can't atomically update
6453          * the frequency of a given CPU from this function; it is
6454          * merely a notifier, which can be called from any CPU.
6455          * Changing the TSC frequency at arbitrary points in time
6456          * requires a recomputation of local variables related to
6457          * the TSC for each VCPU.  We must flag these local variables
6458          * to be updated and be sure the update takes place with the
6459          * new frequency before any guests proceed.
6460          *
6461          * Unfortunately, the combination of hotplug CPU and frequency
6462          * change creates an intractable locking scenario; the order
6463          * of when these callouts happen is undefined with respect to
6464          * CPU hotplug, and they can race with each other.  As such,
6465          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6466          * undefined; you can actually have a CPU frequency change take
6467          * place in between the computation of X and the setting of the
6468          * variable.  To protect against this problem, all updates of
6469          * the per_cpu tsc_khz variable are done in an interrupt
6470          * protected IPI, and all callers wishing to update the value
6471          * must wait for a synchronous IPI to complete (which is trivial
6472          * if the caller is on the CPU already).  This establishes the
6473          * necessary total order on variable updates.
6474          *
6475          * Note that because a guest time update may take place
6476          * anytime after the setting of the VCPU's request bit, the
6477          * correct TSC value must be set before the request.  However,
6478          * to ensure the update actually makes it to any guest which
6479          * starts running in hardware virtualization between the set
6480          * and the acquisition of the spinlock, we must also ping the
6481          * CPU after setting the request bit.
6482          *
6483          */
6485         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6486                 return 0;
6487         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6488                 return 0;
6490         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6492         spin_lock(&kvm_lock);
6493         list_for_each_entry(kvm, &vm_list, vm_list) {
6494                 kvm_for_each_vcpu(i, vcpu, kvm) {
6495                         if (vcpu->cpu != freq->cpu)
6496                                 continue;
6497                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6498                         if (vcpu->cpu != smp_processor_id())
6499                                 send_ipi = 1;
6500                 }
6501         }
6502         spin_unlock(&kvm_lock);
6504         if (freq->old < freq->new && send_ipi) {
6505                 /*
6506                  * We upscale the frequency.  Must make the guest
6507                  * doesn't see old kvmclock values while running with
6508                  * the new frequency, otherwise we risk the guest sees
6509                  * time go backwards.
6510                  *
6511                  * In case we update the frequency for another cpu
6512                  * (which might be in guest context) send an interrupt
6513                  * to kick the cpu out of guest context.  Next time
6514                  * guest context is entered kvmclock will be updated,
6515                  * so the guest will not see stale values.
6516                  */
6517                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6518         }
6519         return 0;
6522 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6523         .notifier_call  = kvmclock_cpufreq_notifier
6524 };
6526 static int kvmclock_cpu_online(unsigned int cpu)
6528         tsc_khz_changed(NULL);
6529         return 0;
6532 static void kvm_timer_init(void)
6534         max_tsc_khz = tsc_khz;
6536         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6537 #ifdef CONFIG_CPU_FREQ
6538                 struct cpufreq_policy policy;
6539                 int cpu;
6541                 memset(&policy, 0, sizeof(policy));
6542                 cpu = get_cpu();
6543                 cpufreq_get_policy(&policy, cpu);
6544                 if (policy.cpuinfo.max_freq)
6545                         max_tsc_khz = policy.cpuinfo.max_freq;
6546                 put_cpu();
6547 #endif
6548                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6549                                           CPUFREQ_TRANSITION_NOTIFIER);
6550         }
6551         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6553         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6554                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6557 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6558 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6560 int kvm_is_in_guest(void)
6562         return __this_cpu_read(current_vcpu) != NULL;
6565 static int kvm_is_user_mode(void)
6567         int user_mode = 3;
6569         if (__this_cpu_read(current_vcpu))
6570                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6572         return user_mode != 0;
6575 static unsigned long kvm_get_guest_ip(void)
6577         unsigned long ip = 0;
6579         if (__this_cpu_read(current_vcpu))
6580                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6582         return ip;
6585 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6586         .is_in_guest            = kvm_is_in_guest,
6587         .is_user_mode           = kvm_is_user_mode,
6588         .get_guest_ip           = kvm_get_guest_ip,
6589 };
6591 static void kvm_set_mmio_spte_mask(void)
6593         u64 mask;
6594         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6596         /*
6597          * Set the reserved bits and the present bit of an paging-structure
6598          * entry to generate page fault with PFER.RSV = 1.
6599          */
6601         /*
6602          * Mask the uppermost physical address bit, which would be reserved as
6603          * long as the supported physical address width is less than 52.
6604          */
6605         mask = 1ull << 51;
6607         /* Set the present bit. */
6608         mask |= 1ull;
6610         /*
6611          * If reserved bit is not supported, clear the present bit to disable
6612          * mmio page fault.
6613          */
6614         if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6615                 mask &= ~1ull;
6617         kvm_mmu_set_mmio_spte_mask(mask, mask);
6620 #ifdef CONFIG_X86_64
6621 static void pvclock_gtod_update_fn(struct work_struct *work)
6623         struct kvm *kvm;
6625         struct kvm_vcpu *vcpu;
6626         int i;
6628         spin_lock(&kvm_lock);
6629         list_for_each_entry(kvm, &vm_list, vm_list)
6630                 kvm_for_each_vcpu(i, vcpu, kvm)
6631                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6632         atomic_set(&kvm_guest_has_master_clock, 0);
6633         spin_unlock(&kvm_lock);
6636 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6638 /*
6639  * Notification about pvclock gtod data update.
6640  */
6641 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6642                                void *priv)
6644         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6645         struct timekeeper *tk = priv;
6647         update_pvclock_gtod(tk);
6649         /* disable master clock if host does not trust, or does not
6650          * use, TSC based clocksource.
6651          */
6652         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6653             atomic_read(&kvm_guest_has_master_clock) != 0)
6654                 queue_work(system_long_wq, &pvclock_gtod_work);
6656         return 0;
6659 static struct notifier_block pvclock_gtod_notifier = {
6660         .notifier_call = pvclock_gtod_notify,
6661 };
6662 #endif
6664 int kvm_arch_init(void *opaque)
6666         int r;
6667         struct kvm_x86_ops *ops = opaque;
6669         if (kvm_x86_ops) {
6670                 printk(KERN_ERR "kvm: already loaded the other module\n");
6671                 r = -EEXIST;
6672                 goto out;
6673         }
6675         if (!ops->cpu_has_kvm_support()) {
6676                 printk(KERN_ERR "kvm: no hardware support\n");
6677                 r = -EOPNOTSUPP;
6678                 goto out;
6679         }
6680         if (ops->disabled_by_bios()) {
6681                 printk(KERN_ERR "kvm: disabled by bios\n");
6682                 r = -EOPNOTSUPP;
6683                 goto out;
6684         }
6686         r = -ENOMEM;
6687         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6688         if (!shared_msrs) {
6689                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6690                 goto out;
6691         }
6693         r = kvm_mmu_module_init();
6694         if (r)
6695                 goto out_free_percpu;
6697         kvm_set_mmio_spte_mask();
6699         kvm_x86_ops = ops;
6701         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6702                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6703                         PT_PRESENT_MASK, 0, sme_me_mask);
6704         kvm_timer_init();
6706         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6708         if (boot_cpu_has(X86_FEATURE_XSAVE))
6709                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6711         kvm_lapic_init();
6712 #ifdef CONFIG_X86_64
6713         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6715         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6716                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6717 #endif
6719         return 0;
6721 out_free_percpu:
6722         free_percpu(shared_msrs);
6723 out:
6724         return r;
6727 void kvm_arch_exit(void)
6729 #ifdef CONFIG_X86_64
6730         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6731                 clear_hv_tscchange_cb();
6732 #endif
6733         kvm_lapic_exit();
6734         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6736         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6737                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6738                                             CPUFREQ_TRANSITION_NOTIFIER);
6739         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6740 #ifdef CONFIG_X86_64
6741         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6742 #endif
6743         kvm_x86_ops = NULL;
6744         kvm_mmu_module_exit();
6745         free_percpu(shared_msrs);
6748 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6750         ++vcpu->stat.halt_exits;
6751         if (lapic_in_kernel(vcpu)) {
6752                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6753                 return 1;
6754         } else {
6755                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6756                 return 0;
6757         }
6759 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6761 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6763         int ret = kvm_skip_emulated_instruction(vcpu);
6764         /*
6765          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6766          * KVM_EXIT_DEBUG here.
6767          */
6768         return kvm_vcpu_halt(vcpu) && ret;
6770 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6772 #ifdef CONFIG_X86_64
6773 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6774                                 unsigned long clock_type)
6776         struct kvm_clock_pairing clock_pairing;
6777         struct timespec64 ts;
6778         u64 cycle;
6779         int ret;
6781         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6782                 return -KVM_EOPNOTSUPP;
6784         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6785                 return -KVM_EOPNOTSUPP;
6787         clock_pairing.sec = ts.tv_sec;
6788         clock_pairing.nsec = ts.tv_nsec;
6789         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6790         clock_pairing.flags = 0;
6792         ret = 0;
6793         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6794                             sizeof(struct kvm_clock_pairing)))
6795                 ret = -KVM_EFAULT;
6797         return ret;
6799 #endif
6801 /*
6802  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6803  *
6804  * @apicid - apicid of vcpu to be kicked.
6805  */
6806 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6808         struct kvm_lapic_irq lapic_irq;
6810         lapic_irq.shorthand = 0;
6811         lapic_irq.dest_mode = 0;
6812         lapic_irq.level = 0;
6813         lapic_irq.dest_id = apicid;
6814         lapic_irq.msi_redir_hint = false;
6816         lapic_irq.delivery_mode = APIC_DM_REMRD;
6817         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6820 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6822         vcpu->arch.apicv_active = false;
6823         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6826 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6828         unsigned long nr, a0, a1, a2, a3, ret;
6829         int op_64_bit;
6831         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6832                 return kvm_hv_hypercall(vcpu);
6834         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6835         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6836         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6837         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6838         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6840         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6842         op_64_bit = is_64_bit_mode(vcpu);
6843         if (!op_64_bit) {
6844                 nr &= 0xFFFFFFFF;
6845                 a0 &= 0xFFFFFFFF;
6846                 a1 &= 0xFFFFFFFF;
6847                 a2 &= 0xFFFFFFFF;
6848                 a3 &= 0xFFFFFFFF;
6849         }
6851         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6852                 ret = -KVM_EPERM;
6853                 goto out;
6854         }
6856         switch (nr) {
6857         case KVM_HC_VAPIC_POLL_IRQ:
6858                 ret = 0;
6859                 break;
6860         case KVM_HC_KICK_CPU:
6861                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6862                 ret = 0;
6863                 break;
6864 #ifdef CONFIG_X86_64
6865         case KVM_HC_CLOCK_PAIRING:
6866                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6867                 break;
6868         case KVM_HC_SEND_IPI:
6869                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
6870                 break;
6871 #endif
6872         default:
6873                 ret = -KVM_ENOSYS;
6874                 break;
6875         }
6876 out:
6877         if (!op_64_bit)
6878                 ret = (u32)ret;
6879         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6881         ++vcpu->stat.hypercalls;
6882         return kvm_skip_emulated_instruction(vcpu);
6884 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6886 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6888         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6889         char instruction[3];
6890         unsigned long rip = kvm_rip_read(vcpu);
6892         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6894         return emulator_write_emulated(ctxt, rip, instruction, 3,
6895                 &ctxt->exception);
6898 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6900         return vcpu->run->request_interrupt_window &&
6901                 likely(!pic_in_kernel(vcpu->kvm));
6904 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6906         struct kvm_run *kvm_run = vcpu->run;
6908         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6909         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6910         kvm_run->cr8 = kvm_get_cr8(vcpu);
6911         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6912         kvm_run->ready_for_interrupt_injection =
6913                 pic_in_kernel(vcpu->kvm) ||
6914                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6917 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6919         int max_irr, tpr;
6921         if (!kvm_x86_ops->update_cr8_intercept)
6922                 return;
6924         if (!lapic_in_kernel(vcpu))
6925                 return;
6927         if (vcpu->arch.apicv_active)
6928                 return;
6930         if (!vcpu->arch.apic->vapic_addr)
6931                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6932         else
6933                 max_irr = -1;
6935         if (max_irr != -1)
6936                 max_irr >>= 4;
6938         tpr = kvm_lapic_get_cr8(vcpu);
6940         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6943 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6945         int r;
6947         /* try to reinject previous events if any */
6949         if (vcpu->arch.exception.injected)
6950                 kvm_x86_ops->queue_exception(vcpu);
6951         /*
6952          * Do not inject an NMI or interrupt if there is a pending
6953          * exception.  Exceptions and interrupts are recognized at
6954          * instruction boundaries, i.e. the start of an instruction.
6955          * Trap-like exceptions, e.g. #DB, have higher priority than
6956          * NMIs and interrupts, i.e. traps are recognized before an
6957          * NMI/interrupt that's pending on the same instruction.
6958          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6959          * priority, but are only generated (pended) during instruction
6960          * execution, i.e. a pending fault-like exception means the
6961          * fault occurred on the *previous* instruction and must be
6962          * serviced prior to recognizing any new events in order to
6963          * fully complete the previous instruction.
6964          */
6965         else if (!vcpu->arch.exception.pending) {
6966                 if (vcpu->arch.nmi_injected)
6967                         kvm_x86_ops->set_nmi(vcpu);
6968                 else if (vcpu->arch.interrupt.injected)
6969                         kvm_x86_ops->set_irq(vcpu);
6970         }
6972         /*
6973          * Call check_nested_events() even if we reinjected a previous event
6974          * in order for caller to determine if it should require immediate-exit
6975          * from L2 to L1 due to pending L1 events which require exit
6976          * from L2 to L1.
6977          */
6978         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6979                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6980                 if (r != 0)
6981                         return r;
6982         }
6984         /* try to inject new event if pending */
6985         if (vcpu->arch.exception.pending) {
6986                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6987                                         vcpu->arch.exception.has_error_code,
6988                                         vcpu->arch.exception.error_code);
6990                 WARN_ON_ONCE(vcpu->arch.exception.injected);
6991                 vcpu->arch.exception.pending = false;
6992                 vcpu->arch.exception.injected = true;
6994                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6995                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6996                                              X86_EFLAGS_RF);
6998                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6999                     (vcpu->arch.dr7 & DR7_GD)) {
7000                         vcpu->arch.dr7 &= ~DR7_GD;
7001                         kvm_update_dr7(vcpu);
7002                 }
7004                 kvm_x86_ops->queue_exception(vcpu);
7005         }
7007         /* Don't consider new event if we re-injected an event */
7008         if (kvm_event_needs_reinjection(vcpu))
7009                 return 0;
7011         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7012             kvm_x86_ops->smi_allowed(vcpu)) {
7013                 vcpu->arch.smi_pending = false;
7014                 ++vcpu->arch.smi_count;
7015                 enter_smm(vcpu);
7016         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7017                 --vcpu->arch.nmi_pending;
7018                 vcpu->arch.nmi_injected = true;
7019                 kvm_x86_ops->set_nmi(vcpu);
7020         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7021                 /*
7022                  * Because interrupts can be injected asynchronously, we are
7023                  * calling check_nested_events again here to avoid a race condition.
7024                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7025                  * proposal and current concerns.  Perhaps we should be setting
7026                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7027                  */
7028                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7029                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7030                         if (r != 0)
7031                                 return r;
7032                 }
7033                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7034                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7035                                             false);
7036                         kvm_x86_ops->set_irq(vcpu);
7037                 }
7038         }
7040         return 0;
7043 static void process_nmi(struct kvm_vcpu *vcpu)
7045         unsigned limit = 2;
7047         /*
7048          * x86 is limited to one NMI running, and one NMI pending after it.
7049          * If an NMI is already in progress, limit further NMIs to just one.
7050          * Otherwise, allow two (and we'll inject the first one immediately).
7051          */
7052         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7053                 limit = 1;
7055         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7056         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7057         kvm_make_request(KVM_REQ_EVENT, vcpu);
7060 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7062         u32 flags = 0;
7063         flags |= seg->g       << 23;
7064         flags |= seg->db      << 22;
7065         flags |= seg->l       << 21;
7066         flags |= seg->avl     << 20;
7067         flags |= seg->present << 15;
7068         flags |= seg->dpl     << 13;
7069         flags |= seg->s       << 12;
7070         flags |= seg->type    << 8;
7071         return flags;
7074 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7076         struct kvm_segment seg;
7077         int offset;
7079         kvm_get_segment(vcpu, &seg, n);
7080         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7082         if (n < 3)
7083                 offset = 0x7f84 + n * 12;
7084         else
7085                 offset = 0x7f2c + (n - 3) * 12;
7087         put_smstate(u32, buf, offset + 8, seg.base);
7088         put_smstate(u32, buf, offset + 4, seg.limit);
7089         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7092 #ifdef CONFIG_X86_64
7093 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7095         struct kvm_segment seg;
7096         int offset;
7097         u16 flags;
7099         kvm_get_segment(vcpu, &seg, n);
7100         offset = 0x7e00 + n * 16;
7102         flags = enter_smm_get_segment_flags(&seg) >> 8;
7103         put_smstate(u16, buf, offset, seg.selector);
7104         put_smstate(u16, buf, offset + 2, flags);
7105         put_smstate(u32, buf, offset + 4, seg.limit);
7106         put_smstate(u64, buf, offset + 8, seg.base);
7108 #endif
7110 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7112         struct desc_ptr dt;
7113         struct kvm_segment seg;
7114         unsigned long val;
7115         int i;
7117         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7118         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7119         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7120         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7122         for (i = 0; i < 8; i++)
7123                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7125         kvm_get_dr(vcpu, 6, &val);
7126         put_smstate(u32, buf, 0x7fcc, (u32)val);
7127         kvm_get_dr(vcpu, 7, &val);
7128         put_smstate(u32, buf, 0x7fc8, (u32)val);
7130         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7131         put_smstate(u32, buf, 0x7fc4, seg.selector);
7132         put_smstate(u32, buf, 0x7f64, seg.base);
7133         put_smstate(u32, buf, 0x7f60, seg.limit);
7134         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7136         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7137         put_smstate(u32, buf, 0x7fc0, seg.selector);
7138         put_smstate(u32, buf, 0x7f80, seg.base);
7139         put_smstate(u32, buf, 0x7f7c, seg.limit);
7140         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7142         kvm_x86_ops->get_gdt(vcpu, &dt);
7143         put_smstate(u32, buf, 0x7f74, dt.address);
7144         put_smstate(u32, buf, 0x7f70, dt.size);
7146         kvm_x86_ops->get_idt(vcpu, &dt);
7147         put_smstate(u32, buf, 0x7f58, dt.address);
7148         put_smstate(u32, buf, 0x7f54, dt.size);
7150         for (i = 0; i < 6; i++)
7151                 enter_smm_save_seg_32(vcpu, buf, i);
7153         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7155         /* revision id */
7156         put_smstate(u32, buf, 0x7efc, 0x00020000);
7157         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7160 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7162 #ifdef CONFIG_X86_64
7163         struct desc_ptr dt;
7164         struct kvm_segment seg;
7165         unsigned long val;
7166         int i;
7168         for (i = 0; i < 16; i++)
7169                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7171         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7172         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7174         kvm_get_dr(vcpu, 6, &val);
7175         put_smstate(u64, buf, 0x7f68, val);
7176         kvm_get_dr(vcpu, 7, &val);
7177         put_smstate(u64, buf, 0x7f60, val);
7179         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7180         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7181         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7183         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7185         /* revision id */
7186         put_smstate(u32, buf, 0x7efc, 0x00020064);
7188         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7190         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7191         put_smstate(u16, buf, 0x7e90, seg.selector);
7192         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7193         put_smstate(u32, buf, 0x7e94, seg.limit);
7194         put_smstate(u64, buf, 0x7e98, seg.base);
7196         kvm_x86_ops->get_idt(vcpu, &dt);
7197         put_smstate(u32, buf, 0x7e84, dt.size);
7198         put_smstate(u64, buf, 0x7e88, dt.address);
7200         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7201         put_smstate(u16, buf, 0x7e70, seg.selector);
7202         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7203         put_smstate(u32, buf, 0x7e74, seg.limit);
7204         put_smstate(u64, buf, 0x7e78, seg.base);
7206         kvm_x86_ops->get_gdt(vcpu, &dt);
7207         put_smstate(u32, buf, 0x7e64, dt.size);
7208         put_smstate(u64, buf, 0x7e68, dt.address);
7210         for (i = 0; i < 6; i++)
7211                 enter_smm_save_seg_64(vcpu, buf, i);
7212 #else
7213         WARN_ON_ONCE(1);
7214 #endif
7217 static void enter_smm(struct kvm_vcpu *vcpu)
7219         struct kvm_segment cs, ds;
7220         struct desc_ptr dt;
7221         char buf[512];
7222         u32 cr0;
7224         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7225         memset(buf, 0, 512);
7226         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7227                 enter_smm_save_state_64(vcpu, buf);
7228         else
7229                 enter_smm_save_state_32(vcpu, buf);
7231         /*
7232          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7233          * vCPU state (e.g. leave guest mode) after we've saved the state into
7234          * the SMM state-save area.
7235          */
7236         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7238         vcpu->arch.hflags |= HF_SMM_MASK;
7239         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7241         if (kvm_x86_ops->get_nmi_mask(vcpu))
7242                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7243         else
7244                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7246         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7247         kvm_rip_write(vcpu, 0x8000);
7249         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7250         kvm_x86_ops->set_cr0(vcpu, cr0);
7251         vcpu->arch.cr0 = cr0;
7253         kvm_x86_ops->set_cr4(vcpu, 0);
7255         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7256         dt.address = dt.size = 0;
7257         kvm_x86_ops->set_idt(vcpu, &dt);
7259         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7261         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7262         cs.base = vcpu->arch.smbase;
7264         ds.selector = 0;
7265         ds.base = 0;
7267         cs.limit    = ds.limit = 0xffffffff;
7268         cs.type     = ds.type = 0x3;
7269         cs.dpl      = ds.dpl = 0;
7270         cs.db       = ds.db = 0;
7271         cs.s        = ds.s = 1;
7272         cs.l        = ds.l = 0;
7273         cs.g        = ds.g = 1;
7274         cs.avl      = ds.avl = 0;
7275         cs.present  = ds.present = 1;
7276         cs.unusable = ds.unusable = 0;
7277         cs.padding  = ds.padding = 0;
7279         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7280         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7281         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7282         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7283         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7284         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7286         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7287                 kvm_x86_ops->set_efer(vcpu, 0);
7289         kvm_update_cpuid(vcpu);
7290         kvm_mmu_reset_context(vcpu);
7293 static void process_smi(struct kvm_vcpu *vcpu)
7295         vcpu->arch.smi_pending = true;
7296         kvm_make_request(KVM_REQ_EVENT, vcpu);
7299 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7301         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7304 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7306         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7307                 return;
7309         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7311         if (irqchip_split(vcpu->kvm))
7312                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7313         else {
7314                 if (vcpu->arch.apicv_active)
7315                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7316                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7317         }
7319         if (is_guest_mode(vcpu))
7320                 vcpu->arch.load_eoi_exitmap_pending = true;
7321         else
7322                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7325 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7327         u64 eoi_exit_bitmap[4];
7329         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7330                 return;
7332         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7333                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7334         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7337 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7338                 unsigned long start, unsigned long end,
7339                 bool blockable)
7341         unsigned long apic_address;
7343         /*
7344          * The physical address of apic access page is stored in the VMCS.
7345          * Update it when it becomes invalid.
7346          */
7347         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7348         if (start <= apic_address && apic_address < end)
7349                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7351         return 0;
7354 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7356         struct page *page = NULL;
7358         if (!lapic_in_kernel(vcpu))
7359                 return;
7361         if (!kvm_x86_ops->set_apic_access_page_addr)
7362                 return;
7364         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7365         if (is_error_page(page))
7366                 return;
7367         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7369         /*
7370          * Do not pin apic access page in memory, the MMU notifier
7371          * will call us again if it is migrated or swapped out.
7372          */
7373         put_page(page);
7375 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7377 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7379         smp_send_reschedule(vcpu->cpu);
7381 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7383 /*
7384  * Returns 1 to let vcpu_run() continue the guest execution loop without
7385  * exiting to the userspace.  Otherwise, the value will be returned to the
7386  * userspace.
7387  */
7388 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7390         int r;
7391         bool req_int_win =
7392                 dm_request_for_irq_injection(vcpu) &&
7393                 kvm_cpu_accept_dm_intr(vcpu);
7395         bool req_immediate_exit = false;
7397         if (kvm_request_pending(vcpu)) {
7398                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7399                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7400                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7401                         kvm_mmu_unload(vcpu);
7402                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7403                         __kvm_migrate_timers(vcpu);
7404                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7405                         kvm_gen_update_masterclock(vcpu->kvm);
7406                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7407                         kvm_gen_kvmclock_update(vcpu);
7408                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7409                         r = kvm_guest_time_update(vcpu);
7410                         if (unlikely(r))
7411                                 goto out;
7412                 }
7413                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7414                         kvm_mmu_sync_roots(vcpu);
7415                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7416                         kvm_mmu_load_cr3(vcpu);
7417                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7418                         kvm_vcpu_flush_tlb(vcpu, true);
7419                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7420                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7421                         r = 0;
7422                         goto out;
7423                 }
7424                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7425                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7426                         vcpu->mmio_needed = 0;
7427                         r = 0;
7428                         goto out;
7429                 }
7430                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7431                         /* Page is swapped out. Do synthetic halt */
7432                         vcpu->arch.apf.halted = true;
7433                         r = 1;
7434                         goto out;
7435                 }
7436                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7437                         record_steal_time(vcpu);
7438                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7439                         process_smi(vcpu);
7440                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7441                         process_nmi(vcpu);
7442                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7443                         kvm_pmu_handle_event(vcpu);
7444                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7445                         kvm_pmu_deliver_pmi(vcpu);
7446                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7447                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7448                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7449                                      vcpu->arch.ioapic_handled_vectors)) {
7450                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7451                                 vcpu->run->eoi.vector =
7452                                                 vcpu->arch.pending_ioapic_eoi;
7453                                 r = 0;
7454                                 goto out;
7455                         }
7456                 }
7457                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7458                         vcpu_scan_ioapic(vcpu);
7459                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7460                         vcpu_load_eoi_exitmap(vcpu);
7461                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7462                         kvm_vcpu_reload_apic_access_page(vcpu);
7463                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7464                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7465                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7466                         r = 0;
7467                         goto out;
7468                 }
7469                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7470                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7471                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7472                         r = 0;
7473                         goto out;
7474                 }
7475                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7476                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7477                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7478                         r = 0;
7479                         goto out;
7480                 }
7482                 /*
7483                  * KVM_REQ_HV_STIMER has to be processed after
7484                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7485                  * depend on the guest clock being up-to-date
7486                  */
7487                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7488                         kvm_hv_process_stimers(vcpu);
7489         }
7491         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7492                 ++vcpu->stat.req_event;
7493                 kvm_apic_accept_events(vcpu);
7494                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7495                         r = 1;
7496                         goto out;
7497                 }
7499                 if (inject_pending_event(vcpu, req_int_win) != 0)
7500                         req_immediate_exit = true;
7501                 else {
7502                         /* Enable SMI/NMI/IRQ window open exits if needed.
7503                          *
7504                          * SMIs have three cases:
7505                          * 1) They can be nested, and then there is nothing to
7506                          *    do here because RSM will cause a vmexit anyway.
7507                          * 2) There is an ISA-specific reason why SMI cannot be
7508                          *    injected, and the moment when this changes can be
7509                          *    intercepted.
7510                          * 3) Or the SMI can be pending because
7511                          *    inject_pending_event has completed the injection
7512                          *    of an IRQ or NMI from the previous vmexit, and
7513                          *    then we request an immediate exit to inject the
7514                          *    SMI.
7515                          */
7516                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7517                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7518                                         req_immediate_exit = true;
7519                         if (vcpu->arch.nmi_pending)
7520                                 kvm_x86_ops->enable_nmi_window(vcpu);
7521                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7522                                 kvm_x86_ops->enable_irq_window(vcpu);
7523                         WARN_ON(vcpu->arch.exception.pending);
7524                 }
7526                 if (kvm_lapic_enabled(vcpu)) {
7527                         update_cr8_intercept(vcpu);
7528                         kvm_lapic_sync_to_vapic(vcpu);
7529                 }
7530         }
7532         r = kvm_mmu_reload(vcpu);
7533         if (unlikely(r)) {
7534                 goto cancel_injection;
7535         }
7537         preempt_disable();
7539         kvm_x86_ops->prepare_guest_switch(vcpu);
7541         /*
7542          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7543          * IPI are then delayed after guest entry, which ensures that they
7544          * result in virtual interrupt delivery.
7545          */
7546         local_irq_disable();
7547         vcpu->mode = IN_GUEST_MODE;
7549         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7551         /*
7552          * 1) We should set ->mode before checking ->requests.  Please see
7553          * the comment in kvm_vcpu_exiting_guest_mode().
7554          *
7555          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7556          * pairs with the memory barrier implicit in pi_test_and_set_on
7557          * (see vmx_deliver_posted_interrupt).
7558          *
7559          * 3) This also orders the write to mode from any reads to the page
7560          * tables done while the VCPU is running.  Please see the comment
7561          * in kvm_flush_remote_tlbs.
7562          */
7563         smp_mb__after_srcu_read_unlock();
7565         /*
7566          * This handles the case where a posted interrupt was
7567          * notified with kvm_vcpu_kick.
7568          */
7569         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7570                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7572         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7573             || need_resched() || signal_pending(current)) {
7574                 vcpu->mode = OUTSIDE_GUEST_MODE;
7575                 smp_wmb();
7576                 local_irq_enable();
7577                 preempt_enable();
7578                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7579                 r = 1;
7580                 goto cancel_injection;
7581         }
7583         kvm_load_guest_xcr0(vcpu);
7585         if (req_immediate_exit) {
7586                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7587                 kvm_x86_ops->request_immediate_exit(vcpu);
7588         }
7590         trace_kvm_entry(vcpu->vcpu_id);
7591         if (lapic_timer_advance_ns)
7592                 wait_lapic_expire(vcpu);
7593         guest_enter_irqoff();
7595         if (unlikely(vcpu->arch.switch_db_regs)) {
7596                 set_debugreg(0, 7);
7597                 set_debugreg(vcpu->arch.eff_db[0], 0);
7598                 set_debugreg(vcpu->arch.eff_db[1], 1);
7599                 set_debugreg(vcpu->arch.eff_db[2], 2);
7600                 set_debugreg(vcpu->arch.eff_db[3], 3);
7601                 set_debugreg(vcpu->arch.dr6, 6);
7602                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7603         }
7605         kvm_x86_ops->run(vcpu);
7607         /*
7608          * Do this here before restoring debug registers on the host.  And
7609          * since we do this before handling the vmexit, a DR access vmexit
7610          * can (a) read the correct value of the debug registers, (b) set
7611          * KVM_DEBUGREG_WONT_EXIT again.
7612          */
7613         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7614                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7615                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7616                 kvm_update_dr0123(vcpu);
7617                 kvm_update_dr6(vcpu);
7618                 kvm_update_dr7(vcpu);
7619                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7620         }
7622         /*
7623          * If the guest has used debug registers, at least dr7
7624          * will be disabled while returning to the host.
7625          * If we don't have active breakpoints in the host, we don't
7626          * care about the messed up debug address registers. But if
7627          * we have some of them active, restore the old state.
7628          */
7629         if (hw_breakpoint_active())
7630                 hw_breakpoint_restore();
7632         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7634         vcpu->mode = OUTSIDE_GUEST_MODE;
7635         smp_wmb();
7637         kvm_put_guest_xcr0(vcpu);
7639         kvm_before_interrupt(vcpu);
7640         kvm_x86_ops->handle_external_intr(vcpu);
7641         kvm_after_interrupt(vcpu);
7643         ++vcpu->stat.exits;
7645         guest_exit_irqoff();
7647         local_irq_enable();
7648         preempt_enable();
7650         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7652         /*
7653          * Profile KVM exit RIPs:
7654          */
7655         if (unlikely(prof_on == KVM_PROFILING)) {
7656                 unsigned long rip = kvm_rip_read(vcpu);
7657                 profile_hit(KVM_PROFILING, (void *)rip);
7658         }
7660         if (unlikely(vcpu->arch.tsc_always_catchup))
7661                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7663         if (vcpu->arch.apic_attention)
7664                 kvm_lapic_sync_from_vapic(vcpu);
7666         vcpu->arch.gpa_available = false;
7667         r = kvm_x86_ops->handle_exit(vcpu);
7668         return r;
7670 cancel_injection:
7671         kvm_x86_ops->cancel_injection(vcpu);
7672         if (unlikely(vcpu->arch.apic_attention))
7673                 kvm_lapic_sync_from_vapic(vcpu);
7674 out:
7675         return r;
7678 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7680         if (!kvm_arch_vcpu_runnable(vcpu) &&
7681             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7682                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7683                 kvm_vcpu_block(vcpu);
7684                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7686                 if (kvm_x86_ops->post_block)
7687                         kvm_x86_ops->post_block(vcpu);
7689                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7690                         return 1;
7691         }
7693         kvm_apic_accept_events(vcpu);
7694         switch(vcpu->arch.mp_state) {
7695         case KVM_MP_STATE_HALTED:
7696                 vcpu->arch.pv.pv_unhalted = false;
7697                 vcpu->arch.mp_state =
7698                         KVM_MP_STATE_RUNNABLE;
7699         case KVM_MP_STATE_RUNNABLE:
7700                 vcpu->arch.apf.halted = false;
7701                 break;
7702         case KVM_MP_STATE_INIT_RECEIVED:
7703                 break;
7704         default:
7705                 return -EINTR;
7706                 break;
7707         }
7708         return 1;
7711 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7713         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7714                 kvm_x86_ops->check_nested_events(vcpu, false);
7716         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7717                 !vcpu->arch.apf.halted);
7720 static int vcpu_run(struct kvm_vcpu *vcpu)
7722         int r;
7723         struct kvm *kvm = vcpu->kvm;
7725         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7726         vcpu->arch.l1tf_flush_l1d = true;
7728         for (;;) {
7729                 if (kvm_vcpu_running(vcpu)) {
7730                         r = vcpu_enter_guest(vcpu);
7731                 } else {
7732                         r = vcpu_block(kvm, vcpu);
7733                 }
7735                 if (r <= 0)
7736                         break;
7738                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7739                 if (kvm_cpu_has_pending_timer(vcpu))
7740                         kvm_inject_pending_timer_irqs(vcpu);
7742                 if (dm_request_for_irq_injection(vcpu) &&
7743                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7744                         r = 0;
7745                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7746                         ++vcpu->stat.request_irq_exits;
7747                         break;
7748                 }
7750                 kvm_check_async_pf_completion(vcpu);
7752                 if (signal_pending(current)) {
7753                         r = -EINTR;
7754                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7755                         ++vcpu->stat.signal_exits;
7756                         break;
7757                 }
7758                 if (need_resched()) {
7759                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7760                         cond_resched();
7761                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7762                 }
7763         }
7765         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7767         return r;
7770 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7772         int r;
7773         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7774         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7775         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7776         if (r != EMULATE_DONE)
7777                 return 0;
7778         return 1;
7781 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7783         BUG_ON(!vcpu->arch.pio.count);
7785         return complete_emulated_io(vcpu);
7788 /*
7789  * Implements the following, as a state machine:
7790  *
7791  * read:
7792  *   for each fragment
7793  *     for each mmio piece in the fragment
7794  *       write gpa, len
7795  *       exit
7796  *       copy data
7797  *   execute insn
7798  *
7799  * write:
7800  *   for each fragment
7801  *     for each mmio piece in the fragment
7802  *       write gpa, len
7803  *       copy data
7804  *       exit
7805  */
7806 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7808         struct kvm_run *run = vcpu->run;
7809         struct kvm_mmio_fragment *frag;
7810         unsigned len;
7812         BUG_ON(!vcpu->mmio_needed);
7814         /* Complete previous fragment */
7815         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7816         len = min(8u, frag->len);
7817         if (!vcpu->mmio_is_write)
7818                 memcpy(frag->data, run->mmio.data, len);
7820         if (frag->len <= 8) {
7821                 /* Switch to the next fragment. */
7822                 frag++;
7823                 vcpu->mmio_cur_fragment++;
7824         } else {
7825                 /* Go forward to the next mmio piece. */
7826                 frag->data += len;
7827                 frag->gpa += len;
7828                 frag->len -= len;
7829         }
7831         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7832                 vcpu->mmio_needed = 0;
7834                 /* FIXME: return into emulator if single-stepping.  */
7835                 if (vcpu->mmio_is_write)
7836                         return 1;
7837                 vcpu->mmio_read_completed = 1;
7838                 return complete_emulated_io(vcpu);
7839         }
7841         run->exit_reason = KVM_EXIT_MMIO;
7842         run->mmio.phys_addr = frag->gpa;
7843         if (vcpu->mmio_is_write)
7844                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7845         run->mmio.len = min(8u, frag->len);
7846         run->mmio.is_write = vcpu->mmio_is_write;
7847         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7848         return 0;
7851 /* Swap (qemu) user FPU context for the guest FPU context. */
7852 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7854         preempt_disable();
7855         copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7856         /* PKRU is separately restored in kvm_x86_ops->run.  */
7857         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7858                                 ~XFEATURE_MASK_PKRU);
7859         preempt_enable();
7860         trace_kvm_fpu(1);
7863 /* When vcpu_run ends, restore user space FPU context. */
7864 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7866         preempt_disable();
7867         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7868         copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7869         preempt_enable();
7870         ++vcpu->stat.fpu_reload;
7871         trace_kvm_fpu(0);
7874 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7876         int r;
7878         vcpu_load(vcpu);
7879         kvm_sigset_activate(vcpu);
7880         kvm_load_guest_fpu(vcpu);
7882         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7883                 if (kvm_run->immediate_exit) {
7884                         r = -EINTR;
7885                         goto out;
7886                 }
7887                 kvm_vcpu_block(vcpu);
7888                 kvm_apic_accept_events(vcpu);
7889                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7890                 r = -EAGAIN;
7891                 if (signal_pending(current)) {
7892                         r = -EINTR;
7893                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7894                         ++vcpu->stat.signal_exits;
7895                 }
7896                 goto out;
7897         }
7899         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7900                 r = -EINVAL;
7901                 goto out;
7902         }
7904         if (vcpu->run->kvm_dirty_regs) {
7905                 r = sync_regs(vcpu);
7906                 if (r != 0)
7907                         goto out;
7908         }
7910         /* re-sync apic's tpr */
7911         if (!lapic_in_kernel(vcpu)) {
7912                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7913                         r = -EINVAL;
7914                         goto out;
7915                 }
7916         }
7918         if (unlikely(vcpu->arch.complete_userspace_io)) {
7919                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7920                 vcpu->arch.complete_userspace_io = NULL;
7921                 r = cui(vcpu);
7922                 if (r <= 0)
7923                         goto out;
7924         } else
7925                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7927         if (kvm_run->immediate_exit)
7928                 r = -EINTR;
7929         else
7930                 r = vcpu_run(vcpu);
7932 out:
7933         kvm_put_guest_fpu(vcpu);
7934         if (vcpu->run->kvm_valid_regs)
7935                 store_regs(vcpu);
7936         post_kvm_run_save(vcpu);
7937         kvm_sigset_deactivate(vcpu);
7939         vcpu_put(vcpu);
7940         return r;
7943 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7945         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7946                 /*
7947                  * We are here if userspace calls get_regs() in the middle of
7948                  * instruction emulation. Registers state needs to be copied
7949                  * back from emulation context to vcpu. Userspace shouldn't do
7950                  * that usually, but some bad designed PV devices (vmware
7951                  * backdoor interface) need this to work
7952                  */
7953                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7954                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7955         }
7956         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7957         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7958         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7959         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7960         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7961         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7962         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7963         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7964 #ifdef CONFIG_X86_64
7965         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7966         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7967         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7968         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7969         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7970         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7971         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7972         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7973 #endif
7975         regs->rip = kvm_rip_read(vcpu);
7976         regs->rflags = kvm_get_rflags(vcpu);
7979 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7981         vcpu_load(vcpu);
7982         __get_regs(vcpu, regs);
7983         vcpu_put(vcpu);
7984         return 0;
7987 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7989         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7990         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7992         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7993         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7994         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7995         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7996         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7997         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7998         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7999         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8000 #ifdef CONFIG_X86_64
8001         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8002         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8003         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8004         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8005         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8006         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8007         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8008         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8009 #endif
8011         kvm_rip_write(vcpu, regs->rip);
8012         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8014         vcpu->arch.exception.pending = false;
8016         kvm_make_request(KVM_REQ_EVENT, vcpu);
8019 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8021         vcpu_load(vcpu);
8022         __set_regs(vcpu, regs);
8023         vcpu_put(vcpu);
8024         return 0;
8027 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8029         struct kvm_segment cs;
8031         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8032         *db = cs.db;
8033         *l = cs.l;
8035 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8037 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8039         struct desc_ptr dt;
8041         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8042         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8043         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8044         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8045         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8046         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8048         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8049         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8051         kvm_x86_ops->get_idt(vcpu, &dt);
8052         sregs->idt.limit = dt.size;
8053         sregs->idt.base = dt.address;
8054         kvm_x86_ops->get_gdt(vcpu, &dt);
8055         sregs->gdt.limit = dt.size;
8056         sregs->gdt.base = dt.address;
8058         sregs->cr0 = kvm_read_cr0(vcpu);
8059         sregs->cr2 = vcpu->arch.cr2;
8060         sregs->cr3 = kvm_read_cr3(vcpu);
8061         sregs->cr4 = kvm_read_cr4(vcpu);
8062         sregs->cr8 = kvm_get_cr8(vcpu);
8063         sregs->efer = vcpu->arch.efer;
8064         sregs->apic_base = kvm_get_apic_base(vcpu);
8066         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
8068         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8069                 set_bit(vcpu->arch.interrupt.nr,
8070                         (unsigned long *)sregs->interrupt_bitmap);
8073 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8074                                   struct kvm_sregs *sregs)
8076         vcpu_load(vcpu);
8077         __get_sregs(vcpu, sregs);
8078         vcpu_put(vcpu);
8079         return 0;
8082 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8083                                     struct kvm_mp_state *mp_state)
8085         vcpu_load(vcpu);
8087         kvm_apic_accept_events(vcpu);
8088         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8089                                         vcpu->arch.pv.pv_unhalted)
8090                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8091         else
8092                 mp_state->mp_state = vcpu->arch.mp_state;
8094         vcpu_put(vcpu);
8095         return 0;
8098 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8099                                     struct kvm_mp_state *mp_state)
8101         int ret = -EINVAL;
8103         vcpu_load(vcpu);
8105         if (!lapic_in_kernel(vcpu) &&
8106             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8107                 goto out;
8109         /* INITs are latched while in SMM */
8110         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8111             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8112              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8113                 goto out;
8115         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8116                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8117                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8118         } else
8119                 vcpu->arch.mp_state = mp_state->mp_state;
8120         kvm_make_request(KVM_REQ_EVENT, vcpu);
8122         ret = 0;
8123 out:
8124         vcpu_put(vcpu);
8125         return ret;
8128 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8129                     int reason, bool has_error_code, u32 error_code)
8131         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8132         int ret;
8134         init_emulate_ctxt(vcpu);
8136         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8137                                    has_error_code, error_code);
8139         if (ret)
8140                 return EMULATE_FAIL;
8142         kvm_rip_write(vcpu, ctxt->eip);
8143         kvm_set_rflags(vcpu, ctxt->eflags);
8144         kvm_make_request(KVM_REQ_EVENT, vcpu);
8145         return EMULATE_DONE;
8147 EXPORT_SYMBOL_GPL(kvm_task_switch);
8149 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8151         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8152                         (sregs->cr4 & X86_CR4_OSXSAVE))
8153                 return  -EINVAL;
8155         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8156                 /*
8157                  * When EFER.LME and CR0.PG are set, the processor is in
8158                  * 64-bit mode (though maybe in a 32-bit code segment).
8159                  * CR4.PAE and EFER.LMA must be set.
8160                  */
8161                 if (!(sregs->cr4 & X86_CR4_PAE)
8162                     || !(sregs->efer & EFER_LMA))
8163                         return -EINVAL;
8164         } else {
8165                 /*
8166                  * Not in 64-bit mode: EFER.LMA is clear and the code
8167                  * segment cannot be 64-bit.
8168                  */
8169                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8170                         return -EINVAL;
8171         }
8173         return 0;
8176 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8178         struct msr_data apic_base_msr;
8179         int mmu_reset_needed = 0;
8180         int cpuid_update_needed = 0;
8181         int pending_vec, max_bits, idx;
8182         struct desc_ptr dt;
8183         int ret = -EINVAL;
8185         if (kvm_valid_sregs(vcpu, sregs))
8186                 goto out;
8188         apic_base_msr.data = sregs->apic_base;
8189         apic_base_msr.host_initiated = true;
8190         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8191                 goto out;
8193         dt.size = sregs->idt.limit;
8194         dt.address = sregs->idt.base;
8195         kvm_x86_ops->set_idt(vcpu, &dt);
8196         dt.size = sregs->gdt.limit;
8197         dt.address = sregs->gdt.base;
8198         kvm_x86_ops->set_gdt(vcpu, &dt);
8200         vcpu->arch.cr2 = sregs->cr2;
8201         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8202         vcpu->arch.cr3 = sregs->cr3;
8203         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8205         kvm_set_cr8(vcpu, sregs->cr8);
8207         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8208         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8210         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8211         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8212         vcpu->arch.cr0 = sregs->cr0;
8214         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8215         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8216                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8217         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8218         if (cpuid_update_needed)
8219                 kvm_update_cpuid(vcpu);
8221         idx = srcu_read_lock(&vcpu->kvm->srcu);
8222         if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8223                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8224                 mmu_reset_needed = 1;
8225         }
8226         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8228         if (mmu_reset_needed)
8229                 kvm_mmu_reset_context(vcpu);
8231         max_bits = KVM_NR_INTERRUPTS;
8232         pending_vec = find_first_bit(
8233                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8234         if (pending_vec < max_bits) {
8235                 kvm_queue_interrupt(vcpu, pending_vec, false);
8236                 pr_debug("Set back pending irq %d\n", pending_vec);
8237         }
8239         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8240         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8241         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8242         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8243         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8244         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8246         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8247         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8249         update_cr8_intercept(vcpu);
8251         /* Older userspace won't unhalt the vcpu on reset. */
8252         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8253             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8254             !is_protmode(vcpu))
8255                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8257         kvm_make_request(KVM_REQ_EVENT, vcpu);
8259         ret = 0;
8260 out:
8261         return ret;
8264 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8265                                   struct kvm_sregs *sregs)
8267         int ret;
8269         vcpu_load(vcpu);
8270         ret = __set_sregs(vcpu, sregs);
8271         vcpu_put(vcpu);
8272         return ret;
8275 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8276                                         struct kvm_guest_debug *dbg)
8278         unsigned long rflags;
8279         int i, r;
8281         vcpu_load(vcpu);
8283         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8284                 r = -EBUSY;
8285                 if (vcpu->arch.exception.pending)
8286                         goto out;
8287                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8288                         kvm_queue_exception(vcpu, DB_VECTOR);
8289                 else
8290                         kvm_queue_exception(vcpu, BP_VECTOR);
8291         }
8293         /*
8294          * Read rflags as long as potentially injected trace flags are still
8295          * filtered out.
8296          */
8297         rflags = kvm_get_rflags(vcpu);
8299         vcpu->guest_debug = dbg->control;
8300         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8301                 vcpu->guest_debug = 0;
8303         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8304                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8305                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8306                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8307         } else {
8308                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8309                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8310         }
8311         kvm_update_dr7(vcpu);
8313         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8314                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8315                         get_segment_base(vcpu, VCPU_SREG_CS);
8317         /*
8318          * Trigger an rflags update that will inject or remove the trace
8319          * flags.
8320          */
8321         kvm_set_rflags(vcpu, rflags);
8323         kvm_x86_ops->update_bp_intercept(vcpu);
8325         r = 0;
8327 out:
8328         vcpu_put(vcpu);
8329         return r;
8332 /*
8333  * Translate a guest virtual address to a guest physical address.
8334  */
8335 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8336                                     struct kvm_translation *tr)
8338         unsigned long vaddr = tr->linear_address;
8339         gpa_t gpa;
8340         int idx;
8342         vcpu_load(vcpu);
8344         idx = srcu_read_lock(&vcpu->kvm->srcu);
8345         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8346         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8347         tr->physical_address = gpa;
8348         tr->valid = gpa != UNMAPPED_GVA;
8349         tr->writeable = 1;
8350         tr->usermode = 0;
8352         vcpu_put(vcpu);
8353         return 0;
8356 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8358         struct fxregs_state *fxsave;
8360         vcpu_load(vcpu);
8362         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8363         memcpy(fpu->fpr, fxsave->st_space, 128);
8364         fpu->fcw = fxsave->cwd;
8365         fpu->fsw = fxsave->swd;
8366         fpu->ftwx = fxsave->twd;
8367         fpu->last_opcode = fxsave->fop;
8368         fpu->last_ip = fxsave->rip;
8369         fpu->last_dp = fxsave->rdp;
8370         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8372         vcpu_put(vcpu);
8373         return 0;
8376 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8378         struct fxregs_state *fxsave;
8380         vcpu_load(vcpu);
8382         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8384         memcpy(fxsave->st_space, fpu->fpr, 128);
8385         fxsave->cwd = fpu->fcw;
8386         fxsave->swd = fpu->fsw;
8387         fxsave->twd = fpu->ftwx;
8388         fxsave->fop = fpu->last_opcode;
8389         fxsave->rip = fpu->last_ip;
8390         fxsave->rdp = fpu->last_dp;
8391         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8393         vcpu_put(vcpu);
8394         return 0;
8397 static void store_regs(struct kvm_vcpu *vcpu)
8399         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8401         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8402                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8404         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8405                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8407         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8408                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8409                                 vcpu, &vcpu->run->s.regs.events);
8412 static int sync_regs(struct kvm_vcpu *vcpu)
8414         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8415                 return -EINVAL;
8417         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8418                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8419                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8420         }
8421         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8422                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8423                         return -EINVAL;
8424                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8425         }
8426         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8427                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8428                                 vcpu, &vcpu->run->s.regs.events))
8429                         return -EINVAL;
8430                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8431         }
8433         return 0;
8436 static void fx_init(struct kvm_vcpu *vcpu)
8438         fpstate_init(&vcpu->arch.guest_fpu.state);
8439         if (boot_cpu_has(X86_FEATURE_XSAVES))
8440                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8441                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8443         /*
8444          * Ensure guest xcr0 is valid for loading
8445          */
8446         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8448         vcpu->arch.cr0 |= X86_CR0_ET;
8451 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8453         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8455         kvmclock_reset(vcpu);
8457         kvm_x86_ops->vcpu_free(vcpu);
8458         free_cpumask_var(wbinvd_dirty_mask);
8461 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8462                                                 unsigned int id)
8464         struct kvm_vcpu *vcpu;
8466         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8467                 printk_once(KERN_WARNING
8468                 "kvm: SMP vm created on host with unstable TSC; "
8469                 "guest TSC will not be reliable\n");
8471         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8473         return vcpu;
8476 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8478         kvm_vcpu_mtrr_init(vcpu);
8479         vcpu_load(vcpu);
8480         kvm_vcpu_reset(vcpu, false);
8481         kvm_mmu_setup(vcpu);
8482         vcpu_put(vcpu);
8483         return 0;
8486 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8488         struct msr_data msr;
8489         struct kvm *kvm = vcpu->kvm;
8491         kvm_hv_vcpu_postcreate(vcpu);
8493         if (mutex_lock_killable(&vcpu->mutex))
8494                 return;
8495         vcpu_load(vcpu);
8496         msr.data = 0x0;
8497         msr.index = MSR_IA32_TSC;
8498         msr.host_initiated = true;
8499         kvm_write_tsc(vcpu, &msr);
8500         vcpu_put(vcpu);
8501         mutex_unlock(&vcpu->mutex);
8503         if (!kvmclock_periodic_sync)
8504                 return;
8506         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8507                                         KVMCLOCK_SYNC_PERIOD);
8510 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8512         vcpu->arch.apf.msr_val = 0;
8514         vcpu_load(vcpu);
8515         kvm_mmu_unload(vcpu);
8516         vcpu_put(vcpu);
8518         kvm_x86_ops->vcpu_free(vcpu);
8521 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8523         kvm_lapic_reset(vcpu, init_event);
8525         vcpu->arch.hflags = 0;
8527         vcpu->arch.smi_pending = 0;
8528         vcpu->arch.smi_count = 0;
8529         atomic_set(&vcpu->arch.nmi_queued, 0);
8530         vcpu->arch.nmi_pending = 0;
8531         vcpu->arch.nmi_injected = false;
8532         kvm_clear_interrupt_queue(vcpu);
8533         kvm_clear_exception_queue(vcpu);
8534         vcpu->arch.exception.pending = false;
8536         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8537         kvm_update_dr0123(vcpu);
8538         vcpu->arch.dr6 = DR6_INIT;
8539         kvm_update_dr6(vcpu);
8540         vcpu->arch.dr7 = DR7_FIXED_1;
8541         kvm_update_dr7(vcpu);
8543         vcpu->arch.cr2 = 0;
8545         kvm_make_request(KVM_REQ_EVENT, vcpu);
8546         vcpu->arch.apf.msr_val = 0;
8547         vcpu->arch.st.msr_val = 0;
8549         kvmclock_reset(vcpu);
8551         kvm_clear_async_pf_completion_queue(vcpu);
8552         kvm_async_pf_hash_reset(vcpu);
8553         vcpu->arch.apf.halted = false;
8555         if (kvm_mpx_supported()) {
8556                 void *mpx_state_buffer;
8558                 /*
8559                  * To avoid have the INIT path from kvm_apic_has_events() that be
8560                  * called with loaded FPU and does not let userspace fix the state.
8561                  */
8562                 if (init_event)
8563                         kvm_put_guest_fpu(vcpu);
8564                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8565                                         XFEATURE_MASK_BNDREGS);
8566                 if (mpx_state_buffer)
8567                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8568                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8569                                         XFEATURE_MASK_BNDCSR);
8570                 if (mpx_state_buffer)
8571                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8572                 if (init_event)
8573                         kvm_load_guest_fpu(vcpu);
8574         }
8576         if (!init_event) {
8577                 kvm_pmu_reset(vcpu);
8578                 vcpu->arch.smbase = 0x30000;
8580                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8581                 vcpu->arch.msr_misc_features_enables = 0;
8583                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8584         }
8586         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8587         vcpu->arch.regs_avail = ~0;
8588         vcpu->arch.regs_dirty = ~0;
8590         vcpu->arch.ia32_xss = 0;
8592         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8595 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8597         struct kvm_segment cs;
8599         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8600         cs.selector = vector << 8;
8601         cs.base = vector << 12;
8602         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8603         kvm_rip_write(vcpu, 0);
8606 int kvm_arch_hardware_enable(void)
8608         struct kvm *kvm;
8609         struct kvm_vcpu *vcpu;
8610         int i;
8611         int ret;
8612         u64 local_tsc;
8613         u64 max_tsc = 0;
8614         bool stable, backwards_tsc = false;
8616         kvm_shared_msr_cpu_online();
8617         ret = kvm_x86_ops->hardware_enable();
8618         if (ret != 0)
8619                 return ret;
8621         local_tsc = rdtsc();
8622         stable = !kvm_check_tsc_unstable();
8623         list_for_each_entry(kvm, &vm_list, vm_list) {
8624                 kvm_for_each_vcpu(i, vcpu, kvm) {
8625                         if (!stable && vcpu->cpu == smp_processor_id())
8626                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8627                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8628                                 backwards_tsc = true;
8629                                 if (vcpu->arch.last_host_tsc > max_tsc)
8630                                         max_tsc = vcpu->arch.last_host_tsc;
8631                         }
8632                 }
8633         }
8635         /*
8636          * Sometimes, even reliable TSCs go backwards.  This happens on
8637          * platforms that reset TSC during suspend or hibernate actions, but
8638          * maintain synchronization.  We must compensate.  Fortunately, we can
8639          * detect that condition here, which happens early in CPU bringup,
8640          * before any KVM threads can be running.  Unfortunately, we can't
8641          * bring the TSCs fully up to date with real time, as we aren't yet far
8642          * enough into CPU bringup that we know how much real time has actually
8643          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8644          * variables that haven't been updated yet.
8645          *
8646          * So we simply find the maximum observed TSC above, then record the
8647          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8648          * the adjustment will be applied.  Note that we accumulate
8649          * adjustments, in case multiple suspend cycles happen before some VCPU
8650          * gets a chance to run again.  In the event that no KVM threads get a
8651          * chance to run, we will miss the entire elapsed period, as we'll have
8652          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8653          * loose cycle time.  This isn't too big a deal, since the loss will be
8654          * uniform across all VCPUs (not to mention the scenario is extremely
8655          * unlikely). It is possible that a second hibernate recovery happens
8656          * much faster than a first, causing the observed TSC here to be
8657          * smaller; this would require additional padding adjustment, which is
8658          * why we set last_host_tsc to the local tsc observed here.
8659          *
8660          * N.B. - this code below runs only on platforms with reliable TSC,
8661          * as that is the only way backwards_tsc is set above.  Also note
8662          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8663          * have the same delta_cyc adjustment applied if backwards_tsc
8664          * is detected.  Note further, this adjustment is only done once,
8665          * as we reset last_host_tsc on all VCPUs to stop this from being
8666          * called multiple times (one for each physical CPU bringup).
8667          *
8668          * Platforms with unreliable TSCs don't have to deal with this, they
8669          * will be compensated by the logic in vcpu_load, which sets the TSC to
8670          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8671          * guarantee that they stay in perfect synchronization.
8672          */
8673         if (backwards_tsc) {
8674                 u64 delta_cyc = max_tsc - local_tsc;
8675                 list_for_each_entry(kvm, &vm_list, vm_list) {
8676                         kvm->arch.backwards_tsc_observed = true;
8677                         kvm_for_each_vcpu(i, vcpu, kvm) {
8678                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8679                                 vcpu->arch.last_host_tsc = local_tsc;
8680                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8681                         }
8683                         /*
8684                          * We have to disable TSC offset matching.. if you were
8685                          * booting a VM while issuing an S4 host suspend....
8686                          * you may have some problem.  Solving this issue is
8687                          * left as an exercise to the reader.
8688                          */
8689                         kvm->arch.last_tsc_nsec = 0;
8690                         kvm->arch.last_tsc_write = 0;
8691                 }
8693         }
8694         return 0;
8697 void kvm_arch_hardware_disable(void)
8699         kvm_x86_ops->hardware_disable();
8700         drop_user_return_notifiers();
8703 int kvm_arch_hardware_setup(void)
8705         int r;
8707         r = kvm_x86_ops->hardware_setup();
8708         if (r != 0)
8709                 return r;
8711         if (kvm_has_tsc_control) {
8712                 /*
8713                  * Make sure the user can only configure tsc_khz values that
8714                  * fit into a signed integer.
8715                  * A min value is not calculated because it will always
8716                  * be 1 on all machines.
8717                  */
8718                 u64 max = min(0x7fffffffULL,
8719                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8720                 kvm_max_guest_tsc_khz = max;
8722                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8723         }
8725         kvm_init_msr_list();
8726         return 0;
8729 void kvm_arch_hardware_unsetup(void)
8731         kvm_x86_ops->hardware_unsetup();
8734 void kvm_arch_check_processor_compat(void *rtn)
8736         kvm_x86_ops->check_processor_compatibility(rtn);
8739 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8741         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8743 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8745 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8747         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8750 struct static_key kvm_no_apic_vcpu __read_mostly;
8751 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8753 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8755         struct page *page;
8756         int r;
8758         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8759         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8760         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8761                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8762         else
8763                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8765         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8766         if (!page) {
8767                 r = -ENOMEM;
8768                 goto fail;
8769         }
8770         vcpu->arch.pio_data = page_address(page);
8772         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8774         r = kvm_mmu_create(vcpu);
8775         if (r < 0)
8776                 goto fail_free_pio_data;
8778         if (irqchip_in_kernel(vcpu->kvm)) {
8779                 r = kvm_create_lapic(vcpu);
8780                 if (r < 0)
8781                         goto fail_mmu_destroy;
8782         } else
8783                 static_key_slow_inc(&kvm_no_apic_vcpu);
8785         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8786                                        GFP_KERNEL);
8787         if (!vcpu->arch.mce_banks) {
8788                 r = -ENOMEM;
8789                 goto fail_free_lapic;
8790         }
8791         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8793         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8794                 r = -ENOMEM;
8795                 goto fail_free_mce_banks;
8796         }
8798         fx_init(vcpu);
8800         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8802         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8804         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8806         kvm_async_pf_hash_reset(vcpu);
8807         kvm_pmu_init(vcpu);
8809         vcpu->arch.pending_external_vector = -1;
8810         vcpu->arch.preempted_in_kernel = false;
8812         kvm_hv_vcpu_init(vcpu);
8814         return 0;
8816 fail_free_mce_banks:
8817         kfree(vcpu->arch.mce_banks);
8818 fail_free_lapic:
8819         kvm_free_lapic(vcpu);
8820 fail_mmu_destroy:
8821         kvm_mmu_destroy(vcpu);
8822 fail_free_pio_data:
8823         free_page((unsigned long)vcpu->arch.pio_data);
8824 fail:
8825         return r;
8828 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8830         int idx;
8832         kvm_hv_vcpu_uninit(vcpu);
8833         kvm_pmu_destroy(vcpu);
8834         kfree(vcpu->arch.mce_banks);
8835         kvm_free_lapic(vcpu);
8836         idx = srcu_read_lock(&vcpu->kvm->srcu);
8837         kvm_mmu_destroy(vcpu);
8838         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8839         free_page((unsigned long)vcpu->arch.pio_data);
8840         if (!lapic_in_kernel(vcpu))
8841                 static_key_slow_dec(&kvm_no_apic_vcpu);
8844 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8846         vcpu->arch.l1tf_flush_l1d = true;
8847         kvm_x86_ops->sched_in(vcpu, cpu);
8850 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8852         if (type)
8853                 return -EINVAL;
8855         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8856         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8857         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8858         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8859         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8861         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8862         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8863         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8864         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8865                 &kvm->arch.irq_sources_bitmap);
8867         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8868         mutex_init(&kvm->arch.apic_map_lock);
8869         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8871         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8872         pvclock_update_vm_gtod_copy(kvm);
8874         kvm->arch.guest_can_read_msr_platform_info = true;
8876         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8877         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8879         kvm_hv_init_vm(kvm);
8880         kvm_page_track_init(kvm);
8881         kvm_mmu_init_vm(kvm);
8883         if (kvm_x86_ops->vm_init)
8884                 return kvm_x86_ops->vm_init(kvm);
8886         return 0;
8889 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8891         vcpu_load(vcpu);
8892         kvm_mmu_unload(vcpu);
8893         vcpu_put(vcpu);
8896 static void kvm_free_vcpus(struct kvm *kvm)
8898         unsigned int i;
8899         struct kvm_vcpu *vcpu;
8901         /*
8902          * Unpin any mmu pages first.
8903          */
8904         kvm_for_each_vcpu(i, vcpu, kvm) {
8905                 kvm_clear_async_pf_completion_queue(vcpu);
8906                 kvm_unload_vcpu_mmu(vcpu);
8907         }
8908         kvm_for_each_vcpu(i, vcpu, kvm)
8909                 kvm_arch_vcpu_free(vcpu);
8911         mutex_lock(&kvm->lock);
8912         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8913                 kvm->vcpus[i] = NULL;
8915         atomic_set(&kvm->online_vcpus, 0);
8916         mutex_unlock(&kvm->lock);
8919 void kvm_arch_sync_events(struct kvm *kvm)
8921         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8922         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8923         kvm_free_pit(kvm);
8926 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8928         int i, r;
8929         unsigned long hva;
8930         struct kvm_memslots *slots = kvm_memslots(kvm);
8931         struct kvm_memory_slot *slot, old;
8933         /* Called with kvm->slots_lock held.  */
8934         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8935                 return -EINVAL;
8937         slot = id_to_memslot(slots, id);
8938         if (size) {
8939                 if (slot->npages)
8940                         return -EEXIST;
8942                 /*
8943                  * MAP_SHARED to prevent internal slot pages from being moved
8944                  * by fork()/COW.
8945                  */
8946                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8947                               MAP_SHARED | MAP_ANONYMOUS, 0);
8948                 if (IS_ERR((void *)hva))
8949                         return PTR_ERR((void *)hva);
8950         } else {
8951                 if (!slot->npages)
8952                         return 0;
8954                 hva = 0;
8955         }
8957         old = *slot;
8958         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8959                 struct kvm_userspace_memory_region m;
8961                 m.slot = id | (i << 16);
8962                 m.flags = 0;
8963                 m.guest_phys_addr = gpa;
8964                 m.userspace_addr = hva;
8965                 m.memory_size = size;
8966                 r = __kvm_set_memory_region(kvm, &m);
8967                 if (r < 0)
8968                         return r;
8969         }
8971         if (!size)
8972                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8974         return 0;
8976 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8978 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8980         int r;
8982         mutex_lock(&kvm->slots_lock);
8983         r = __x86_set_memory_region(kvm, id, gpa, size);
8984         mutex_unlock(&kvm->slots_lock);
8986         return r;
8988 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8990 void kvm_arch_destroy_vm(struct kvm *kvm)
8992         if (current->mm == kvm->mm) {
8993                 /*
8994                  * Free memory regions allocated on behalf of userspace,
8995                  * unless the the memory map has changed due to process exit
8996                  * or fd copying.
8997                  */
8998                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8999                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9000                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9001         }
9002         if (kvm_x86_ops->vm_destroy)
9003                 kvm_x86_ops->vm_destroy(kvm);
9004         kvm_pic_destroy(kvm);
9005         kvm_ioapic_destroy(kvm);
9006         kvm_free_vcpus(kvm);
9007         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9008         kvm_mmu_uninit_vm(kvm);
9009         kvm_page_track_cleanup(kvm);
9010         kvm_hv_destroy_vm(kvm);
9013 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9014                            struct kvm_memory_slot *dont)
9016         int i;
9018         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9019                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9020                         kvfree(free->arch.rmap[i]);
9021                         free->arch.rmap[i] = NULL;
9022                 }
9023                 if (i == 0)
9024                         continue;
9026                 if (!dont || free->arch.lpage_info[i - 1] !=
9027                              dont->arch.lpage_info[i - 1]) {
9028                         kvfree(free->arch.lpage_info[i - 1]);
9029                         free->arch.lpage_info[i - 1] = NULL;
9030                 }
9031         }
9033         kvm_page_track_free_memslot(free, dont);
9036 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9037                             unsigned long npages)
9039         int i;
9041         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9042                 struct kvm_lpage_info *linfo;
9043                 unsigned long ugfn;
9044                 int lpages;
9045                 int level = i + 1;
9047                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9048                                       slot->base_gfn, level) + 1;
9050                 slot->arch.rmap[i] =
9051                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9052                                  GFP_KERNEL);
9053                 if (!slot->arch.rmap[i])
9054                         goto out_free;
9055                 if (i == 0)
9056                         continue;
9058                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9059                 if (!linfo)
9060                         goto out_free;
9062                 slot->arch.lpage_info[i - 1] = linfo;
9064                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9065                         linfo[0].disallow_lpage = 1;
9066                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9067                         linfo[lpages - 1].disallow_lpage = 1;
9068                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9069                 /*
9070                  * If the gfn and userspace address are not aligned wrt each
9071                  * other, or if explicitly asked to, disable large page
9072                  * support for this slot
9073                  */
9074                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9075                     !kvm_largepages_enabled()) {
9076                         unsigned long j;
9078                         for (j = 0; j < lpages; ++j)
9079                                 linfo[j].disallow_lpage = 1;
9080                 }
9081         }
9083         if (kvm_page_track_create_memslot(slot, npages))
9084                 goto out_free;
9086         return 0;
9088 out_free:
9089         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9090                 kvfree(slot->arch.rmap[i]);
9091                 slot->arch.rmap[i] = NULL;
9092                 if (i == 0)
9093                         continue;
9095                 kvfree(slot->arch.lpage_info[i - 1]);
9096                 slot->arch.lpage_info[i - 1] = NULL;
9097         }
9098         return -ENOMEM;
9101 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
9103         /*
9104          * memslots->generation has been incremented.
9105          * mmio generation may have reached its maximum value.
9106          */
9107         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
9110 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9111                                 struct kvm_memory_slot *memslot,
9112                                 const struct kvm_userspace_memory_region *mem,
9113                                 enum kvm_mr_change change)
9115         return 0;
9118 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9119                                      struct kvm_memory_slot *new)
9121         /* Still write protect RO slot */
9122         if (new->flags & KVM_MEM_READONLY) {
9123                 kvm_mmu_slot_remove_write_access(kvm, new);
9124                 return;
9125         }
9127         /*
9128          * Call kvm_x86_ops dirty logging hooks when they are valid.
9129          *
9130          * kvm_x86_ops->slot_disable_log_dirty is called when:
9131          *
9132          *  - KVM_MR_CREATE with dirty logging is disabled
9133          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9134          *
9135          * The reason is, in case of PML, we need to set D-bit for any slots
9136          * with dirty logging disabled in order to eliminate unnecessary GPA
9137          * logging in PML buffer (and potential PML buffer full VMEXT). This
9138          * guarantees leaving PML enabled during guest's lifetime won't have
9139          * any additonal overhead from PML when guest is running with dirty
9140          * logging disabled for memory slots.
9141          *
9142          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9143          * to dirty logging mode.
9144          *
9145          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9146          *
9147          * In case of write protect:
9148          *
9149          * Write protect all pages for dirty logging.
9150          *
9151          * All the sptes including the large sptes which point to this
9152          * slot are set to readonly. We can not create any new large
9153          * spte on this slot until the end of the logging.
9154          *
9155          * See the comments in fast_page_fault().
9156          */
9157         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9158                 if (kvm_x86_ops->slot_enable_log_dirty)
9159                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9160                 else
9161                         kvm_mmu_slot_remove_write_access(kvm, new);
9162         } else {
9163                 if (kvm_x86_ops->slot_disable_log_dirty)
9164                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9165         }
9168 void kvm_arch_commit_memory_region(struct kvm *kvm,
9169                                 const struct kvm_userspace_memory_region *mem,
9170                                 const struct kvm_memory_slot *old,
9171                                 const struct kvm_memory_slot *new,
9172                                 enum kvm_mr_change change)
9174         int nr_mmu_pages = 0;
9176         if (!kvm->arch.n_requested_mmu_pages)
9177                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9179         if (nr_mmu_pages)
9180                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9182         /*
9183          * Dirty logging tracks sptes in 4k granularity, meaning that large
9184          * sptes have to be split.  If live migration is successful, the guest
9185          * in the source machine will be destroyed and large sptes will be
9186          * created in the destination. However, if the guest continues to run
9187          * in the source machine (for example if live migration fails), small
9188          * sptes will remain around and cause bad performance.
9189          *
9190          * Scan sptes if dirty logging has been stopped, dropping those
9191          * which can be collapsed into a single large-page spte.  Later
9192          * page faults will create the large-page sptes.
9193          */
9194         if ((change != KVM_MR_DELETE) &&
9195                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9196                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9197                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9199         /*
9200          * Set up write protection and/or dirty logging for the new slot.
9201          *
9202          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9203          * been zapped so no dirty logging staff is needed for old slot. For
9204          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9205          * new and it's also covered when dealing with the new slot.
9206          *
9207          * FIXME: const-ify all uses of struct kvm_memory_slot.
9208          */
9209         if (change != KVM_MR_DELETE)
9210                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9213 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9215         kvm_mmu_invalidate_zap_all_pages(kvm);
9218 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9219                                    struct kvm_memory_slot *slot)
9221         kvm_page_track_flush_slot(kvm, slot);
9224 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9226         return (is_guest_mode(vcpu) &&
9227                         kvm_x86_ops->guest_apic_has_interrupt &&
9228                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9231 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9233         if (!list_empty_careful(&vcpu->async_pf.done))
9234                 return true;
9236         if (kvm_apic_has_events(vcpu))
9237                 return true;
9239         if (vcpu->arch.pv.pv_unhalted)
9240                 return true;
9242         if (vcpu->arch.exception.pending)
9243                 return true;
9245         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9246             (vcpu->arch.nmi_pending &&
9247              kvm_x86_ops->nmi_allowed(vcpu)))
9248                 return true;
9250         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9251             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9252                 return true;
9254         if (kvm_arch_interrupt_allowed(vcpu) &&
9255             (kvm_cpu_has_interrupt(vcpu) ||
9256             kvm_guest_apic_has_interrupt(vcpu)))
9257                 return true;
9259         if (kvm_hv_has_stimer_pending(vcpu))
9260                 return true;
9262         return false;
9265 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9267         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9270 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9272         return vcpu->arch.preempted_in_kernel;
9275 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9277         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9280 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9282         return kvm_x86_ops->interrupt_allowed(vcpu);
9285 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9287         if (is_64_bit_mode(vcpu))
9288                 return kvm_rip_read(vcpu);
9289         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9290                      kvm_rip_read(vcpu));
9292 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9294 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9296         return kvm_get_linear_rip(vcpu) == linear_rip;
9298 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9300 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9302         unsigned long rflags;
9304         rflags = kvm_x86_ops->get_rflags(vcpu);
9305         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9306                 rflags &= ~X86_EFLAGS_TF;
9307         return rflags;
9309 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9311 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9313         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9314             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9315                 rflags |= X86_EFLAGS_TF;
9316         kvm_x86_ops->set_rflags(vcpu, rflags);
9319 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9321         __kvm_set_rflags(vcpu, rflags);
9322         kvm_make_request(KVM_REQ_EVENT, vcpu);
9324 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9326 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9328         int r;
9330         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9331               work->wakeup_all)
9332                 return;
9334         r = kvm_mmu_reload(vcpu);
9335         if (unlikely(r))
9336                 return;
9338         if (!vcpu->arch.mmu.direct_map &&
9339               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9340                 return;
9342         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9345 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9347         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9350 static inline u32 kvm_async_pf_next_probe(u32 key)
9352         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9355 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9357         u32 key = kvm_async_pf_hash_fn(gfn);
9359         while (vcpu->arch.apf.gfns[key] != ~0)
9360                 key = kvm_async_pf_next_probe(key);
9362         vcpu->arch.apf.gfns[key] = gfn;
9365 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9367         int i;
9368         u32 key = kvm_async_pf_hash_fn(gfn);
9370         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9371                      (vcpu->arch.apf.gfns[key] != gfn &&
9372                       vcpu->arch.apf.gfns[key] != ~0); i++)
9373                 key = kvm_async_pf_next_probe(key);
9375         return key;
9378 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9380         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9383 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9385         u32 i, j, k;
9387         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9388         while (true) {
9389                 vcpu->arch.apf.gfns[i] = ~0;
9390                 do {
9391                         j = kvm_async_pf_next_probe(j);
9392                         if (vcpu->arch.apf.gfns[j] == ~0)
9393                                 return;
9394                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9395                         /*
9396                          * k lies cyclically in ]i,j]
9397                          * |    i.k.j |
9398                          * |....j i.k.| or  |.k..j i...|
9399                          */
9400                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9401                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9402                 i = j;
9403         }
9406 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9409         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9410                                       sizeof(val));
9413 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9416         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9417                                       sizeof(u32));
9420 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9421                                      struct kvm_async_pf *work)
9423         struct x86_exception fault;
9425         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9426         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9428         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9429             (vcpu->arch.apf.send_user_only &&
9430              kvm_x86_ops->get_cpl(vcpu) == 0))
9431                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9432         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9433                 fault.vector = PF_VECTOR;
9434                 fault.error_code_valid = true;
9435                 fault.error_code = 0;
9436                 fault.nested_page_fault = false;
9437                 fault.address = work->arch.token;
9438                 fault.async_page_fault = true;
9439                 kvm_inject_page_fault(vcpu, &fault);
9440         }
9443 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9444                                  struct kvm_async_pf *work)
9446         struct x86_exception fault;
9447         u32 val;
9449         if (work->wakeup_all)
9450                 work->arch.token = ~0; /* broadcast wakeup */
9451         else
9452                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9453         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9455         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9456             !apf_get_user(vcpu, &val)) {
9457                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9458                     vcpu->arch.exception.pending &&
9459                     vcpu->arch.exception.nr == PF_VECTOR &&
9460                     !apf_put_user(vcpu, 0)) {
9461                         vcpu->arch.exception.injected = false;
9462                         vcpu->arch.exception.pending = false;
9463                         vcpu->arch.exception.nr = 0;
9464                         vcpu->arch.exception.has_error_code = false;
9465                         vcpu->arch.exception.error_code = 0;
9466                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9467                         fault.vector = PF_VECTOR;
9468                         fault.error_code_valid = true;
9469                         fault.error_code = 0;
9470                         fault.nested_page_fault = false;
9471                         fault.address = work->arch.token;
9472                         fault.async_page_fault = true;
9473                         kvm_inject_page_fault(vcpu, &fault);
9474                 }
9475         }
9476         vcpu->arch.apf.halted = false;
9477         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9480 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9482         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9483                 return true;
9484         else
9485                 return kvm_can_do_async_pf(vcpu);
9488 void kvm_arch_start_assignment(struct kvm *kvm)
9490         atomic_inc(&kvm->arch.assigned_device_count);
9492 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9494 void kvm_arch_end_assignment(struct kvm *kvm)
9496         atomic_dec(&kvm->arch.assigned_device_count);
9498 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9500 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9502         return atomic_read(&kvm->arch.assigned_device_count);
9504 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9506 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9508         atomic_inc(&kvm->arch.noncoherent_dma_count);
9510 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9512 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9514         atomic_dec(&kvm->arch.noncoherent_dma_count);
9516 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9518 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9520         return atomic_read(&kvm->arch.noncoherent_dma_count);
9522 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9524 bool kvm_arch_has_irq_bypass(void)
9526         return kvm_x86_ops->update_pi_irte != NULL;
9529 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9530                                       struct irq_bypass_producer *prod)
9532         struct kvm_kernel_irqfd *irqfd =
9533                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9535         irqfd->producer = prod;
9537         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9538                                            prod->irq, irqfd->gsi, 1);
9541 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9542                                       struct irq_bypass_producer *prod)
9544         int ret;
9545         struct kvm_kernel_irqfd *irqfd =
9546                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9548         WARN_ON(irqfd->producer != prod);
9549         irqfd->producer = NULL;
9551         /*
9552          * When producer of consumer is unregistered, we change back to
9553          * remapped mode, so we can re-use the current implementation
9554          * when the irq is masked/disabled or the consumer side (KVM
9555          * int this case doesn't want to receive the interrupts.
9556         */
9557         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9558         if (ret)
9559                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9560                        " fails: %d\n", irqfd->consumer.token, ret);
9563 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9564                                    uint32_t guest_irq, bool set)
9566         if (!kvm_x86_ops->update_pi_irte)
9567                 return -EINVAL;
9569         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9572 bool kvm_vector_hashing_enabled(void)
9574         return vector_hashing;
9576 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);