]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - rpmsg/rpmsg.git/blob - drivers/block/null_blk_main.c
Merge tag 'kbuild-fixes-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[rpmsg/rpmsg.git] / drivers / block / null_blk_main.c
1 /*
2  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
3  * Shaohua Li <shli@fb.com>
4  */
5 #include <linux/module.h>
7 #include <linux/moduleparam.h>
8 #include <linux/sched.h>
9 #include <linux/fs.h>
10 #include <linux/init.h>
11 #include "null_blk.h"
13 #define PAGE_SECTORS_SHIFT      (PAGE_SHIFT - SECTOR_SHIFT)
14 #define PAGE_SECTORS            (1 << PAGE_SECTORS_SHIFT)
15 #define SECTOR_MASK             (PAGE_SECTORS - 1)
17 #define FREE_BATCH              16
19 #define TICKS_PER_SEC           50ULL
20 #define TIMER_INTERVAL          (NSEC_PER_SEC / TICKS_PER_SEC)
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr);
24 static DECLARE_FAULT_ATTR(null_requeue_attr);
25 #endif
27 static inline u64 mb_per_tick(int mbps)
28 {
29         return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
30 }
32 /*
33  * Status flags for nullb_device.
34  *
35  * CONFIGURED:  Device has been configured and turned on. Cannot reconfigure.
36  * UP:          Device is currently on and visible in userspace.
37  * THROTTLED:   Device is being throttled.
38  * CACHE:       Device is using a write-back cache.
39  */
40 enum nullb_device_flags {
41         NULLB_DEV_FL_CONFIGURED = 0,
42         NULLB_DEV_FL_UP         = 1,
43         NULLB_DEV_FL_THROTTLED  = 2,
44         NULLB_DEV_FL_CACHE      = 3,
45 };
47 #define MAP_SZ          ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
48 /*
49  * nullb_page is a page in memory for nullb devices.
50  *
51  * @page:       The page holding the data.
52  * @bitmap:     The bitmap represents which sector in the page has data.
53  *              Each bit represents one block size. For example, sector 8
54  *              will use the 7th bit
55  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
56  * page is being flushing to storage. FREE means the cache page is freed and
57  * should be skipped from flushing to storage. Please see
58  * null_make_cache_space
59  */
60 struct nullb_page {
61         struct page *page;
62         DECLARE_BITMAP(bitmap, MAP_SZ);
63 };
64 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
65 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67 static LIST_HEAD(nullb_list);
68 static struct mutex lock;
69 static int null_major;
70 static DEFINE_IDA(nullb_indexes);
71 static struct blk_mq_tag_set tag_set;
73 enum {
74         NULL_IRQ_NONE           = 0,
75         NULL_IRQ_SOFTIRQ        = 1,
76         NULL_IRQ_TIMER          = 2,
77 };
79 enum {
80         NULL_Q_BIO              = 0,
81         NULL_Q_RQ               = 1,
82         NULL_Q_MQ               = 2,
83 };
85 static int g_no_sched;
86 module_param_named(no_sched, g_no_sched, int, 0444);
87 MODULE_PARM_DESC(no_sched, "No io scheduler");
89 static int g_submit_queues = 1;
90 module_param_named(submit_queues, g_submit_queues, int, 0444);
91 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
93 static int g_home_node = NUMA_NO_NODE;
94 module_param_named(home_node, g_home_node, int, 0444);
95 MODULE_PARM_DESC(home_node, "Home node for the device");
97 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
98 static char g_timeout_str[80];
99 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
101 static char g_requeue_str[80];
102 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
103 #endif
105 static int g_queue_mode = NULL_Q_MQ;
107 static int null_param_store_val(const char *str, int *val, int min, int max)
109         int ret, new_val;
111         ret = kstrtoint(str, 10, &new_val);
112         if (ret)
113                 return -EINVAL;
115         if (new_val < min || new_val > max)
116                 return -EINVAL;
118         *val = new_val;
119         return 0;
122 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
124         return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
127 static const struct kernel_param_ops null_queue_mode_param_ops = {
128         .set    = null_set_queue_mode,
129         .get    = param_get_int,
130 };
132 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
133 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
135 static int g_gb = 250;
136 module_param_named(gb, g_gb, int, 0444);
137 MODULE_PARM_DESC(gb, "Size in GB");
139 static int g_bs = 512;
140 module_param_named(bs, g_bs, int, 0444);
141 MODULE_PARM_DESC(bs, "Block size (in bytes)");
143 static int nr_devices = 1;
144 module_param(nr_devices, int, 0444);
145 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
147 static bool g_blocking;
148 module_param_named(blocking, g_blocking, bool, 0444);
149 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
151 static bool shared_tags;
152 module_param(shared_tags, bool, 0444);
153 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
155 static int g_irqmode = NULL_IRQ_SOFTIRQ;
157 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
159         return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
160                                         NULL_IRQ_TIMER);
163 static const struct kernel_param_ops null_irqmode_param_ops = {
164         .set    = null_set_irqmode,
165         .get    = param_get_int,
166 };
168 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
169 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
171 static unsigned long g_completion_nsec = 10000;
172 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
173 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
175 static int g_hw_queue_depth = 64;
176 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
177 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
179 static bool g_use_per_node_hctx;
180 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
181 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
183 static bool g_zoned;
184 module_param_named(zoned, g_zoned, bool, S_IRUGO);
185 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
187 static unsigned long g_zone_size = 256;
188 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
189 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
191 static struct nullb_device *null_alloc_dev(void);
192 static void null_free_dev(struct nullb_device *dev);
193 static void null_del_dev(struct nullb *nullb);
194 static int null_add_dev(struct nullb_device *dev);
195 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
197 static inline struct nullb_device *to_nullb_device(struct config_item *item)
199         return item ? container_of(item, struct nullb_device, item) : NULL;
202 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
204         return snprintf(page, PAGE_SIZE, "%u\n", val);
207 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
208         char *page)
210         return snprintf(page, PAGE_SIZE, "%lu\n", val);
213 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
215         return snprintf(page, PAGE_SIZE, "%u\n", val);
218 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
219         const char *page, size_t count)
221         unsigned int tmp;
222         int result;
224         result = kstrtouint(page, 0, &tmp);
225         if (result)
226                 return result;
228         *val = tmp;
229         return count;
232 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
233         const char *page, size_t count)
235         int result;
236         unsigned long tmp;
238         result = kstrtoul(page, 0, &tmp);
239         if (result)
240                 return result;
242         *val = tmp;
243         return count;
246 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
247         size_t count)
249         bool tmp;
250         int result;
252         result = kstrtobool(page,  &tmp);
253         if (result)
254                 return result;
256         *val = tmp;
257         return count;
260 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
261 #define NULLB_DEVICE_ATTR(NAME, TYPE)                                           \
262 static ssize_t                                                                  \
263 nullb_device_##NAME##_show(struct config_item *item, char *page)                \
264 {                                                                               \
265         return nullb_device_##TYPE##_attr_show(                                 \
266                                 to_nullb_device(item)->NAME, page);             \
267 }                                                                               \
268 static ssize_t                                                                  \
269 nullb_device_##NAME##_store(struct config_item *item, const char *page,         \
270                             size_t count)                                       \
271 {                                                                               \
272         if (test_bit(NULLB_DEV_FL_CONFIGURED, &to_nullb_device(item)->flags))   \
273                 return -EBUSY;                                                  \
274         return nullb_device_##TYPE##_attr_store(                                \
275                         &to_nullb_device(item)->NAME, page, count);             \
276 }                                                                               \
277 CONFIGFS_ATTR(nullb_device_, NAME);
279 NULLB_DEVICE_ATTR(size, ulong);
280 NULLB_DEVICE_ATTR(completion_nsec, ulong);
281 NULLB_DEVICE_ATTR(submit_queues, uint);
282 NULLB_DEVICE_ATTR(home_node, uint);
283 NULLB_DEVICE_ATTR(queue_mode, uint);
284 NULLB_DEVICE_ATTR(blocksize, uint);
285 NULLB_DEVICE_ATTR(irqmode, uint);
286 NULLB_DEVICE_ATTR(hw_queue_depth, uint);
287 NULLB_DEVICE_ATTR(index, uint);
288 NULLB_DEVICE_ATTR(blocking, bool);
289 NULLB_DEVICE_ATTR(use_per_node_hctx, bool);
290 NULLB_DEVICE_ATTR(memory_backed, bool);
291 NULLB_DEVICE_ATTR(discard, bool);
292 NULLB_DEVICE_ATTR(mbps, uint);
293 NULLB_DEVICE_ATTR(cache_size, ulong);
294 NULLB_DEVICE_ATTR(zoned, bool);
295 NULLB_DEVICE_ATTR(zone_size, ulong);
297 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
299         return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
302 static ssize_t nullb_device_power_store(struct config_item *item,
303                                      const char *page, size_t count)
305         struct nullb_device *dev = to_nullb_device(item);
306         bool newp = false;
307         ssize_t ret;
309         ret = nullb_device_bool_attr_store(&newp, page, count);
310         if (ret < 0)
311                 return ret;
313         if (!dev->power && newp) {
314                 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
315                         return count;
316                 if (null_add_dev(dev)) {
317                         clear_bit(NULLB_DEV_FL_UP, &dev->flags);
318                         return -ENOMEM;
319                 }
321                 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
322                 dev->power = newp;
323         } else if (dev->power && !newp) {
324                 mutex_lock(&lock);
325                 dev->power = newp;
326                 null_del_dev(dev->nullb);
327                 mutex_unlock(&lock);
328                 clear_bit(NULLB_DEV_FL_UP, &dev->flags);
329                 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
330         }
332         return count;
335 CONFIGFS_ATTR(nullb_device_, power);
337 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
339         struct nullb_device *t_dev = to_nullb_device(item);
341         return badblocks_show(&t_dev->badblocks, page, 0);
344 static ssize_t nullb_device_badblocks_store(struct config_item *item,
345                                      const char *page, size_t count)
347         struct nullb_device *t_dev = to_nullb_device(item);
348         char *orig, *buf, *tmp;
349         u64 start, end;
350         int ret;
352         orig = kstrndup(page, count, GFP_KERNEL);
353         if (!orig)
354                 return -ENOMEM;
356         buf = strstrip(orig);
358         ret = -EINVAL;
359         if (buf[0] != '+' && buf[0] != '-')
360                 goto out;
361         tmp = strchr(&buf[1], '-');
362         if (!tmp)
363                 goto out;
364         *tmp = '\0';
365         ret = kstrtoull(buf + 1, 0, &start);
366         if (ret)
367                 goto out;
368         ret = kstrtoull(tmp + 1, 0, &end);
369         if (ret)
370                 goto out;
371         ret = -EINVAL;
372         if (start > end)
373                 goto out;
374         /* enable badblocks */
375         cmpxchg(&t_dev->badblocks.shift, -1, 0);
376         if (buf[0] == '+')
377                 ret = badblocks_set(&t_dev->badblocks, start,
378                         end - start + 1, 1);
379         else
380                 ret = badblocks_clear(&t_dev->badblocks, start,
381                         end - start + 1);
382         if (ret == 0)
383                 ret = count;
384 out:
385         kfree(orig);
386         return ret;
388 CONFIGFS_ATTR(nullb_device_, badblocks);
390 static struct configfs_attribute *nullb_device_attrs[] = {
391         &nullb_device_attr_size,
392         &nullb_device_attr_completion_nsec,
393         &nullb_device_attr_submit_queues,
394         &nullb_device_attr_home_node,
395         &nullb_device_attr_queue_mode,
396         &nullb_device_attr_blocksize,
397         &nullb_device_attr_irqmode,
398         &nullb_device_attr_hw_queue_depth,
399         &nullb_device_attr_index,
400         &nullb_device_attr_blocking,
401         &nullb_device_attr_use_per_node_hctx,
402         &nullb_device_attr_power,
403         &nullb_device_attr_memory_backed,
404         &nullb_device_attr_discard,
405         &nullb_device_attr_mbps,
406         &nullb_device_attr_cache_size,
407         &nullb_device_attr_badblocks,
408         &nullb_device_attr_zoned,
409         &nullb_device_attr_zone_size,
410         NULL,
411 };
413 static void nullb_device_release(struct config_item *item)
415         struct nullb_device *dev = to_nullb_device(item);
417         null_free_device_storage(dev, false);
418         null_free_dev(dev);
421 static struct configfs_item_operations nullb_device_ops = {
422         .release        = nullb_device_release,
423 };
425 static const struct config_item_type nullb_device_type = {
426         .ct_item_ops    = &nullb_device_ops,
427         .ct_attrs       = nullb_device_attrs,
428         .ct_owner       = THIS_MODULE,
429 };
431 static struct
432 config_item *nullb_group_make_item(struct config_group *group, const char *name)
434         struct nullb_device *dev;
436         dev = null_alloc_dev();
437         if (!dev)
438                 return ERR_PTR(-ENOMEM);
440         config_item_init_type_name(&dev->item, name, &nullb_device_type);
442         return &dev->item;
445 static void
446 nullb_group_drop_item(struct config_group *group, struct config_item *item)
448         struct nullb_device *dev = to_nullb_device(item);
450         if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
451                 mutex_lock(&lock);
452                 dev->power = false;
453                 null_del_dev(dev->nullb);
454                 mutex_unlock(&lock);
455         }
457         config_item_put(item);
460 static ssize_t memb_group_features_show(struct config_item *item, char *page)
462         return snprintf(page, PAGE_SIZE, "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size\n");
465 CONFIGFS_ATTR_RO(memb_group_, features);
467 static struct configfs_attribute *nullb_group_attrs[] = {
468         &memb_group_attr_features,
469         NULL,
470 };
472 static struct configfs_group_operations nullb_group_ops = {
473         .make_item      = nullb_group_make_item,
474         .drop_item      = nullb_group_drop_item,
475 };
477 static const struct config_item_type nullb_group_type = {
478         .ct_group_ops   = &nullb_group_ops,
479         .ct_attrs       = nullb_group_attrs,
480         .ct_owner       = THIS_MODULE,
481 };
483 static struct configfs_subsystem nullb_subsys = {
484         .su_group = {
485                 .cg_item = {
486                         .ci_namebuf = "nullb",
487                         .ci_type = &nullb_group_type,
488                 },
489         },
490 };
492 static inline int null_cache_active(struct nullb *nullb)
494         return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
497 static struct nullb_device *null_alloc_dev(void)
499         struct nullb_device *dev;
501         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
502         if (!dev)
503                 return NULL;
504         INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
505         INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
506         if (badblocks_init(&dev->badblocks, 0)) {
507                 kfree(dev);
508                 return NULL;
509         }
511         dev->size = g_gb * 1024;
512         dev->completion_nsec = g_completion_nsec;
513         dev->submit_queues = g_submit_queues;
514         dev->home_node = g_home_node;
515         dev->queue_mode = g_queue_mode;
516         dev->blocksize = g_bs;
517         dev->irqmode = g_irqmode;
518         dev->hw_queue_depth = g_hw_queue_depth;
519         dev->blocking = g_blocking;
520         dev->use_per_node_hctx = g_use_per_node_hctx;
521         dev->zoned = g_zoned;
522         dev->zone_size = g_zone_size;
523         return dev;
526 static void null_free_dev(struct nullb_device *dev)
528         if (!dev)
529                 return;
531         null_zone_exit(dev);
532         badblocks_exit(&dev->badblocks);
533         kfree(dev);
536 static void put_tag(struct nullb_queue *nq, unsigned int tag)
538         clear_bit_unlock(tag, nq->tag_map);
540         if (waitqueue_active(&nq->wait))
541                 wake_up(&nq->wait);
544 static unsigned int get_tag(struct nullb_queue *nq)
546         unsigned int tag;
548         do {
549                 tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
550                 if (tag >= nq->queue_depth)
551                         return -1U;
552         } while (test_and_set_bit_lock(tag, nq->tag_map));
554         return tag;
557 static void free_cmd(struct nullb_cmd *cmd)
559         put_tag(cmd->nq, cmd->tag);
562 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
564 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
566         struct nullb_cmd *cmd;
567         unsigned int tag;
569         tag = get_tag(nq);
570         if (tag != -1U) {
571                 cmd = &nq->cmds[tag];
572                 cmd->tag = tag;
573                 cmd->nq = nq;
574                 if (nq->dev->irqmode == NULL_IRQ_TIMER) {
575                         hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
576                                      HRTIMER_MODE_REL);
577                         cmd->timer.function = null_cmd_timer_expired;
578                 }
579                 return cmd;
580         }
582         return NULL;
585 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
587         struct nullb_cmd *cmd;
588         DEFINE_WAIT(wait);
590         cmd = __alloc_cmd(nq);
591         if (cmd || !can_wait)
592                 return cmd;
594         do {
595                 prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
596                 cmd = __alloc_cmd(nq);
597                 if (cmd)
598                         break;
600                 io_schedule();
601         } while (1);
603         finish_wait(&nq->wait, &wait);
604         return cmd;
607 static void end_cmd(struct nullb_cmd *cmd)
609         struct request_queue *q = NULL;
610         int queue_mode = cmd->nq->dev->queue_mode;
612         if (cmd->rq)
613                 q = cmd->rq->q;
615         switch (queue_mode)  {
616         case NULL_Q_MQ:
617                 blk_mq_end_request(cmd->rq, cmd->error);
618                 return;
619         case NULL_Q_RQ:
620                 INIT_LIST_HEAD(&cmd->rq->queuelist);
621                 blk_end_request_all(cmd->rq, cmd->error);
622                 break;
623         case NULL_Q_BIO:
624                 cmd->bio->bi_status = cmd->error;
625                 bio_endio(cmd->bio);
626                 break;
627         }
629         free_cmd(cmd);
631         /* Restart queue if needed, as we are freeing a tag */
632         if (queue_mode == NULL_Q_RQ && blk_queue_stopped(q)) {
633                 unsigned long flags;
635                 spin_lock_irqsave(q->queue_lock, flags);
636                 blk_start_queue_async(q);
637                 spin_unlock_irqrestore(q->queue_lock, flags);
638         }
641 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
643         end_cmd(container_of(timer, struct nullb_cmd, timer));
645         return HRTIMER_NORESTART;
648 static void null_cmd_end_timer(struct nullb_cmd *cmd)
650         ktime_t kt = cmd->nq->dev->completion_nsec;
652         hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
655 static void null_softirq_done_fn(struct request *rq)
657         struct nullb *nullb = rq->q->queuedata;
659         if (nullb->dev->queue_mode == NULL_Q_MQ)
660                 end_cmd(blk_mq_rq_to_pdu(rq));
661         else
662                 end_cmd(rq->special);
665 static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
667         struct nullb_page *t_page;
669         t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
670         if (!t_page)
671                 goto out;
673         t_page->page = alloc_pages(gfp_flags, 0);
674         if (!t_page->page)
675                 goto out_freepage;
677         memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
678         return t_page;
679 out_freepage:
680         kfree(t_page);
681 out:
682         return NULL;
685 static void null_free_page(struct nullb_page *t_page)
687         __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
688         if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
689                 return;
690         __free_page(t_page->page);
691         kfree(t_page);
694 static bool null_page_empty(struct nullb_page *page)
696         int size = MAP_SZ - 2;
698         return find_first_bit(page->bitmap, size) == size;
701 static void null_free_sector(struct nullb *nullb, sector_t sector,
702         bool is_cache)
704         unsigned int sector_bit;
705         u64 idx;
706         struct nullb_page *t_page, *ret;
707         struct radix_tree_root *root;
709         root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
710         idx = sector >> PAGE_SECTORS_SHIFT;
711         sector_bit = (sector & SECTOR_MASK);
713         t_page = radix_tree_lookup(root, idx);
714         if (t_page) {
715                 __clear_bit(sector_bit, t_page->bitmap);
717                 if (null_page_empty(t_page)) {
718                         ret = radix_tree_delete_item(root, idx, t_page);
719                         WARN_ON(ret != t_page);
720                         null_free_page(ret);
721                         if (is_cache)
722                                 nullb->dev->curr_cache -= PAGE_SIZE;
723                 }
724         }
727 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
728         struct nullb_page *t_page, bool is_cache)
730         struct radix_tree_root *root;
732         root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
734         if (radix_tree_insert(root, idx, t_page)) {
735                 null_free_page(t_page);
736                 t_page = radix_tree_lookup(root, idx);
737                 WARN_ON(!t_page || t_page->page->index != idx);
738         } else if (is_cache)
739                 nullb->dev->curr_cache += PAGE_SIZE;
741         return t_page;
744 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
746         unsigned long pos = 0;
747         int nr_pages;
748         struct nullb_page *ret, *t_pages[FREE_BATCH];
749         struct radix_tree_root *root;
751         root = is_cache ? &dev->cache : &dev->data;
753         do {
754                 int i;
756                 nr_pages = radix_tree_gang_lookup(root,
757                                 (void **)t_pages, pos, FREE_BATCH);
759                 for (i = 0; i < nr_pages; i++) {
760                         pos = t_pages[i]->page->index;
761                         ret = radix_tree_delete_item(root, pos, t_pages[i]);
762                         WARN_ON(ret != t_pages[i]);
763                         null_free_page(ret);
764                 }
766                 pos++;
767         } while (nr_pages == FREE_BATCH);
769         if (is_cache)
770                 dev->curr_cache = 0;
773 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
774         sector_t sector, bool for_write, bool is_cache)
776         unsigned int sector_bit;
777         u64 idx;
778         struct nullb_page *t_page;
779         struct radix_tree_root *root;
781         idx = sector >> PAGE_SECTORS_SHIFT;
782         sector_bit = (sector & SECTOR_MASK);
784         root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
785         t_page = radix_tree_lookup(root, idx);
786         WARN_ON(t_page && t_page->page->index != idx);
788         if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
789                 return t_page;
791         return NULL;
794 static struct nullb_page *null_lookup_page(struct nullb *nullb,
795         sector_t sector, bool for_write, bool ignore_cache)
797         struct nullb_page *page = NULL;
799         if (!ignore_cache)
800                 page = __null_lookup_page(nullb, sector, for_write, true);
801         if (page)
802                 return page;
803         return __null_lookup_page(nullb, sector, for_write, false);
806 static struct nullb_page *null_insert_page(struct nullb *nullb,
807                                            sector_t sector, bool ignore_cache)
808         __releases(&nullb->lock)
809         __acquires(&nullb->lock)
811         u64 idx;
812         struct nullb_page *t_page;
814         t_page = null_lookup_page(nullb, sector, true, ignore_cache);
815         if (t_page)
816                 return t_page;
818         spin_unlock_irq(&nullb->lock);
820         t_page = null_alloc_page(GFP_NOIO);
821         if (!t_page)
822                 goto out_lock;
824         if (radix_tree_preload(GFP_NOIO))
825                 goto out_freepage;
827         spin_lock_irq(&nullb->lock);
828         idx = sector >> PAGE_SECTORS_SHIFT;
829         t_page->page->index = idx;
830         t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
831         radix_tree_preload_end();
833         return t_page;
834 out_freepage:
835         null_free_page(t_page);
836 out_lock:
837         spin_lock_irq(&nullb->lock);
838         return null_lookup_page(nullb, sector, true, ignore_cache);
841 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
843         int i;
844         unsigned int offset;
845         u64 idx;
846         struct nullb_page *t_page, *ret;
847         void *dst, *src;
849         idx = c_page->page->index;
851         t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
853         __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
854         if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
855                 null_free_page(c_page);
856                 if (t_page && null_page_empty(t_page)) {
857                         ret = radix_tree_delete_item(&nullb->dev->data,
858                                 idx, t_page);
859                         null_free_page(t_page);
860                 }
861                 return 0;
862         }
864         if (!t_page)
865                 return -ENOMEM;
867         src = kmap_atomic(c_page->page);
868         dst = kmap_atomic(t_page->page);
870         for (i = 0; i < PAGE_SECTORS;
871                         i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
872                 if (test_bit(i, c_page->bitmap)) {
873                         offset = (i << SECTOR_SHIFT);
874                         memcpy(dst + offset, src + offset,
875                                 nullb->dev->blocksize);
876                         __set_bit(i, t_page->bitmap);
877                 }
878         }
880         kunmap_atomic(dst);
881         kunmap_atomic(src);
883         ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
884         null_free_page(ret);
885         nullb->dev->curr_cache -= PAGE_SIZE;
887         return 0;
890 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
892         int i, err, nr_pages;
893         struct nullb_page *c_pages[FREE_BATCH];
894         unsigned long flushed = 0, one_round;
896 again:
897         if ((nullb->dev->cache_size * 1024 * 1024) >
898              nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
899                 return 0;
901         nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
902                         (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
903         /*
904          * nullb_flush_cache_page could unlock before using the c_pages. To
905          * avoid race, we don't allow page free
906          */
907         for (i = 0; i < nr_pages; i++) {
908                 nullb->cache_flush_pos = c_pages[i]->page->index;
909                 /*
910                  * We found the page which is being flushed to disk by other
911                  * threads
912                  */
913                 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
914                         c_pages[i] = NULL;
915                 else
916                         __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
917         }
919         one_round = 0;
920         for (i = 0; i < nr_pages; i++) {
921                 if (c_pages[i] == NULL)
922                         continue;
923                 err = null_flush_cache_page(nullb, c_pages[i]);
924                 if (err)
925                         return err;
926                 one_round++;
927         }
928         flushed += one_round << PAGE_SHIFT;
930         if (n > flushed) {
931                 if (nr_pages == 0)
932                         nullb->cache_flush_pos = 0;
933                 if (one_round == 0) {
934                         /* give other threads a chance */
935                         spin_unlock_irq(&nullb->lock);
936                         spin_lock_irq(&nullb->lock);
937                 }
938                 goto again;
939         }
940         return 0;
943 static int copy_to_nullb(struct nullb *nullb, struct page *source,
944         unsigned int off, sector_t sector, size_t n, bool is_fua)
946         size_t temp, count = 0;
947         unsigned int offset;
948         struct nullb_page *t_page;
949         void *dst, *src;
951         while (count < n) {
952                 temp = min_t(size_t, nullb->dev->blocksize, n - count);
954                 if (null_cache_active(nullb) && !is_fua)
955                         null_make_cache_space(nullb, PAGE_SIZE);
957                 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
958                 t_page = null_insert_page(nullb, sector,
959                         !null_cache_active(nullb) || is_fua);
960                 if (!t_page)
961                         return -ENOSPC;
963                 src = kmap_atomic(source);
964                 dst = kmap_atomic(t_page->page);
965                 memcpy(dst + offset, src + off + count, temp);
966                 kunmap_atomic(dst);
967                 kunmap_atomic(src);
969                 __set_bit(sector & SECTOR_MASK, t_page->bitmap);
971                 if (is_fua)
972                         null_free_sector(nullb, sector, true);
974                 count += temp;
975                 sector += temp >> SECTOR_SHIFT;
976         }
977         return 0;
980 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
981         unsigned int off, sector_t sector, size_t n)
983         size_t temp, count = 0;
984         unsigned int offset;
985         struct nullb_page *t_page;
986         void *dst, *src;
988         while (count < n) {
989                 temp = min_t(size_t, nullb->dev->blocksize, n - count);
991                 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
992                 t_page = null_lookup_page(nullb, sector, false,
993                         !null_cache_active(nullb));
995                 dst = kmap_atomic(dest);
996                 if (!t_page) {
997                         memset(dst + off + count, 0, temp);
998                         goto next;
999                 }
1000                 src = kmap_atomic(t_page->page);
1001                 memcpy(dst + off + count, src + offset, temp);
1002                 kunmap_atomic(src);
1003 next:
1004                 kunmap_atomic(dst);
1006                 count += temp;
1007                 sector += temp >> SECTOR_SHIFT;
1008         }
1009         return 0;
1012 static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
1014         size_t temp;
1016         spin_lock_irq(&nullb->lock);
1017         while (n > 0) {
1018                 temp = min_t(size_t, n, nullb->dev->blocksize);
1019                 null_free_sector(nullb, sector, false);
1020                 if (null_cache_active(nullb))
1021                         null_free_sector(nullb, sector, true);
1022                 sector += temp >> SECTOR_SHIFT;
1023                 n -= temp;
1024         }
1025         spin_unlock_irq(&nullb->lock);
1028 static int null_handle_flush(struct nullb *nullb)
1030         int err;
1032         if (!null_cache_active(nullb))
1033                 return 0;
1035         spin_lock_irq(&nullb->lock);
1036         while (true) {
1037                 err = null_make_cache_space(nullb,
1038                         nullb->dev->cache_size * 1024 * 1024);
1039                 if (err || nullb->dev->curr_cache == 0)
1040                         break;
1041         }
1043         WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1044         spin_unlock_irq(&nullb->lock);
1045         return err;
1048 static int null_transfer(struct nullb *nullb, struct page *page,
1049         unsigned int len, unsigned int off, bool is_write, sector_t sector,
1050         bool is_fua)
1052         int err = 0;
1054         if (!is_write) {
1055                 err = copy_from_nullb(nullb, page, off, sector, len);
1056                 flush_dcache_page(page);
1057         } else {
1058                 flush_dcache_page(page);
1059                 err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1060         }
1062         return err;
1065 static int null_handle_rq(struct nullb_cmd *cmd)
1067         struct request *rq = cmd->rq;
1068         struct nullb *nullb = cmd->nq->dev->nullb;
1069         int err;
1070         unsigned int len;
1071         sector_t sector;
1072         struct req_iterator iter;
1073         struct bio_vec bvec;
1075         sector = blk_rq_pos(rq);
1077         if (req_op(rq) == REQ_OP_DISCARD) {
1078                 null_handle_discard(nullb, sector, blk_rq_bytes(rq));
1079                 return 0;
1080         }
1082         spin_lock_irq(&nullb->lock);
1083         rq_for_each_segment(bvec, rq, iter) {
1084                 len = bvec.bv_len;
1085                 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1086                                      op_is_write(req_op(rq)), sector,
1087                                      req_op(rq) & REQ_FUA);
1088                 if (err) {
1089                         spin_unlock_irq(&nullb->lock);
1090                         return err;
1091                 }
1092                 sector += len >> SECTOR_SHIFT;
1093         }
1094         spin_unlock_irq(&nullb->lock);
1096         return 0;
1099 static int null_handle_bio(struct nullb_cmd *cmd)
1101         struct bio *bio = cmd->bio;
1102         struct nullb *nullb = cmd->nq->dev->nullb;
1103         int err;
1104         unsigned int len;
1105         sector_t sector;
1106         struct bio_vec bvec;
1107         struct bvec_iter iter;
1109         sector = bio->bi_iter.bi_sector;
1111         if (bio_op(bio) == REQ_OP_DISCARD) {
1112                 null_handle_discard(nullb, sector,
1113                         bio_sectors(bio) << SECTOR_SHIFT);
1114                 return 0;
1115         }
1117         spin_lock_irq(&nullb->lock);
1118         bio_for_each_segment(bvec, bio, iter) {
1119                 len = bvec.bv_len;
1120                 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1121                                      op_is_write(bio_op(bio)), sector,
1122                                      bio_op(bio) & REQ_FUA);
1123                 if (err) {
1124                         spin_unlock_irq(&nullb->lock);
1125                         return err;
1126                 }
1127                 sector += len >> SECTOR_SHIFT;
1128         }
1129         spin_unlock_irq(&nullb->lock);
1130         return 0;
1133 static void null_stop_queue(struct nullb *nullb)
1135         struct request_queue *q = nullb->q;
1137         if (nullb->dev->queue_mode == NULL_Q_MQ)
1138                 blk_mq_stop_hw_queues(q);
1139         else {
1140                 spin_lock_irq(q->queue_lock);
1141                 blk_stop_queue(q);
1142                 spin_unlock_irq(q->queue_lock);
1143         }
1146 static void null_restart_queue_async(struct nullb *nullb)
1148         struct request_queue *q = nullb->q;
1149         unsigned long flags;
1151         if (nullb->dev->queue_mode == NULL_Q_MQ)
1152                 blk_mq_start_stopped_hw_queues(q, true);
1153         else {
1154                 spin_lock_irqsave(q->queue_lock, flags);
1155                 blk_start_queue_async(q);
1156                 spin_unlock_irqrestore(q->queue_lock, flags);
1157         }
1160 static bool cmd_report_zone(struct nullb *nullb, struct nullb_cmd *cmd)
1162         struct nullb_device *dev = cmd->nq->dev;
1164         if (dev->queue_mode == NULL_Q_BIO) {
1165                 if (bio_op(cmd->bio) == REQ_OP_ZONE_REPORT) {
1166                         cmd->error = null_zone_report(nullb, cmd->bio);
1167                         return true;
1168                 }
1169         } else {
1170                 if (req_op(cmd->rq) == REQ_OP_ZONE_REPORT) {
1171                         cmd->error = null_zone_report(nullb, cmd->rq->bio);
1172                         return true;
1173                 }
1174         }
1176         return false;
1179 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd)
1181         struct nullb_device *dev = cmd->nq->dev;
1182         struct nullb *nullb = dev->nullb;
1183         int err = 0;
1185         if (cmd_report_zone(nullb, cmd))
1186                 goto out;
1188         if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1189                 struct request *rq = cmd->rq;
1191                 if (!hrtimer_active(&nullb->bw_timer))
1192                         hrtimer_restart(&nullb->bw_timer);
1194                 if (atomic_long_sub_return(blk_rq_bytes(rq),
1195                                 &nullb->cur_bytes) < 0) {
1196                         null_stop_queue(nullb);
1197                         /* race with timer */
1198                         if (atomic_long_read(&nullb->cur_bytes) > 0)
1199                                 null_restart_queue_async(nullb);
1200                         if (dev->queue_mode == NULL_Q_RQ) {
1201                                 struct request_queue *q = nullb->q;
1203                                 spin_lock_irq(q->queue_lock);
1204                                 rq->rq_flags |= RQF_DONTPREP;
1205                                 blk_requeue_request(q, rq);
1206                                 spin_unlock_irq(q->queue_lock);
1207                                 return BLK_STS_OK;
1208                         } else
1209                                 /* requeue request */
1210                                 return BLK_STS_DEV_RESOURCE;
1211                 }
1212         }
1214         if (nullb->dev->badblocks.shift != -1) {
1215                 int bad_sectors;
1216                 sector_t sector, size, first_bad;
1217                 bool is_flush = true;
1219                 if (dev->queue_mode == NULL_Q_BIO &&
1220                                 bio_op(cmd->bio) != REQ_OP_FLUSH) {
1221                         is_flush = false;
1222                         sector = cmd->bio->bi_iter.bi_sector;
1223                         size = bio_sectors(cmd->bio);
1224                 }
1225                 if (dev->queue_mode != NULL_Q_BIO &&
1226                                 req_op(cmd->rq) != REQ_OP_FLUSH) {
1227                         is_flush = false;
1228                         sector = blk_rq_pos(cmd->rq);
1229                         size = blk_rq_sectors(cmd->rq);
1230                 }
1231                 if (!is_flush && badblocks_check(&nullb->dev->badblocks, sector,
1232                                 size, &first_bad, &bad_sectors)) {
1233                         cmd->error = BLK_STS_IOERR;
1234                         goto out;
1235                 }
1236         }
1238         if (dev->memory_backed) {
1239                 if (dev->queue_mode == NULL_Q_BIO) {
1240                         if (bio_op(cmd->bio) == REQ_OP_FLUSH)
1241                                 err = null_handle_flush(nullb);
1242                         else
1243                                 err = null_handle_bio(cmd);
1244                 } else {
1245                         if (req_op(cmd->rq) == REQ_OP_FLUSH)
1246                                 err = null_handle_flush(nullb);
1247                         else
1248                                 err = null_handle_rq(cmd);
1249                 }
1250         }
1251         cmd->error = errno_to_blk_status(err);
1253         if (!cmd->error && dev->zoned) {
1254                 sector_t sector;
1255                 unsigned int nr_sectors;
1256                 int op;
1258                 if (dev->queue_mode == NULL_Q_BIO) {
1259                         op = bio_op(cmd->bio);
1260                         sector = cmd->bio->bi_iter.bi_sector;
1261                         nr_sectors = cmd->bio->bi_iter.bi_size >> 9;
1262                 } else {
1263                         op = req_op(cmd->rq);
1264                         sector = blk_rq_pos(cmd->rq);
1265                         nr_sectors = blk_rq_sectors(cmd->rq);
1266                 }
1268                 if (op == REQ_OP_WRITE)
1269                         null_zone_write(cmd, sector, nr_sectors);
1270                 else if (op == REQ_OP_ZONE_RESET)
1271                         null_zone_reset(cmd, sector);
1272         }
1273 out:
1274         /* Complete IO by inline, softirq or timer */
1275         switch (dev->irqmode) {
1276         case NULL_IRQ_SOFTIRQ:
1277                 switch (dev->queue_mode)  {
1278                 case NULL_Q_MQ:
1279                         blk_mq_complete_request(cmd->rq);
1280                         break;
1281                 case NULL_Q_RQ:
1282                         blk_complete_request(cmd->rq);
1283                         break;
1284                 case NULL_Q_BIO:
1285                         /*
1286                          * XXX: no proper submitting cpu information available.
1287                          */
1288                         end_cmd(cmd);
1289                         break;
1290                 }
1291                 break;
1292         case NULL_IRQ_NONE:
1293                 end_cmd(cmd);
1294                 break;
1295         case NULL_IRQ_TIMER:
1296                 null_cmd_end_timer(cmd);
1297                 break;
1298         }
1299         return BLK_STS_OK;
1302 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1304         struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1305         ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1306         unsigned int mbps = nullb->dev->mbps;
1308         if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1309                 return HRTIMER_NORESTART;
1311         atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1312         null_restart_queue_async(nullb);
1314         hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1316         return HRTIMER_RESTART;
1319 static void nullb_setup_bwtimer(struct nullb *nullb)
1321         ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1323         hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1324         nullb->bw_timer.function = nullb_bwtimer_fn;
1325         atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1326         hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1329 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1331         int index = 0;
1333         if (nullb->nr_queues != 1)
1334                 index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1336         return &nullb->queues[index];
1339 static blk_qc_t null_queue_bio(struct request_queue *q, struct bio *bio)
1341         struct nullb *nullb = q->queuedata;
1342         struct nullb_queue *nq = nullb_to_queue(nullb);
1343         struct nullb_cmd *cmd;
1345         cmd = alloc_cmd(nq, 1);
1346         cmd->bio = bio;
1348         null_handle_cmd(cmd);
1349         return BLK_QC_T_NONE;
1352 static enum blk_eh_timer_return null_rq_timed_out_fn(struct request *rq)
1354         pr_info("null: rq %p timed out\n", rq);
1355         __blk_complete_request(rq);
1356         return BLK_EH_DONE;
1359 static int null_rq_prep_fn(struct request_queue *q, struct request *req)
1361         struct nullb *nullb = q->queuedata;
1362         struct nullb_queue *nq = nullb_to_queue(nullb);
1363         struct nullb_cmd *cmd;
1365         cmd = alloc_cmd(nq, 0);
1366         if (cmd) {
1367                 cmd->rq = req;
1368                 req->special = cmd;
1369                 return BLKPREP_OK;
1370         }
1371         blk_stop_queue(q);
1373         return BLKPREP_DEFER;
1376 static bool should_timeout_request(struct request *rq)
1378 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1379         if (g_timeout_str[0])
1380                 return should_fail(&null_timeout_attr, 1);
1381 #endif
1382         return false;
1385 static bool should_requeue_request(struct request *rq)
1387 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1388         if (g_requeue_str[0])
1389                 return should_fail(&null_requeue_attr, 1);
1390 #endif
1391         return false;
1394 static void null_request_fn(struct request_queue *q)
1396         struct request *rq;
1398         while ((rq = blk_fetch_request(q)) != NULL) {
1399                 struct nullb_cmd *cmd = rq->special;
1401                 /* just ignore the request */
1402                 if (should_timeout_request(rq))
1403                         continue;
1404                 if (should_requeue_request(rq)) {
1405                         blk_requeue_request(q, rq);
1406                         continue;
1407                 }
1409                 spin_unlock_irq(q->queue_lock);
1410                 null_handle_cmd(cmd);
1411                 spin_lock_irq(q->queue_lock);
1412         }
1415 static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1417         pr_info("null: rq %p timed out\n", rq);
1418         blk_mq_complete_request(rq);
1419         return BLK_EH_DONE;
1422 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1423                          const struct blk_mq_queue_data *bd)
1425         struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1426         struct nullb_queue *nq = hctx->driver_data;
1428         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1430         if (nq->dev->irqmode == NULL_IRQ_TIMER) {
1431                 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1432                 cmd->timer.function = null_cmd_timer_expired;
1433         }
1434         cmd->rq = bd->rq;
1435         cmd->nq = nq;
1437         blk_mq_start_request(bd->rq);
1439         if (should_requeue_request(bd->rq)) {
1440                 /*
1441                  * Alternate between hitting the core BUSY path, and the
1442                  * driver driven requeue path
1443                  */
1444                 nq->requeue_selection++;
1445                 if (nq->requeue_selection & 1)
1446                         return BLK_STS_RESOURCE;
1447                 else {
1448                         blk_mq_requeue_request(bd->rq, true);
1449                         return BLK_STS_OK;
1450                 }
1451         }
1452         if (should_timeout_request(bd->rq))
1453                 return BLK_STS_OK;
1455         return null_handle_cmd(cmd);
1458 static const struct blk_mq_ops null_mq_ops = {
1459         .queue_rq       = null_queue_rq,
1460         .complete       = null_softirq_done_fn,
1461         .timeout        = null_timeout_rq,
1462 };
1464 static void cleanup_queue(struct nullb_queue *nq)
1466         kfree(nq->tag_map);
1467         kfree(nq->cmds);
1470 static void cleanup_queues(struct nullb *nullb)
1472         int i;
1474         for (i = 0; i < nullb->nr_queues; i++)
1475                 cleanup_queue(&nullb->queues[i]);
1477         kfree(nullb->queues);
1480 static void null_del_dev(struct nullb *nullb)
1482         struct nullb_device *dev = nullb->dev;
1484         ida_simple_remove(&nullb_indexes, nullb->index);
1486         list_del_init(&nullb->list);
1488         del_gendisk(nullb->disk);
1490         if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1491                 hrtimer_cancel(&nullb->bw_timer);
1492                 atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1493                 null_restart_queue_async(nullb);
1494         }
1496         blk_cleanup_queue(nullb->q);
1497         if (dev->queue_mode == NULL_Q_MQ &&
1498             nullb->tag_set == &nullb->__tag_set)
1499                 blk_mq_free_tag_set(nullb->tag_set);
1500         put_disk(nullb->disk);
1501         cleanup_queues(nullb);
1502         if (null_cache_active(nullb))
1503                 null_free_device_storage(nullb->dev, true);
1504         kfree(nullb);
1505         dev->nullb = NULL;
1508 static void null_config_discard(struct nullb *nullb)
1510         if (nullb->dev->discard == false)
1511                 return;
1512         nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1513         nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1514         blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1515         blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
1518 static int null_open(struct block_device *bdev, fmode_t mode)
1520         return 0;
1523 static void null_release(struct gendisk *disk, fmode_t mode)
1527 static const struct block_device_operations null_fops = {
1528         .owner =        THIS_MODULE,
1529         .open =         null_open,
1530         .release =      null_release,
1531 };
1533 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1535         BUG_ON(!nullb);
1536         BUG_ON(!nq);
1538         init_waitqueue_head(&nq->wait);
1539         nq->queue_depth = nullb->queue_depth;
1540         nq->dev = nullb->dev;
1543 static void null_init_queues(struct nullb *nullb)
1545         struct request_queue *q = nullb->q;
1546         struct blk_mq_hw_ctx *hctx;
1547         struct nullb_queue *nq;
1548         int i;
1550         queue_for_each_hw_ctx(q, hctx, i) {
1551                 if (!hctx->nr_ctx || !hctx->tags)
1552                         continue;
1553                 nq = &nullb->queues[i];
1554                 hctx->driver_data = nq;
1555                 null_init_queue(nullb, nq);
1556                 nullb->nr_queues++;
1557         }
1560 static int setup_commands(struct nullb_queue *nq)
1562         struct nullb_cmd *cmd;
1563         int i, tag_size;
1565         nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1566         if (!nq->cmds)
1567                 return -ENOMEM;
1569         tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1570         nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1571         if (!nq->tag_map) {
1572                 kfree(nq->cmds);
1573                 return -ENOMEM;
1574         }
1576         for (i = 0; i < nq->queue_depth; i++) {
1577                 cmd = &nq->cmds[i];
1578                 INIT_LIST_HEAD(&cmd->list);
1579                 cmd->ll_list.next = NULL;
1580                 cmd->tag = -1U;
1581         }
1583         return 0;
1586 static int setup_queues(struct nullb *nullb)
1588         nullb->queues = kcalloc(nullb->dev->submit_queues,
1589                                 sizeof(struct nullb_queue),
1590                                 GFP_KERNEL);
1591         if (!nullb->queues)
1592                 return -ENOMEM;
1594         nullb->nr_queues = 0;
1595         nullb->queue_depth = nullb->dev->hw_queue_depth;
1597         return 0;
1600 static int init_driver_queues(struct nullb *nullb)
1602         struct nullb_queue *nq;
1603         int i, ret = 0;
1605         for (i = 0; i < nullb->dev->submit_queues; i++) {
1606                 nq = &nullb->queues[i];
1608                 null_init_queue(nullb, nq);
1610                 ret = setup_commands(nq);
1611                 if (ret)
1612                         return ret;
1613                 nullb->nr_queues++;
1614         }
1615         return 0;
1618 static int null_gendisk_register(struct nullb *nullb)
1620         struct gendisk *disk;
1621         sector_t size;
1623         disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
1624         if (!disk)
1625                 return -ENOMEM;
1626         size = (sector_t)nullb->dev->size * 1024 * 1024ULL;
1627         set_capacity(disk, size >> 9);
1629         disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
1630         disk->major             = null_major;
1631         disk->first_minor       = nullb->index;
1632         disk->fops              = &null_fops;
1633         disk->private_data      = nullb;
1634         disk->queue             = nullb->q;
1635         strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1637         add_disk(disk);
1638         return 0;
1641 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1643         set->ops = &null_mq_ops;
1644         set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1645                                                 g_submit_queues;
1646         set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1647                                                 g_hw_queue_depth;
1648         set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1649         set->cmd_size   = sizeof(struct nullb_cmd);
1650         set->flags = BLK_MQ_F_SHOULD_MERGE;
1651         if (g_no_sched)
1652                 set->flags |= BLK_MQ_F_NO_SCHED;
1653         set->driver_data = NULL;
1655         if ((nullb && nullb->dev->blocking) || g_blocking)
1656                 set->flags |= BLK_MQ_F_BLOCKING;
1658         return blk_mq_alloc_tag_set(set);
1661 static void null_validate_conf(struct nullb_device *dev)
1663         dev->blocksize = round_down(dev->blocksize, 512);
1664         dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1666         if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1667                 if (dev->submit_queues != nr_online_nodes)
1668                         dev->submit_queues = nr_online_nodes;
1669         } else if (dev->submit_queues > nr_cpu_ids)
1670                 dev->submit_queues = nr_cpu_ids;
1671         else if (dev->submit_queues == 0)
1672                 dev->submit_queues = 1;
1674         dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1675         dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1677         /* Do memory allocation, so set blocking */
1678         if (dev->memory_backed)
1679                 dev->blocking = true;
1680         else /* cache is meaningless */
1681                 dev->cache_size = 0;
1682         dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1683                                                 dev->cache_size);
1684         dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1685         /* can not stop a queue */
1686         if (dev->queue_mode == NULL_Q_BIO)
1687                 dev->mbps = 0;
1690 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1691 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1693         if (!str[0])
1694                 return true;
1696         if (!setup_fault_attr(attr, str))
1697                 return false;
1699         attr->verbose = 0;
1700         return true;
1702 #endif
1704 static bool null_setup_fault(void)
1706 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1707         if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1708                 return false;
1709         if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1710                 return false;
1711 #endif
1712         return true;
1715 static int null_add_dev(struct nullb_device *dev)
1717         struct nullb *nullb;
1718         int rv;
1720         null_validate_conf(dev);
1722         nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1723         if (!nullb) {
1724                 rv = -ENOMEM;
1725                 goto out;
1726         }
1727         nullb->dev = dev;
1728         dev->nullb = nullb;
1730         spin_lock_init(&nullb->lock);
1732         rv = setup_queues(nullb);
1733         if (rv)
1734                 goto out_free_nullb;
1736         if (dev->queue_mode == NULL_Q_MQ) {
1737                 if (shared_tags) {
1738                         nullb->tag_set = &tag_set;
1739                         rv = 0;
1740                 } else {
1741                         nullb->tag_set = &nullb->__tag_set;
1742                         rv = null_init_tag_set(nullb, nullb->tag_set);
1743                 }
1745                 if (rv)
1746                         goto out_cleanup_queues;
1748                 if (!null_setup_fault())
1749                         goto out_cleanup_queues;
1751                 nullb->tag_set->timeout = 5 * HZ;
1752                 nullb->q = blk_mq_init_queue(nullb->tag_set);
1753                 if (IS_ERR(nullb->q)) {
1754                         rv = -ENOMEM;
1755                         goto out_cleanup_tags;
1756                 }
1757                 null_init_queues(nullb);
1758         } else if (dev->queue_mode == NULL_Q_BIO) {
1759                 nullb->q = blk_alloc_queue_node(GFP_KERNEL, dev->home_node,
1760                                                 NULL);
1761                 if (!nullb->q) {
1762                         rv = -ENOMEM;
1763                         goto out_cleanup_queues;
1764                 }
1765                 blk_queue_make_request(nullb->q, null_queue_bio);
1766                 rv = init_driver_queues(nullb);
1767                 if (rv)
1768                         goto out_cleanup_blk_queue;
1769         } else {
1770                 nullb->q = blk_init_queue_node(null_request_fn, &nullb->lock,
1771                                                 dev->home_node);
1772                 if (!nullb->q) {
1773                         rv = -ENOMEM;
1774                         goto out_cleanup_queues;
1775                 }
1777                 if (!null_setup_fault())
1778                         goto out_cleanup_blk_queue;
1780                 blk_queue_prep_rq(nullb->q, null_rq_prep_fn);
1781                 blk_queue_softirq_done(nullb->q, null_softirq_done_fn);
1782                 blk_queue_rq_timed_out(nullb->q, null_rq_timed_out_fn);
1783                 nullb->q->rq_timeout = 5 * HZ;
1784                 rv = init_driver_queues(nullb);
1785                 if (rv)
1786                         goto out_cleanup_blk_queue;
1787         }
1789         if (dev->mbps) {
1790                 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1791                 nullb_setup_bwtimer(nullb);
1792         }
1794         if (dev->cache_size > 0) {
1795                 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1796                 blk_queue_write_cache(nullb->q, true, true);
1797                 blk_queue_flush_queueable(nullb->q, true);
1798         }
1800         if (dev->zoned) {
1801                 rv = null_zone_init(dev);
1802                 if (rv)
1803                         goto out_cleanup_blk_queue;
1805                 blk_queue_chunk_sectors(nullb->q, dev->zone_size_sects);
1806                 nullb->q->limits.zoned = BLK_ZONED_HM;
1807         }
1809         nullb->q->queuedata = nullb;
1810         blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
1811         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
1813         mutex_lock(&lock);
1814         nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
1815         dev->index = nullb->index;
1816         mutex_unlock(&lock);
1818         blk_queue_logical_block_size(nullb->q, dev->blocksize);
1819         blk_queue_physical_block_size(nullb->q, dev->blocksize);
1821         null_config_discard(nullb);
1823         sprintf(nullb->disk_name, "nullb%d", nullb->index);
1825         rv = null_gendisk_register(nullb);
1826         if (rv)
1827                 goto out_cleanup_zone;
1829         mutex_lock(&lock);
1830         list_add_tail(&nullb->list, &nullb_list);
1831         mutex_unlock(&lock);
1833         return 0;
1834 out_cleanup_zone:
1835         if (dev->zoned)
1836                 null_zone_exit(dev);
1837 out_cleanup_blk_queue:
1838         blk_cleanup_queue(nullb->q);
1839 out_cleanup_tags:
1840         if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
1841                 blk_mq_free_tag_set(nullb->tag_set);
1842 out_cleanup_queues:
1843         cleanup_queues(nullb);
1844 out_free_nullb:
1845         kfree(nullb);
1846 out:
1847         return rv;
1850 static int __init null_init(void)
1852         int ret = 0;
1853         unsigned int i;
1854         struct nullb *nullb;
1855         struct nullb_device *dev;
1857         if (g_bs > PAGE_SIZE) {
1858                 pr_warn("null_blk: invalid block size\n");
1859                 pr_warn("null_blk: defaults block size to %lu\n", PAGE_SIZE);
1860                 g_bs = PAGE_SIZE;
1861         }
1863         if (!is_power_of_2(g_zone_size)) {
1864                 pr_err("null_blk: zone_size must be power-of-two\n");
1865                 return -EINVAL;
1866         }
1868         if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
1869                 if (g_submit_queues != nr_online_nodes) {
1870                         pr_warn("null_blk: submit_queues param is set to %u.\n",
1871                                                         nr_online_nodes);
1872                         g_submit_queues = nr_online_nodes;
1873                 }
1874         } else if (g_submit_queues > nr_cpu_ids)
1875                 g_submit_queues = nr_cpu_ids;
1876         else if (g_submit_queues <= 0)
1877                 g_submit_queues = 1;
1879         if (g_queue_mode == NULL_Q_MQ && shared_tags) {
1880                 ret = null_init_tag_set(NULL, &tag_set);
1881                 if (ret)
1882                         return ret;
1883         }
1885         config_group_init(&nullb_subsys.su_group);
1886         mutex_init(&nullb_subsys.su_mutex);
1888         ret = configfs_register_subsystem(&nullb_subsys);
1889         if (ret)
1890                 goto err_tagset;
1892         mutex_init(&lock);
1894         null_major = register_blkdev(0, "nullb");
1895         if (null_major < 0) {
1896                 ret = null_major;
1897                 goto err_conf;
1898         }
1900         for (i = 0; i < nr_devices; i++) {
1901                 dev = null_alloc_dev();
1902                 if (!dev) {
1903                         ret = -ENOMEM;
1904                         goto err_dev;
1905                 }
1906                 ret = null_add_dev(dev);
1907                 if (ret) {
1908                         null_free_dev(dev);
1909                         goto err_dev;
1910                 }
1911         }
1913         pr_info("null: module loaded\n");
1914         return 0;
1916 err_dev:
1917         while (!list_empty(&nullb_list)) {
1918                 nullb = list_entry(nullb_list.next, struct nullb, list);
1919                 dev = nullb->dev;
1920                 null_del_dev(nullb);
1921                 null_free_dev(dev);
1922         }
1923         unregister_blkdev(null_major, "nullb");
1924 err_conf:
1925         configfs_unregister_subsystem(&nullb_subsys);
1926 err_tagset:
1927         if (g_queue_mode == NULL_Q_MQ && shared_tags)
1928                 blk_mq_free_tag_set(&tag_set);
1929         return ret;
1932 static void __exit null_exit(void)
1934         struct nullb *nullb;
1936         configfs_unregister_subsystem(&nullb_subsys);
1938         unregister_blkdev(null_major, "nullb");
1940         mutex_lock(&lock);
1941         while (!list_empty(&nullb_list)) {
1942                 struct nullb_device *dev;
1944                 nullb = list_entry(nullb_list.next, struct nullb, list);
1945                 dev = nullb->dev;
1946                 null_del_dev(nullb);
1947                 null_free_dev(dev);
1948         }
1949         mutex_unlock(&lock);
1951         if (g_queue_mode == NULL_Q_MQ && shared_tags)
1952                 blk_mq_free_tag_set(&tag_set);
1955 module_init(null_init);
1956 module_exit(null_exit);
1958 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
1959 MODULE_LICENSE("GPL");