Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[rpmsg/rpmsg.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
9 #include <linux/compiler.h>
10 #include <linux/module.h>
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sort.h>
15 #include <linux/rbtree.h>
16 #include <linux/delay.h>
17 #include <linux/random.h>
18 #include <crypto/hash.h>
19 #include <crypto/skcipher.h>
20 #include <linux/async_tx.h>
21 #include <linux/dm-bufio.h>
23 #define DM_MSG_PREFIX "integrity"
25 #define DEFAULT_INTERLEAVE_SECTORS      32768
26 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
27 #define DEFAULT_BUFFER_SECTORS          128
28 #define DEFAULT_JOURNAL_WATERMARK       50
29 #define DEFAULT_SYNC_MSEC               10000
30 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
31 #define MIN_LOG2_INTERLEAVE_SECTORS     3
32 #define MAX_LOG2_INTERLEAVE_SECTORS     31
33 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
34 #define RECALC_SECTORS                  8192
35 #define RECALC_WRITE_SUPER              16
37 /*
38  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
39  * so it should not be enabled in the official kernel
40  */
41 //#define DEBUG_PRINT
42 //#define INTERNAL_VERIFY
44 /*
45  * On disk structures
46  */
48 #define SB_MAGIC                        "integrt"
49 #define SB_VERSION_1                    1
50 #define SB_VERSION_2                    2
51 #define SB_SECTORS                      8
52 #define MAX_SECTORS_PER_BLOCK           8
54 struct superblock {
55         __u8 magic[8];
56         __u8 version;
57         __u8 log2_interleave_sectors;
58         __u16 integrity_tag_size;
59         __u32 journal_sections;
60         __u64 provided_data_sectors;    /* userspace uses this value */
61         __u32 flags;
62         __u8 log2_sectors_per_block;
63         __u8 pad[3];
64         __u64 recalc_sector;
65 };
67 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
68 #define SB_FLAG_RECALCULATING           0x2
70 #define JOURNAL_ENTRY_ROUNDUP           8
72 typedef __u64 commit_id_t;
73 #define JOURNAL_MAC_PER_SECTOR          8
75 struct journal_entry {
76         union {
77                 struct {
78                         __u32 sector_lo;
79                         __u32 sector_hi;
80                 } s;
81                 __u64 sector;
82         } u;
83         commit_id_t last_bytes[0];
84         /* __u8 tag[0]; */
85 };
87 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
89 #if BITS_PER_LONG == 64
90 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
91 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
92 #elif defined(CONFIG_LBDAF)
93 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
94 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
95 #else
96 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
97 #define journal_entry_get_sector(je)            le32_to_cpu((je)->u.s.sector_lo)
98 #endif
99 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
100 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
101 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
102 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
104 #define JOURNAL_BLOCK_SECTORS           8
105 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
106 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
108 struct journal_sector {
109         __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
110         __u8 mac[JOURNAL_MAC_PER_SECTOR];
111         commit_id_t commit_id;
112 };
114 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
116 #define METADATA_PADDING_SECTORS        8
118 #define N_COMMIT_IDS                    4
120 static unsigned char prev_commit_seq(unsigned char seq)
122         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
125 static unsigned char next_commit_seq(unsigned char seq)
127         return (seq + 1) % N_COMMIT_IDS;
130 /*
131  * In-memory structures
132  */
134 struct journal_node {
135         struct rb_node node;
136         sector_t sector;
137 };
139 struct alg_spec {
140         char *alg_string;
141         char *key_string;
142         __u8 *key;
143         unsigned key_size;
144 };
146 struct dm_integrity_c {
147         struct dm_dev *dev;
148         struct dm_dev *meta_dev;
149         unsigned tag_size;
150         __s8 log2_tag_size;
151         sector_t start;
152         mempool_t journal_io_mempool;
153         struct dm_io_client *io;
154         struct dm_bufio_client *bufio;
155         struct workqueue_struct *metadata_wq;
156         struct superblock *sb;
157         unsigned journal_pages;
158         struct page_list *journal;
159         struct page_list *journal_io;
160         struct page_list *journal_xor;
162         struct crypto_skcipher *journal_crypt;
163         struct scatterlist **journal_scatterlist;
164         struct scatterlist **journal_io_scatterlist;
165         struct skcipher_request **sk_requests;
167         struct crypto_shash *journal_mac;
169         struct journal_node *journal_tree;
170         struct rb_root journal_tree_root;
172         sector_t provided_data_sectors;
174         unsigned short journal_entry_size;
175         unsigned char journal_entries_per_sector;
176         unsigned char journal_section_entries;
177         unsigned short journal_section_sectors;
178         unsigned journal_sections;
179         unsigned journal_entries;
180         sector_t data_device_sectors;
181         sector_t meta_device_sectors;
182         unsigned initial_sectors;
183         unsigned metadata_run;
184         __s8 log2_metadata_run;
185         __u8 log2_buffer_sectors;
186         __u8 sectors_per_block;
188         unsigned char mode;
189         int suspending;
191         int failed;
193         struct crypto_shash *internal_hash;
195         /* these variables are locked with endio_wait.lock */
196         struct rb_root in_progress;
197         struct list_head wait_list;
198         wait_queue_head_t endio_wait;
199         struct workqueue_struct *wait_wq;
201         unsigned char commit_seq;
202         commit_id_t commit_ids[N_COMMIT_IDS];
204         unsigned committed_section;
205         unsigned n_committed_sections;
207         unsigned uncommitted_section;
208         unsigned n_uncommitted_sections;
210         unsigned free_section;
211         unsigned char free_section_entry;
212         unsigned free_sectors;
214         unsigned free_sectors_threshold;
216         struct workqueue_struct *commit_wq;
217         struct work_struct commit_work;
219         struct workqueue_struct *writer_wq;
220         struct work_struct writer_work;
222         struct workqueue_struct *recalc_wq;
223         struct work_struct recalc_work;
224         u8 *recalc_buffer;
225         u8 *recalc_tags;
227         struct bio_list flush_bio_list;
229         unsigned long autocommit_jiffies;
230         struct timer_list autocommit_timer;
231         unsigned autocommit_msec;
233         wait_queue_head_t copy_to_journal_wait;
235         struct completion crypto_backoff;
237         bool journal_uptodate;
238         bool just_formatted;
240         struct alg_spec internal_hash_alg;
241         struct alg_spec journal_crypt_alg;
242         struct alg_spec journal_mac_alg;
244         atomic64_t number_of_mismatches;
245 };
247 struct dm_integrity_range {
248         sector_t logical_sector;
249         unsigned n_sectors;
250         bool waiting;
251         union {
252                 struct rb_node node;
253                 struct {
254                         struct task_struct *task;
255                         struct list_head wait_entry;
256                 };
257         };
258 };
260 struct dm_integrity_io {
261         struct work_struct work;
263         struct dm_integrity_c *ic;
264         bool write;
265         bool fua;
267         struct dm_integrity_range range;
269         sector_t metadata_block;
270         unsigned metadata_offset;
272         atomic_t in_flight;
273         blk_status_t bi_status;
275         struct completion *completion;
277         struct gendisk *orig_bi_disk;
278         u8 orig_bi_partno;
279         bio_end_io_t *orig_bi_end_io;
280         struct bio_integrity_payload *orig_bi_integrity;
281         struct bvec_iter orig_bi_iter;
282 };
284 struct journal_completion {
285         struct dm_integrity_c *ic;
286         atomic_t in_flight;
287         struct completion comp;
288 };
290 struct journal_io {
291         struct dm_integrity_range range;
292         struct journal_completion *comp;
293 };
295 static struct kmem_cache *journal_io_cache;
297 #define JOURNAL_IO_MEMPOOL      32
299 #ifdef DEBUG_PRINT
300 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
301 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
303         va_list args;
304         va_start(args, msg);
305         vprintk(msg, args);
306         va_end(args);
307         if (len)
308                 pr_cont(":");
309         while (len) {
310                 pr_cont(" %02x", *bytes);
311                 bytes++;
312                 len--;
313         }
314         pr_cont("\n");
316 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
317 #else
318 #define DEBUG_print(x, ...)                     do { } while (0)
319 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
320 #endif
322 /*
323  * DM Integrity profile, protection is performed layer above (dm-crypt)
324  */
325 static const struct blk_integrity_profile dm_integrity_profile = {
326         .name                   = "DM-DIF-EXT-TAG",
327         .generate_fn            = NULL,
328         .verify_fn              = NULL,
329 };
331 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
332 static void integrity_bio_wait(struct work_struct *w);
333 static void dm_integrity_dtr(struct dm_target *ti);
335 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
337         if (err == -EILSEQ)
338                 atomic64_inc(&ic->number_of_mismatches);
339         if (!cmpxchg(&ic->failed, 0, err))
340                 DMERR("Error on %s: %d", msg, err);
343 static int dm_integrity_failed(struct dm_integrity_c *ic)
345         return READ_ONCE(ic->failed);
348 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
349                                           unsigned j, unsigned char seq)
351         /*
352          * Xor the number with section and sector, so that if a piece of
353          * journal is written at wrong place, it is detected.
354          */
355         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
358 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
359                                 sector_t *area, sector_t *offset)
361         if (!ic->meta_dev) {
362                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
363                 *area = data_sector >> log2_interleave_sectors;
364                 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
365         } else {
366                 *area = 0;
367                 *offset = data_sector;
368         }
371 #define sector_to_block(ic, n)                                          \
372 do {                                                                    \
373         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
374         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
375 } while (0)
377 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
378                                             sector_t offset, unsigned *metadata_offset)
380         __u64 ms;
381         unsigned mo;
383         ms = area << ic->sb->log2_interleave_sectors;
384         if (likely(ic->log2_metadata_run >= 0))
385                 ms += area << ic->log2_metadata_run;
386         else
387                 ms += area * ic->metadata_run;
388         ms >>= ic->log2_buffer_sectors;
390         sector_to_block(ic, offset);
392         if (likely(ic->log2_tag_size >= 0)) {
393                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
394                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
395         } else {
396                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
397                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
398         }
399         *metadata_offset = mo;
400         return ms;
403 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
405         sector_t result;
407         if (ic->meta_dev)
408                 return offset;
410         result = area << ic->sb->log2_interleave_sectors;
411         if (likely(ic->log2_metadata_run >= 0))
412                 result += (area + 1) << ic->log2_metadata_run;
413         else
414                 result += (area + 1) * ic->metadata_run;
416         result += (sector_t)ic->initial_sectors + offset;
417         result += ic->start;
419         return result;
422 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
424         if (unlikely(*sec_ptr >= ic->journal_sections))
425                 *sec_ptr -= ic->journal_sections;
428 static void sb_set_version(struct dm_integrity_c *ic)
430         if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
431                 ic->sb->version = SB_VERSION_2;
432         else
433                 ic->sb->version = SB_VERSION_1;
436 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
438         struct dm_io_request io_req;
439         struct dm_io_region io_loc;
441         io_req.bi_op = op;
442         io_req.bi_op_flags = op_flags;
443         io_req.mem.type = DM_IO_KMEM;
444         io_req.mem.ptr.addr = ic->sb;
445         io_req.notify.fn = NULL;
446         io_req.client = ic->io;
447         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
448         io_loc.sector = ic->start;
449         io_loc.count = SB_SECTORS;
451         return dm_io(&io_req, 1, &io_loc, NULL);
454 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
455                                  bool e, const char *function)
457 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
458         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
460         if (unlikely(section >= ic->journal_sections) ||
461             unlikely(offset >= limit)) {
462                 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
463                         function, section, offset, ic->journal_sections, limit);
464                 BUG();
465         }
466 #endif
469 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
470                                unsigned *pl_index, unsigned *pl_offset)
472         unsigned sector;
474         access_journal_check(ic, section, offset, false, "page_list_location");
476         sector = section * ic->journal_section_sectors + offset;
478         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
479         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
482 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
483                                                unsigned section, unsigned offset, unsigned *n_sectors)
485         unsigned pl_index, pl_offset;
486         char *va;
488         page_list_location(ic, section, offset, &pl_index, &pl_offset);
490         if (n_sectors)
491                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
493         va = lowmem_page_address(pl[pl_index].page);
495         return (struct journal_sector *)(va + pl_offset);
498 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
500         return access_page_list(ic, ic->journal, section, offset, NULL);
503 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
505         unsigned rel_sector, offset;
506         struct journal_sector *js;
508         access_journal_check(ic, section, n, true, "access_journal_entry");
510         rel_sector = n % JOURNAL_BLOCK_SECTORS;
511         offset = n / JOURNAL_BLOCK_SECTORS;
513         js = access_journal(ic, section, rel_sector);
514         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
517 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
519         n <<= ic->sb->log2_sectors_per_block;
521         n += JOURNAL_BLOCK_SECTORS;
523         access_journal_check(ic, section, n, false, "access_journal_data");
525         return access_journal(ic, section, n);
528 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
530         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
531         int r;
532         unsigned j, size;
534         desc->tfm = ic->journal_mac;
535         desc->flags = 0;
537         r = crypto_shash_init(desc);
538         if (unlikely(r)) {
539                 dm_integrity_io_error(ic, "crypto_shash_init", r);
540                 goto err;
541         }
543         for (j = 0; j < ic->journal_section_entries; j++) {
544                 struct journal_entry *je = access_journal_entry(ic, section, j);
545                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
546                 if (unlikely(r)) {
547                         dm_integrity_io_error(ic, "crypto_shash_update", r);
548                         goto err;
549                 }
550         }
552         size = crypto_shash_digestsize(ic->journal_mac);
554         if (likely(size <= JOURNAL_MAC_SIZE)) {
555                 r = crypto_shash_final(desc, result);
556                 if (unlikely(r)) {
557                         dm_integrity_io_error(ic, "crypto_shash_final", r);
558                         goto err;
559                 }
560                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
561         } else {
562                 __u8 digest[size];
563                 r = crypto_shash_final(desc, digest);
564                 if (unlikely(r)) {
565                         dm_integrity_io_error(ic, "crypto_shash_final", r);
566                         goto err;
567                 }
568                 memcpy(result, digest, JOURNAL_MAC_SIZE);
569         }
571         return;
572 err:
573         memset(result, 0, JOURNAL_MAC_SIZE);
576 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
578         __u8 result[JOURNAL_MAC_SIZE];
579         unsigned j;
581         if (!ic->journal_mac)
582                 return;
584         section_mac(ic, section, result);
586         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
587                 struct journal_sector *js = access_journal(ic, section, j);
589                 if (likely(wr))
590                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
591                 else {
592                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
593                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
594                 }
595         }
598 static void complete_journal_op(void *context)
600         struct journal_completion *comp = context;
601         BUG_ON(!atomic_read(&comp->in_flight));
602         if (likely(atomic_dec_and_test(&comp->in_flight)))
603                 complete(&comp->comp);
606 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
607                         unsigned n_sections, struct journal_completion *comp)
609         struct async_submit_ctl submit;
610         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
611         unsigned pl_index, pl_offset, section_index;
612         struct page_list *source_pl, *target_pl;
614         if (likely(encrypt)) {
615                 source_pl = ic->journal;
616                 target_pl = ic->journal_io;
617         } else {
618                 source_pl = ic->journal_io;
619                 target_pl = ic->journal;
620         }
622         page_list_location(ic, section, 0, &pl_index, &pl_offset);
624         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
626         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
628         section_index = pl_index;
630         do {
631                 size_t this_step;
632                 struct page *src_pages[2];
633                 struct page *dst_page;
635                 while (unlikely(pl_index == section_index)) {
636                         unsigned dummy;
637                         if (likely(encrypt))
638                                 rw_section_mac(ic, section, true);
639                         section++;
640                         n_sections--;
641                         if (!n_sections)
642                                 break;
643                         page_list_location(ic, section, 0, &section_index, &dummy);
644                 }
646                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
647                 dst_page = target_pl[pl_index].page;
648                 src_pages[0] = source_pl[pl_index].page;
649                 src_pages[1] = ic->journal_xor[pl_index].page;
651                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
653                 pl_index++;
654                 pl_offset = 0;
655                 n_bytes -= this_step;
656         } while (n_bytes);
658         BUG_ON(n_sections);
660         async_tx_issue_pending_all();
663 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
665         struct journal_completion *comp = req->data;
666         if (unlikely(err)) {
667                 if (likely(err == -EINPROGRESS)) {
668                         complete(&comp->ic->crypto_backoff);
669                         return;
670                 }
671                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
672         }
673         complete_journal_op(comp);
676 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
678         int r;
679         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
680                                       complete_journal_encrypt, comp);
681         if (likely(encrypt))
682                 r = crypto_skcipher_encrypt(req);
683         else
684                 r = crypto_skcipher_decrypt(req);
685         if (likely(!r))
686                 return false;
687         if (likely(r == -EINPROGRESS))
688                 return true;
689         if (likely(r == -EBUSY)) {
690                 wait_for_completion(&comp->ic->crypto_backoff);
691                 reinit_completion(&comp->ic->crypto_backoff);
692                 return true;
693         }
694         dm_integrity_io_error(comp->ic, "encrypt", r);
695         return false;
698 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
699                           unsigned n_sections, struct journal_completion *comp)
701         struct scatterlist **source_sg;
702         struct scatterlist **target_sg;
704         atomic_add(2, &comp->in_flight);
706         if (likely(encrypt)) {
707                 source_sg = ic->journal_scatterlist;
708                 target_sg = ic->journal_io_scatterlist;
709         } else {
710                 source_sg = ic->journal_io_scatterlist;
711                 target_sg = ic->journal_scatterlist;
712         }
714         do {
715                 struct skcipher_request *req;
716                 unsigned ivsize;
717                 char *iv;
719                 if (likely(encrypt))
720                         rw_section_mac(ic, section, true);
722                 req = ic->sk_requests[section];
723                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
724                 iv = req->iv;
726                 memcpy(iv, iv + ivsize, ivsize);
728                 req->src = source_sg[section];
729                 req->dst = target_sg[section];
731                 if (unlikely(do_crypt(encrypt, req, comp)))
732                         atomic_inc(&comp->in_flight);
734                 section++;
735                 n_sections--;
736         } while (n_sections);
738         atomic_dec(&comp->in_flight);
739         complete_journal_op(comp);
742 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
743                             unsigned n_sections, struct journal_completion *comp)
745         if (ic->journal_xor)
746                 return xor_journal(ic, encrypt, section, n_sections, comp);
747         else
748                 return crypt_journal(ic, encrypt, section, n_sections, comp);
751 static void complete_journal_io(unsigned long error, void *context)
753         struct journal_completion *comp = context;
754         if (unlikely(error != 0))
755                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
756         complete_journal_op(comp);
759 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
760                        unsigned n_sections, struct journal_completion *comp)
762         struct dm_io_request io_req;
763         struct dm_io_region io_loc;
764         unsigned sector, n_sectors, pl_index, pl_offset;
765         int r;
767         if (unlikely(dm_integrity_failed(ic))) {
768                 if (comp)
769                         complete_journal_io(-1UL, comp);
770                 return;
771         }
773         sector = section * ic->journal_section_sectors;
774         n_sectors = n_sections * ic->journal_section_sectors;
776         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
777         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
779         io_req.bi_op = op;
780         io_req.bi_op_flags = op_flags;
781         io_req.mem.type = DM_IO_PAGE_LIST;
782         if (ic->journal_io)
783                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
784         else
785                 io_req.mem.ptr.pl = &ic->journal[pl_index];
786         io_req.mem.offset = pl_offset;
787         if (likely(comp != NULL)) {
788                 io_req.notify.fn = complete_journal_io;
789                 io_req.notify.context = comp;
790         } else {
791                 io_req.notify.fn = NULL;
792         }
793         io_req.client = ic->io;
794         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
795         io_loc.sector = ic->start + SB_SECTORS + sector;
796         io_loc.count = n_sectors;
798         r = dm_io(&io_req, 1, &io_loc, NULL);
799         if (unlikely(r)) {
800                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
801                 if (comp) {
802                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
803                         complete_journal_io(-1UL, comp);
804                 }
805         }
808 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
810         struct journal_completion io_comp;
811         struct journal_completion crypt_comp_1;
812         struct journal_completion crypt_comp_2;
813         unsigned i;
815         io_comp.ic = ic;
816         init_completion(&io_comp.comp);
818         if (commit_start + commit_sections <= ic->journal_sections) {
819                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
820                 if (ic->journal_io) {
821                         crypt_comp_1.ic = ic;
822                         init_completion(&crypt_comp_1.comp);
823                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
824                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
825                         wait_for_completion_io(&crypt_comp_1.comp);
826                 } else {
827                         for (i = 0; i < commit_sections; i++)
828                                 rw_section_mac(ic, commit_start + i, true);
829                 }
830                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
831                            commit_sections, &io_comp);
832         } else {
833                 unsigned to_end;
834                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
835                 to_end = ic->journal_sections - commit_start;
836                 if (ic->journal_io) {
837                         crypt_comp_1.ic = ic;
838                         init_completion(&crypt_comp_1.comp);
839                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
840                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
841                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
842                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
843                                 reinit_completion(&crypt_comp_1.comp);
844                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
845                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
846                                 wait_for_completion_io(&crypt_comp_1.comp);
847                         } else {
848                                 crypt_comp_2.ic = ic;
849                                 init_completion(&crypt_comp_2.comp);
850                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
851                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
852                                 wait_for_completion_io(&crypt_comp_1.comp);
853                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
854                                 wait_for_completion_io(&crypt_comp_2.comp);
855                         }
856                 } else {
857                         for (i = 0; i < to_end; i++)
858                                 rw_section_mac(ic, commit_start + i, true);
859                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
860                         for (i = 0; i < commit_sections - to_end; i++)
861                                 rw_section_mac(ic, i, true);
862                 }
863                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
864         }
866         wait_for_completion_io(&io_comp.comp);
869 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
870                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
872         struct dm_io_request io_req;
873         struct dm_io_region io_loc;
874         int r;
875         unsigned sector, pl_index, pl_offset;
877         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
879         if (unlikely(dm_integrity_failed(ic))) {
880                 fn(-1UL, data);
881                 return;
882         }
884         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
886         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
887         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
889         io_req.bi_op = REQ_OP_WRITE;
890         io_req.bi_op_flags = 0;
891         io_req.mem.type = DM_IO_PAGE_LIST;
892         io_req.mem.ptr.pl = &ic->journal[pl_index];
893         io_req.mem.offset = pl_offset;
894         io_req.notify.fn = fn;
895         io_req.notify.context = data;
896         io_req.client = ic->io;
897         io_loc.bdev = ic->dev->bdev;
898         io_loc.sector = target;
899         io_loc.count = n_sectors;
901         r = dm_io(&io_req, 1, &io_loc, NULL);
902         if (unlikely(r)) {
903                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
904                 fn(-1UL, data);
905         }
908 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
910         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
911                range2->logical_sector + range2->n_sectors > range2->logical_sector;
914 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
916         struct rb_node **n = &ic->in_progress.rb_node;
917         struct rb_node *parent;
919         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
921         if (likely(check_waiting)) {
922                 struct dm_integrity_range *range;
923                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
924                         if (unlikely(ranges_overlap(range, new_range)))
925                                 return false;
926                 }
927         }
929         parent = NULL;
931         while (*n) {
932                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
934                 parent = *n;
935                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
936                         n = &range->node.rb_left;
937                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
938                         n = &range->node.rb_right;
939                 } else {
940                         return false;
941                 }
942         }
944         rb_link_node(&new_range->node, parent, n);
945         rb_insert_color(&new_range->node, &ic->in_progress);
947         return true;
950 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
952         rb_erase(&range->node, &ic->in_progress);
953         while (unlikely(!list_empty(&ic->wait_list))) {
954                 struct dm_integrity_range *last_range =
955                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
956                 struct task_struct *last_range_task;
957                 if (!ranges_overlap(range, last_range))
958                         break;
959                 last_range_task = last_range->task;
960                 list_del(&last_range->wait_entry);
961                 if (!add_new_range(ic, last_range, false)) {
962                         last_range->task = last_range_task;
963                         list_add(&last_range->wait_entry, &ic->wait_list);
964                         break;
965                 }
966                 last_range->waiting = false;
967                 wake_up_process(last_range_task);
968         }
971 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
973         unsigned long flags;
975         spin_lock_irqsave(&ic->endio_wait.lock, flags);
976         remove_range_unlocked(ic, range);
977         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
980 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
982         new_range->waiting = true;
983         list_add_tail(&new_range->wait_entry, &ic->wait_list);
984         new_range->task = current;
985         do {
986                 __set_current_state(TASK_UNINTERRUPTIBLE);
987                 spin_unlock_irq(&ic->endio_wait.lock);
988                 io_schedule();
989                 spin_lock_irq(&ic->endio_wait.lock);
990         } while (unlikely(new_range->waiting));
993 static void init_journal_node(struct journal_node *node)
995         RB_CLEAR_NODE(&node->node);
996         node->sector = (sector_t)-1;
999 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1001         struct rb_node **link;
1002         struct rb_node *parent;
1004         node->sector = sector;
1005         BUG_ON(!RB_EMPTY_NODE(&node->node));
1007         link = &ic->journal_tree_root.rb_node;
1008         parent = NULL;
1010         while (*link) {
1011                 struct journal_node *j;
1012                 parent = *link;
1013                 j = container_of(parent, struct journal_node, node);
1014                 if (sector < j->sector)
1015                         link = &j->node.rb_left;
1016                 else
1017                         link = &j->node.rb_right;
1018         }
1020         rb_link_node(&node->node, parent, link);
1021         rb_insert_color(&node->node, &ic->journal_tree_root);
1024 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1026         BUG_ON(RB_EMPTY_NODE(&node->node));
1027         rb_erase(&node->node, &ic->journal_tree_root);
1028         init_journal_node(node);
1031 #define NOT_FOUND       (-1U)
1033 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1035         struct rb_node *n = ic->journal_tree_root.rb_node;
1036         unsigned found = NOT_FOUND;
1037         *next_sector = (sector_t)-1;
1038         while (n) {
1039                 struct journal_node *j = container_of(n, struct journal_node, node);
1040                 if (sector == j->sector) {
1041                         found = j - ic->journal_tree;
1042                 }
1043                 if (sector < j->sector) {
1044                         *next_sector = j->sector;
1045                         n = j->node.rb_left;
1046                 } else {
1047                         n = j->node.rb_right;
1048                 }
1049         }
1051         return found;
1054 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1056         struct journal_node *node, *next_node;
1057         struct rb_node *next;
1059         if (unlikely(pos >= ic->journal_entries))
1060                 return false;
1061         node = &ic->journal_tree[pos];
1062         if (unlikely(RB_EMPTY_NODE(&node->node)))
1063                 return false;
1064         if (unlikely(node->sector != sector))
1065                 return false;
1067         next = rb_next(&node->node);
1068         if (unlikely(!next))
1069                 return true;
1071         next_node = container_of(next, struct journal_node, node);
1072         return next_node->sector != sector;
1075 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1077         struct rb_node *next;
1078         struct journal_node *next_node;
1079         unsigned next_section;
1081         BUG_ON(RB_EMPTY_NODE(&node->node));
1083         next = rb_next(&node->node);
1084         if (unlikely(!next))
1085                 return false;
1087         next_node = container_of(next, struct journal_node, node);
1089         if (next_node->sector != node->sector)
1090                 return false;
1092         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1093         if (next_section >= ic->committed_section &&
1094             next_section < ic->committed_section + ic->n_committed_sections)
1095                 return true;
1096         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1097                 return true;
1099         return false;
1102 #define TAG_READ        0
1103 #define TAG_WRITE       1
1104 #define TAG_CMP         2
1106 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1107                                unsigned *metadata_offset, unsigned total_size, int op)
1109         do {
1110                 unsigned char *data, *dp;
1111                 struct dm_buffer *b;
1112                 unsigned to_copy;
1113                 int r;
1115                 r = dm_integrity_failed(ic);
1116                 if (unlikely(r))
1117                         return r;
1119                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1120                 if (unlikely(IS_ERR(data)))
1121                         return PTR_ERR(data);
1123                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1124                 dp = data + *metadata_offset;
1125                 if (op == TAG_READ) {
1126                         memcpy(tag, dp, to_copy);
1127                 } else if (op == TAG_WRITE) {
1128                         memcpy(dp, tag, to_copy);
1129                         dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1130                 } else  {
1131                         /* e.g.: op == TAG_CMP */
1132                         if (unlikely(memcmp(dp, tag, to_copy))) {
1133                                 unsigned i;
1135                                 for (i = 0; i < to_copy; i++) {
1136                                         if (dp[i] != tag[i])
1137                                                 break;
1138                                         total_size--;
1139                                 }
1140                                 dm_bufio_release(b);
1141                                 return total_size;
1142                         }
1143                 }
1144                 dm_bufio_release(b);
1146                 tag += to_copy;
1147                 *metadata_offset += to_copy;
1148                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1149                         (*metadata_block)++;
1150                         *metadata_offset = 0;
1151                 }
1152                 total_size -= to_copy;
1153         } while (unlikely(total_size));
1155         return 0;
1158 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1160         int r;
1161         r = dm_bufio_write_dirty_buffers(ic->bufio);
1162         if (unlikely(r))
1163                 dm_integrity_io_error(ic, "writing tags", r);
1166 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1168         DECLARE_WAITQUEUE(wait, current);
1169         __add_wait_queue(&ic->endio_wait, &wait);
1170         __set_current_state(TASK_UNINTERRUPTIBLE);
1171         spin_unlock_irq(&ic->endio_wait.lock);
1172         io_schedule();
1173         spin_lock_irq(&ic->endio_wait.lock);
1174         __remove_wait_queue(&ic->endio_wait, &wait);
1177 static void autocommit_fn(struct timer_list *t)
1179         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1181         if (likely(!dm_integrity_failed(ic)))
1182                 queue_work(ic->commit_wq, &ic->commit_work);
1185 static void schedule_autocommit(struct dm_integrity_c *ic)
1187         if (!timer_pending(&ic->autocommit_timer))
1188                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1191 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1193         struct bio *bio;
1194         unsigned long flags;
1196         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1197         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1198         bio_list_add(&ic->flush_bio_list, bio);
1199         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1201         queue_work(ic->commit_wq, &ic->commit_work);
1204 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1206         int r = dm_integrity_failed(ic);
1207         if (unlikely(r) && !bio->bi_status)
1208                 bio->bi_status = errno_to_blk_status(r);
1209         bio_endio(bio);
1212 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1214         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1216         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1217                 submit_flush_bio(ic, dio);
1218         else
1219                 do_endio(ic, bio);
1222 static void dec_in_flight(struct dm_integrity_io *dio)
1224         if (atomic_dec_and_test(&dio->in_flight)) {
1225                 struct dm_integrity_c *ic = dio->ic;
1226                 struct bio *bio;
1228                 remove_range(ic, &dio->range);
1230                 if (unlikely(dio->write))
1231                         schedule_autocommit(ic);
1233                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1235                 if (unlikely(dio->bi_status) && !bio->bi_status)
1236                         bio->bi_status = dio->bi_status;
1237                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1238                         dio->range.logical_sector += dio->range.n_sectors;
1239                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1240                         INIT_WORK(&dio->work, integrity_bio_wait);
1241                         queue_work(ic->wait_wq, &dio->work);
1242                         return;
1243                 }
1244                 do_endio_flush(ic, dio);
1245         }
1248 static void integrity_end_io(struct bio *bio)
1250         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1252         bio->bi_iter = dio->orig_bi_iter;
1253         bio->bi_disk = dio->orig_bi_disk;
1254         bio->bi_partno = dio->orig_bi_partno;
1255         if (dio->orig_bi_integrity) {
1256                 bio->bi_integrity = dio->orig_bi_integrity;
1257                 bio->bi_opf |= REQ_INTEGRITY;
1258         }
1259         bio->bi_end_io = dio->orig_bi_end_io;
1261         if (dio->completion)
1262                 complete(dio->completion);
1264         dec_in_flight(dio);
1267 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1268                                       const char *data, char *result)
1270         __u64 sector_le = cpu_to_le64(sector);
1271         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1272         int r;
1273         unsigned digest_size;
1275         req->tfm = ic->internal_hash;
1276         req->flags = 0;
1278         r = crypto_shash_init(req);
1279         if (unlikely(r < 0)) {
1280                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1281                 goto failed;
1282         }
1284         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1285         if (unlikely(r < 0)) {
1286                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1287                 goto failed;
1288         }
1290         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1291         if (unlikely(r < 0)) {
1292                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1293                 goto failed;
1294         }
1296         r = crypto_shash_final(req, result);
1297         if (unlikely(r < 0)) {
1298                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1299                 goto failed;
1300         }
1302         digest_size = crypto_shash_digestsize(ic->internal_hash);
1303         if (unlikely(digest_size < ic->tag_size))
1304                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1306         return;
1308 failed:
1309         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1310         get_random_bytes(result, ic->tag_size);
1313 static void integrity_metadata(struct work_struct *w)
1315         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1316         struct dm_integrity_c *ic = dio->ic;
1318         int r;
1320         if (ic->internal_hash) {
1321                 struct bvec_iter iter;
1322                 struct bio_vec bv;
1323                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1324                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1325                 char *checksums;
1326                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1327                 char checksums_onstack[ic->tag_size + extra_space];
1328                 unsigned sectors_to_process = dio->range.n_sectors;
1329                 sector_t sector = dio->range.logical_sector;
1331                 if (unlikely(ic->mode == 'R'))
1332                         goto skip_io;
1334                 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1335                                     GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1336                 if (!checksums)
1337                         checksums = checksums_onstack;
1339                 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1340                         unsigned pos;
1341                         char *mem, *checksums_ptr;
1343 again:
1344                         mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1345                         pos = 0;
1346                         checksums_ptr = checksums;
1347                         do {
1348                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1349                                 checksums_ptr += ic->tag_size;
1350                                 sectors_to_process -= ic->sectors_per_block;
1351                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1352                                 sector += ic->sectors_per_block;
1353                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1354                         kunmap_atomic(mem);
1356                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1357                                                 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1358                         if (unlikely(r)) {
1359                                 if (r > 0) {
1360                                         DMERR("Checksum failed at sector 0x%llx",
1361                                               (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1362                                         r = -EILSEQ;
1363                                         atomic64_inc(&ic->number_of_mismatches);
1364                                 }
1365                                 if (likely(checksums != checksums_onstack))
1366                                         kfree(checksums);
1367                                 goto error;
1368                         }
1370                         if (!sectors_to_process)
1371                                 break;
1373                         if (unlikely(pos < bv.bv_len)) {
1374                                 bv.bv_offset += pos;
1375                                 bv.bv_len -= pos;
1376                                 goto again;
1377                         }
1378                 }
1380                 if (likely(checksums != checksums_onstack))
1381                         kfree(checksums);
1382         } else {
1383                 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1385                 if (bip) {
1386                         struct bio_vec biv;
1387                         struct bvec_iter iter;
1388                         unsigned data_to_process = dio->range.n_sectors;
1389                         sector_to_block(ic, data_to_process);
1390                         data_to_process *= ic->tag_size;
1392                         bip_for_each_vec(biv, bip, iter) {
1393                                 unsigned char *tag;
1394                                 unsigned this_len;
1396                                 BUG_ON(PageHighMem(biv.bv_page));
1397                                 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1398                                 this_len = min(biv.bv_len, data_to_process);
1399                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1400                                                         this_len, !dio->write ? TAG_READ : TAG_WRITE);
1401                                 if (unlikely(r))
1402                                         goto error;
1403                                 data_to_process -= this_len;
1404                                 if (!data_to_process)
1405                                         break;
1406                         }
1407                 }
1408         }
1409 skip_io:
1410         dec_in_flight(dio);
1411         return;
1412 error:
1413         dio->bi_status = errno_to_blk_status(r);
1414         dec_in_flight(dio);
1417 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1419         struct dm_integrity_c *ic = ti->private;
1420         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1421         struct bio_integrity_payload *bip;
1423         sector_t area, offset;
1425         dio->ic = ic;
1426         dio->bi_status = 0;
1428         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1429                 submit_flush_bio(ic, dio);
1430                 return DM_MAPIO_SUBMITTED;
1431         }
1433         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1434         dio->write = bio_op(bio) == REQ_OP_WRITE;
1435         dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1436         if (unlikely(dio->fua)) {
1437                 /*
1438                  * Don't pass down the FUA flag because we have to flush
1439                  * disk cache anyway.
1440                  */
1441                 bio->bi_opf &= ~REQ_FUA;
1442         }
1443         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1444                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1445                       (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1446                       (unsigned long long)ic->provided_data_sectors);
1447                 return DM_MAPIO_KILL;
1448         }
1449         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1450                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1451                       ic->sectors_per_block,
1452                       (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1453                 return DM_MAPIO_KILL;
1454         }
1456         if (ic->sectors_per_block > 1) {
1457                 struct bvec_iter iter;
1458                 struct bio_vec bv;
1459                 bio_for_each_segment(bv, bio, iter) {
1460                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1461                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1462                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1463                                 return DM_MAPIO_KILL;
1464                         }
1465                 }
1466         }
1468         bip = bio_integrity(bio);
1469         if (!ic->internal_hash) {
1470                 if (bip) {
1471                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1472                         if (ic->log2_tag_size >= 0)
1473                                 wanted_tag_size <<= ic->log2_tag_size;
1474                         else
1475                                 wanted_tag_size *= ic->tag_size;
1476                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1477                                 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1478                                 return DM_MAPIO_KILL;
1479                         }
1480                 }
1481         } else {
1482                 if (unlikely(bip != NULL)) {
1483                         DMERR("Unexpected integrity data when using internal hash");
1484                         return DM_MAPIO_KILL;
1485                 }
1486         }
1488         if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1489                 return DM_MAPIO_KILL;
1491         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1492         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1493         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1495         dm_integrity_map_continue(dio, true);
1496         return DM_MAPIO_SUBMITTED;
1499 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1500                                  unsigned journal_section, unsigned journal_entry)
1502         struct dm_integrity_c *ic = dio->ic;
1503         sector_t logical_sector;
1504         unsigned n_sectors;
1506         logical_sector = dio->range.logical_sector;
1507         n_sectors = dio->range.n_sectors;
1508         do {
1509                 struct bio_vec bv = bio_iovec(bio);
1510                 char *mem;
1512                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1513                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1514                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1515                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1516 retry_kmap:
1517                 mem = kmap_atomic(bv.bv_page);
1518                 if (likely(dio->write))
1519                         flush_dcache_page(bv.bv_page);
1521                 do {
1522                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1524                         if (unlikely(!dio->write)) {
1525                                 struct journal_sector *js;
1526                                 char *mem_ptr;
1527                                 unsigned s;
1529                                 if (unlikely(journal_entry_is_inprogress(je))) {
1530                                         flush_dcache_page(bv.bv_page);
1531                                         kunmap_atomic(mem);
1533                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1534                                         goto retry_kmap;
1535                                 }
1536                                 smp_rmb();
1537                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1538                                 js = access_journal_data(ic, journal_section, journal_entry);
1539                                 mem_ptr = mem + bv.bv_offset;
1540                                 s = 0;
1541                                 do {
1542                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1543                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1544                                         js++;
1545                                         mem_ptr += 1 << SECTOR_SHIFT;
1546                                 } while (++s < ic->sectors_per_block);
1547 #ifdef INTERNAL_VERIFY
1548                                 if (ic->internal_hash) {
1549                                         char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1551                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1552                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1553                                                 DMERR("Checksum failed when reading from journal, at sector 0x%llx",
1554                                                       (unsigned long long)logical_sector);
1555                                         }
1556                                 }
1557 #endif
1558                         }
1560                         if (!ic->internal_hash) {
1561                                 struct bio_integrity_payload *bip = bio_integrity(bio);
1562                                 unsigned tag_todo = ic->tag_size;
1563                                 char *tag_ptr = journal_entry_tag(ic, je);
1565                                 if (bip) do {
1566                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1567                                         unsigned tag_now = min(biv.bv_len, tag_todo);
1568                                         char *tag_addr;
1569                                         BUG_ON(PageHighMem(biv.bv_page));
1570                                         tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1571                                         if (likely(dio->write))
1572                                                 memcpy(tag_ptr, tag_addr, tag_now);
1573                                         else
1574                                                 memcpy(tag_addr, tag_ptr, tag_now);
1575                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1576                                         tag_ptr += tag_now;
1577                                         tag_todo -= tag_now;
1578                                 } while (unlikely(tag_todo)); else {
1579                                         if (likely(dio->write))
1580                                                 memset(tag_ptr, 0, tag_todo);
1581                                 }
1582                         }
1584                         if (likely(dio->write)) {
1585                                 struct journal_sector *js;
1586                                 unsigned s;
1588                                 js = access_journal_data(ic, journal_section, journal_entry);
1589                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1591                                 s = 0;
1592                                 do {
1593                                         je->last_bytes[s] = js[s].commit_id;
1594                                 } while (++s < ic->sectors_per_block);
1596                                 if (ic->internal_hash) {
1597                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1598                                         if (unlikely(digest_size > ic->tag_size)) {
1599                                                 char checksums_onstack[digest_size];
1600                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1601                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1602                                         } else
1603                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1604                                 }
1606                                 journal_entry_set_sector(je, logical_sector);
1607                         }
1608                         logical_sector += ic->sectors_per_block;
1610                         journal_entry++;
1611                         if (unlikely(journal_entry == ic->journal_section_entries)) {
1612                                 journal_entry = 0;
1613                                 journal_section++;
1614                                 wraparound_section(ic, &journal_section);
1615                         }
1617                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1618                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1620                 if (unlikely(!dio->write))
1621                         flush_dcache_page(bv.bv_page);
1622                 kunmap_atomic(mem);
1623         } while (n_sectors);
1625         if (likely(dio->write)) {
1626                 smp_mb();
1627                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1628                         wake_up(&ic->copy_to_journal_wait);
1629                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1630                         queue_work(ic->commit_wq, &ic->commit_work);
1631                 } else {
1632                         schedule_autocommit(ic);
1633                 }
1634         } else {
1635                 remove_range(ic, &dio->range);
1636         }
1638         if (unlikely(bio->bi_iter.bi_size)) {
1639                 sector_t area, offset;
1641                 dio->range.logical_sector = logical_sector;
1642                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1643                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1644                 return true;
1645         }
1647         return false;
1650 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1652         struct dm_integrity_c *ic = dio->ic;
1653         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1654         unsigned journal_section, journal_entry;
1655         unsigned journal_read_pos;
1656         struct completion read_comp;
1657         bool need_sync_io = ic->internal_hash && !dio->write;
1659         if (need_sync_io && from_map) {
1660                 INIT_WORK(&dio->work, integrity_bio_wait);
1661                 queue_work(ic->metadata_wq, &dio->work);
1662                 return;
1663         }
1665 lock_retry:
1666         spin_lock_irq(&ic->endio_wait.lock);
1667 retry:
1668         if (unlikely(dm_integrity_failed(ic))) {
1669                 spin_unlock_irq(&ic->endio_wait.lock);
1670                 do_endio(ic, bio);
1671                 return;
1672         }
1673         dio->range.n_sectors = bio_sectors(bio);
1674         journal_read_pos = NOT_FOUND;
1675         if (likely(ic->mode == 'J')) {
1676                 if (dio->write) {
1677                         unsigned next_entry, i, pos;
1678                         unsigned ws, we, range_sectors;
1680                         dio->range.n_sectors = min(dio->range.n_sectors,
1681                                                    ic->free_sectors << ic->sb->log2_sectors_per_block);
1682                         if (unlikely(!dio->range.n_sectors)) {
1683                                 if (from_map)
1684                                         goto offload_to_thread;
1685                                 sleep_on_endio_wait(ic);
1686                                 goto retry;
1687                         }
1688                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1689                         ic->free_sectors -= range_sectors;
1690                         journal_section = ic->free_section;
1691                         journal_entry = ic->free_section_entry;
1693                         next_entry = ic->free_section_entry + range_sectors;
1694                         ic->free_section_entry = next_entry % ic->journal_section_entries;
1695                         ic->free_section += next_entry / ic->journal_section_entries;
1696                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1697                         wraparound_section(ic, &ic->free_section);
1699                         pos = journal_section * ic->journal_section_entries + journal_entry;
1700                         ws = journal_section;
1701                         we = journal_entry;
1702                         i = 0;
1703                         do {
1704                                 struct journal_entry *je;
1706                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1707                                 pos++;
1708                                 if (unlikely(pos >= ic->journal_entries))
1709                                         pos = 0;
1711                                 je = access_journal_entry(ic, ws, we);
1712                                 BUG_ON(!journal_entry_is_unused(je));
1713                                 journal_entry_set_inprogress(je);
1714                                 we++;
1715                                 if (unlikely(we == ic->journal_section_entries)) {
1716                                         we = 0;
1717                                         ws++;
1718                                         wraparound_section(ic, &ws);
1719                                 }
1720                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1722                         spin_unlock_irq(&ic->endio_wait.lock);
1723                         goto journal_read_write;
1724                 } else {
1725                         sector_t next_sector;
1726                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1727                         if (likely(journal_read_pos == NOT_FOUND)) {
1728                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1729                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
1730                         } else {
1731                                 unsigned i;
1732                                 unsigned jp = journal_read_pos + 1;
1733                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1734                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1735                                                 break;
1736                                 }
1737                                 dio->range.n_sectors = i;
1738                         }
1739                 }
1740         }
1741         if (unlikely(!add_new_range(ic, &dio->range, true))) {
1742                 /*
1743                  * We must not sleep in the request routine because it could
1744                  * stall bios on current->bio_list.
1745                  * So, we offload the bio to a workqueue if we have to sleep.
1746                  */
1747                 if (from_map) {
1748 offload_to_thread:
1749                         spin_unlock_irq(&ic->endio_wait.lock);
1750                         INIT_WORK(&dio->work, integrity_bio_wait);
1751                         queue_work(ic->wait_wq, &dio->work);
1752                         return;
1753                 }
1754                 wait_and_add_new_range(ic, &dio->range);
1755         }
1756         spin_unlock_irq(&ic->endio_wait.lock);
1758         if (unlikely(journal_read_pos != NOT_FOUND)) {
1759                 journal_section = journal_read_pos / ic->journal_section_entries;
1760                 journal_entry = journal_read_pos % ic->journal_section_entries;
1761                 goto journal_read_write;
1762         }
1764         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1766         if (need_sync_io) {
1767                 init_completion(&read_comp);
1768                 dio->completion = &read_comp;
1769         } else
1770                 dio->completion = NULL;
1772         dio->orig_bi_iter = bio->bi_iter;
1774         dio->orig_bi_disk = bio->bi_disk;
1775         dio->orig_bi_partno = bio->bi_partno;
1776         bio_set_dev(bio, ic->dev->bdev);
1778         dio->orig_bi_integrity = bio_integrity(bio);
1779         bio->bi_integrity = NULL;
1780         bio->bi_opf &= ~REQ_INTEGRITY;
1782         dio->orig_bi_end_io = bio->bi_end_io;
1783         bio->bi_end_io = integrity_end_io;
1785         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1786         generic_make_request(bio);
1788         if (need_sync_io) {
1789                 wait_for_completion_io(&read_comp);
1790                 if (unlikely(ic->recalc_wq != NULL) &&
1791                     ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
1792                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
1793                         goto skip_check;
1794                 if (likely(!bio->bi_status))
1795                         integrity_metadata(&dio->work);
1796                 else
1797 skip_check:
1798                         dec_in_flight(dio);
1800         } else {
1801                 INIT_WORK(&dio->work, integrity_metadata);
1802                 queue_work(ic->metadata_wq, &dio->work);
1803         }
1805         return;
1807 journal_read_write:
1808         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1809                 goto lock_retry;
1811         do_endio_flush(ic, dio);
1815 static void integrity_bio_wait(struct work_struct *w)
1817         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1819         dm_integrity_map_continue(dio, false);
1822 static void pad_uncommitted(struct dm_integrity_c *ic)
1824         if (ic->free_section_entry) {
1825                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1826                 ic->free_section_entry = 0;
1827                 ic->free_section++;
1828                 wraparound_section(ic, &ic->free_section);
1829                 ic->n_uncommitted_sections++;
1830         }
1831         WARN_ON(ic->journal_sections * ic->journal_section_entries !=
1832                 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
1835 static void integrity_commit(struct work_struct *w)
1837         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1838         unsigned commit_start, commit_sections;
1839         unsigned i, j, n;
1840         struct bio *flushes;
1842         del_timer(&ic->autocommit_timer);
1844         spin_lock_irq(&ic->endio_wait.lock);
1845         flushes = bio_list_get(&ic->flush_bio_list);
1846         if (unlikely(ic->mode != 'J')) {
1847                 spin_unlock_irq(&ic->endio_wait.lock);
1848                 dm_integrity_flush_buffers(ic);
1849                 goto release_flush_bios;
1850         }
1852         pad_uncommitted(ic);
1853         commit_start = ic->uncommitted_section;
1854         commit_sections = ic->n_uncommitted_sections;
1855         spin_unlock_irq(&ic->endio_wait.lock);
1857         if (!commit_sections)
1858                 goto release_flush_bios;
1860         i = commit_start;
1861         for (n = 0; n < commit_sections; n++) {
1862                 for (j = 0; j < ic->journal_section_entries; j++) {
1863                         struct journal_entry *je;
1864                         je = access_journal_entry(ic, i, j);
1865                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1866                 }
1867                 for (j = 0; j < ic->journal_section_sectors; j++) {
1868                         struct journal_sector *js;
1869                         js = access_journal(ic, i, j);
1870                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1871                 }
1872                 i++;
1873                 if (unlikely(i >= ic->journal_sections))
1874                         ic->commit_seq = next_commit_seq(ic->commit_seq);
1875                 wraparound_section(ic, &i);
1876         }
1877         smp_rmb();
1879         write_journal(ic, commit_start, commit_sections);
1881         spin_lock_irq(&ic->endio_wait.lock);
1882         ic->uncommitted_section += commit_sections;
1883         wraparound_section(ic, &ic->uncommitted_section);
1884         ic->n_uncommitted_sections -= commit_sections;
1885         ic->n_committed_sections += commit_sections;
1886         spin_unlock_irq(&ic->endio_wait.lock);
1888         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1889                 queue_work(ic->writer_wq, &ic->writer_work);
1891 release_flush_bios:
1892         while (flushes) {
1893                 struct bio *next = flushes->bi_next;
1894                 flushes->bi_next = NULL;
1895                 do_endio(ic, flushes);
1896                 flushes = next;
1897         }
1900 static void complete_copy_from_journal(unsigned long error, void *context)
1902         struct journal_io *io = context;
1903         struct journal_completion *comp = io->comp;
1904         struct dm_integrity_c *ic = comp->ic;
1905         remove_range(ic, &io->range);
1906         mempool_free(io, &ic->journal_io_mempool);
1907         if (unlikely(error != 0))
1908                 dm_integrity_io_error(ic, "copying from journal", -EIO);
1909         complete_journal_op(comp);
1912 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1913                                struct journal_entry *je)
1915         unsigned s = 0;
1916         do {
1917                 js->commit_id = je->last_bytes[s];
1918                 js++;
1919         } while (++s < ic->sectors_per_block);
1922 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1923                              unsigned write_sections, bool from_replay)
1925         unsigned i, j, n;
1926         struct journal_completion comp;
1927         struct blk_plug plug;
1929         blk_start_plug(&plug);
1931         comp.ic = ic;
1932         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1933         init_completion(&comp.comp);
1935         i = write_start;
1936         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1937 #ifndef INTERNAL_VERIFY
1938                 if (unlikely(from_replay))
1939 #endif
1940                         rw_section_mac(ic, i, false);
1941                 for (j = 0; j < ic->journal_section_entries; j++) {
1942                         struct journal_entry *je = access_journal_entry(ic, i, j);
1943                         sector_t sec, area, offset;
1944                         unsigned k, l, next_loop;
1945                         sector_t metadata_block;
1946                         unsigned metadata_offset;
1947                         struct journal_io *io;
1949                         if (journal_entry_is_unused(je))
1950                                 continue;
1951                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1952                         sec = journal_entry_get_sector(je);
1953                         if (unlikely(from_replay)) {
1954                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1955                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1956                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
1957                                 }
1958                         }
1959                         get_area_and_offset(ic, sec, &area, &offset);
1960                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1961                         for (k = j + 1; k < ic->journal_section_entries; k++) {
1962                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
1963                                 sector_t sec2, area2, offset2;
1964                                 if (journal_entry_is_unused(je2))
1965                                         break;
1966                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1967                                 sec2 = journal_entry_get_sector(je2);
1968                                 get_area_and_offset(ic, sec2, &area2, &offset2);
1969                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1970                                         break;
1971                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1972                         }
1973                         next_loop = k - 1;
1975                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
1976                         io->comp = &comp;
1977                         io->range.logical_sector = sec;
1978                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1980                         spin_lock_irq(&ic->endio_wait.lock);
1981                         if (unlikely(!add_new_range(ic, &io->range, true)))
1982                                 wait_and_add_new_range(ic, &io->range);
1984                         if (likely(!from_replay)) {
1985                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1987                                 /* don't write if there is newer committed sector */
1988                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
1989                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
1991                                         journal_entry_set_unused(je2);
1992                                         remove_journal_node(ic, &section_node[j]);
1993                                         j++;
1994                                         sec += ic->sectors_per_block;
1995                                         offset += ic->sectors_per_block;
1996                                 }
1997                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
1998                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2000                                         journal_entry_set_unused(je2);
2001                                         remove_journal_node(ic, &section_node[k - 1]);
2002                                         k--;
2003                                 }
2004                                 if (j == k) {
2005                                         remove_range_unlocked(ic, &io->range);
2006                                         spin_unlock_irq(&ic->endio_wait.lock);
2007                                         mempool_free(io, &ic->journal_io_mempool);
2008                                         goto skip_io;
2009                                 }
2010                                 for (l = j; l < k; l++) {
2011                                         remove_journal_node(ic, &section_node[l]);
2012                                 }
2013                         }
2014                         spin_unlock_irq(&ic->endio_wait.lock);
2016                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2017                         for (l = j; l < k; l++) {
2018                                 int r;
2019                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2021                                 if (
2022 #ifndef INTERNAL_VERIFY
2023                                     unlikely(from_replay) &&
2024 #endif
2025                                     ic->internal_hash) {
2026                                         char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
2028                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2029                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2030                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2031                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2032                                 }
2034                                 journal_entry_set_unused(je2);
2035                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2036                                                         ic->tag_size, TAG_WRITE);
2037                                 if (unlikely(r)) {
2038                                         dm_integrity_io_error(ic, "reading tags", r);
2039                                 }
2040                         }
2042                         atomic_inc(&comp.in_flight);
2043                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2044                                           (k - j) << ic->sb->log2_sectors_per_block,
2045                                           get_data_sector(ic, area, offset),
2046                                           complete_copy_from_journal, io);
2047 skip_io:
2048                         j = next_loop;
2049                 }
2050         }
2052         dm_bufio_write_dirty_buffers_async(ic->bufio);
2054         blk_finish_plug(&plug);
2056         complete_journal_op(&comp);
2057         wait_for_completion_io(&comp.comp);
2059         dm_integrity_flush_buffers(ic);
2062 static void integrity_writer(struct work_struct *w)
2064         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2065         unsigned write_start, write_sections;
2067         unsigned prev_free_sectors;
2069         /* the following test is not needed, but it tests the replay code */
2070         if (READ_ONCE(ic->suspending) && !ic->meta_dev)
2071                 return;
2073         spin_lock_irq(&ic->endio_wait.lock);
2074         write_start = ic->committed_section;
2075         write_sections = ic->n_committed_sections;
2076         spin_unlock_irq(&ic->endio_wait.lock);
2078         if (!write_sections)
2079                 return;
2081         do_journal_write(ic, write_start, write_sections, false);
2083         spin_lock_irq(&ic->endio_wait.lock);
2085         ic->committed_section += write_sections;
2086         wraparound_section(ic, &ic->committed_section);
2087         ic->n_committed_sections -= write_sections;
2089         prev_free_sectors = ic->free_sectors;
2090         ic->free_sectors += write_sections * ic->journal_section_entries;
2091         if (unlikely(!prev_free_sectors))
2092                 wake_up_locked(&ic->endio_wait);
2094         spin_unlock_irq(&ic->endio_wait.lock);
2097 static void recalc_write_super(struct dm_integrity_c *ic)
2099         int r;
2101         dm_integrity_flush_buffers(ic);
2102         if (dm_integrity_failed(ic))
2103                 return;
2105         sb_set_version(ic);
2106         r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2107         if (unlikely(r))
2108                 dm_integrity_io_error(ic, "writing superblock", r);
2111 static void integrity_recalc(struct work_struct *w)
2113         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2114         struct dm_integrity_range range;
2115         struct dm_io_request io_req;
2116         struct dm_io_region io_loc;
2117         sector_t area, offset;
2118         sector_t metadata_block;
2119         unsigned metadata_offset;
2120         __u8 *t;
2121         unsigned i;
2122         int r;
2123         unsigned super_counter = 0;
2125         spin_lock_irq(&ic->endio_wait.lock);
2127 next_chunk:
2129         if (unlikely(READ_ONCE(ic->suspending)))
2130                 goto unlock_ret;
2132         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2133         if (unlikely(range.logical_sector >= ic->provided_data_sectors))
2134                 goto unlock_ret;
2136         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2137         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2138         if (!ic->meta_dev)
2139                 range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2141         if (unlikely(!add_new_range(ic, &range, true)))
2142                 wait_and_add_new_range(ic, &range);
2144         spin_unlock_irq(&ic->endio_wait.lock);
2146         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2147                 recalc_write_super(ic);
2148                 super_counter = 0;
2149         }
2151         if (unlikely(dm_integrity_failed(ic)))
2152                 goto err;
2154         io_req.bi_op = REQ_OP_READ;
2155         io_req.bi_op_flags = 0;
2156         io_req.mem.type = DM_IO_VMA;
2157         io_req.mem.ptr.addr = ic->recalc_buffer;
2158         io_req.notify.fn = NULL;
2159         io_req.client = ic->io;
2160         io_loc.bdev = ic->dev->bdev;
2161         io_loc.sector = get_data_sector(ic, area, offset);
2162         io_loc.count = range.n_sectors;
2164         r = dm_io(&io_req, 1, &io_loc, NULL);
2165         if (unlikely(r)) {
2166                 dm_integrity_io_error(ic, "reading data", r);
2167                 goto err;
2168         }
2170         t = ic->recalc_tags;
2171         for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
2172                 integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2173                 t += ic->tag_size;
2174         }
2176         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2178         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2179         if (unlikely(r)) {
2180                 dm_integrity_io_error(ic, "writing tags", r);
2181                 goto err;
2182         }
2184         spin_lock_irq(&ic->endio_wait.lock);
2185         remove_range_unlocked(ic, &range);
2186         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2187         goto next_chunk;
2189 err:
2190         remove_range(ic, &range);
2191         return;
2193 unlock_ret:
2194         spin_unlock_irq(&ic->endio_wait.lock);
2196         recalc_write_super(ic);
2199 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2200                          unsigned n_sections, unsigned char commit_seq)
2202         unsigned i, j, n;
2204         if (!n_sections)
2205                 return;
2207         for (n = 0; n < n_sections; n++) {
2208                 i = start_section + n;
2209                 wraparound_section(ic, &i);
2210                 for (j = 0; j < ic->journal_section_sectors; j++) {
2211                         struct journal_sector *js = access_journal(ic, i, j);
2212                         memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2213                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2214                 }
2215                 for (j = 0; j < ic->journal_section_entries; j++) {
2216                         struct journal_entry *je = access_journal_entry(ic, i, j);
2217                         journal_entry_set_unused(je);
2218                 }
2219         }
2221         write_journal(ic, start_section, n_sections);
2224 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2226         unsigned char k;
2227         for (k = 0; k < N_COMMIT_IDS; k++) {
2228                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2229                         return k;
2230         }
2231         dm_integrity_io_error(ic, "journal commit id", -EIO);
2232         return -EIO;
2235 static void replay_journal(struct dm_integrity_c *ic)
2237         unsigned i, j;
2238         bool used_commit_ids[N_COMMIT_IDS];
2239         unsigned max_commit_id_sections[N_COMMIT_IDS];
2240         unsigned write_start, write_sections;
2241         unsigned continue_section;
2242         bool journal_empty;
2243         unsigned char unused, last_used, want_commit_seq;
2245         if (ic->mode == 'R')
2246                 return;
2248         if (ic->journal_uptodate)
2249                 return;
2251         last_used = 0;
2252         write_start = 0;
2254         if (!ic->just_formatted) {
2255                 DEBUG_print("reading journal\n");
2256                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2257                 if (ic->journal_io)
2258                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2259                 if (ic->journal_io) {
2260                         struct journal_completion crypt_comp;
2261                         crypt_comp.ic = ic;
2262                         init_completion(&crypt_comp.comp);
2263                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2264                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2265                         wait_for_completion(&crypt_comp.comp);
2266                 }
2267                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2268         }
2270         if (dm_integrity_failed(ic))
2271                 goto clear_journal;
2273         journal_empty = true;
2274         memset(used_commit_ids, 0, sizeof used_commit_ids);
2275         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2276         for (i = 0; i < ic->journal_sections; i++) {
2277                 for (j = 0; j < ic->journal_section_sectors; j++) {
2278                         int k;
2279                         struct journal_sector *js = access_journal(ic, i, j);
2280                         k = find_commit_seq(ic, i, j, js->commit_id);
2281                         if (k < 0)
2282                                 goto clear_journal;
2283                         used_commit_ids[k] = true;
2284                         max_commit_id_sections[k] = i;
2285                 }
2286                 if (journal_empty) {
2287                         for (j = 0; j < ic->journal_section_entries; j++) {
2288                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2289                                 if (!journal_entry_is_unused(je)) {
2290                                         journal_empty = false;
2291                                         break;
2292                                 }
2293                         }
2294                 }
2295         }
2297         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2298                 unused = N_COMMIT_IDS - 1;
2299                 while (unused && !used_commit_ids[unused - 1])
2300                         unused--;
2301         } else {
2302                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2303                         if (!used_commit_ids[unused])
2304                                 break;
2305                 if (unused == N_COMMIT_IDS) {
2306                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2307                         goto clear_journal;
2308                 }
2309         }
2310         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2311                     unused, used_commit_ids[0], used_commit_ids[1],
2312                     used_commit_ids[2], used_commit_ids[3]);
2314         last_used = prev_commit_seq(unused);
2315         want_commit_seq = prev_commit_seq(last_used);
2317         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2318                 journal_empty = true;
2320         write_start = max_commit_id_sections[last_used] + 1;
2321         if (unlikely(write_start >= ic->journal_sections))
2322                 want_commit_seq = next_commit_seq(want_commit_seq);
2323         wraparound_section(ic, &write_start);
2325         i = write_start;
2326         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2327                 for (j = 0; j < ic->journal_section_sectors; j++) {
2328                         struct journal_sector *js = access_journal(ic, i, j);
2330                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2331                                 /*
2332                                  * This could be caused by crash during writing.
2333                                  * We won't replay the inconsistent part of the
2334                                  * journal.
2335                                  */
2336                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2337                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2338                                 goto brk;
2339                         }
2340                 }
2341                 i++;
2342                 if (unlikely(i >= ic->journal_sections))
2343                         want_commit_seq = next_commit_seq(want_commit_seq);
2344                 wraparound_section(ic, &i);
2345         }
2346 brk:
2348         if (!journal_empty) {
2349                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2350                             write_sections, write_start, want_commit_seq);
2351                 do_journal_write(ic, write_start, write_sections, true);
2352         }
2354         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2355                 continue_section = write_start;
2356                 ic->commit_seq = want_commit_seq;
2357                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2358         } else {
2359                 unsigned s;
2360                 unsigned char erase_seq;
2361 clear_journal:
2362                 DEBUG_print("clearing journal\n");
2364                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2365                 s = write_start;
2366                 init_journal(ic, s, 1, erase_seq);
2367                 s++;
2368                 wraparound_section(ic, &s);
2369                 if (ic->journal_sections >= 2) {
2370                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2371                         s += ic->journal_sections - 2;
2372                         wraparound_section(ic, &s);
2373                         init_journal(ic, s, 1, erase_seq);
2374                 }
2376                 continue_section = 0;
2377                 ic->commit_seq = next_commit_seq(erase_seq);
2378         }
2380         ic->committed_section = continue_section;
2381         ic->n_committed_sections = 0;
2383         ic->uncommitted_section = continue_section;
2384         ic->n_uncommitted_sections = 0;
2386         ic->free_section = continue_section;
2387         ic->free_section_entry = 0;
2388         ic->free_sectors = ic->journal_entries;
2390         ic->journal_tree_root = RB_ROOT;
2391         for (i = 0; i < ic->journal_entries; i++)
2392                 init_journal_node(&ic->journal_tree[i]);
2395 static void dm_integrity_postsuspend(struct dm_target *ti)
2397         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2399         del_timer_sync(&ic->autocommit_timer);
2401         WRITE_ONCE(ic->suspending, 1);
2403         if (ic->recalc_wq)
2404                 drain_workqueue(ic->recalc_wq);
2406         queue_work(ic->commit_wq, &ic->commit_work);
2407         drain_workqueue(ic->commit_wq);
2409         if (ic->mode == 'J') {
2410                 if (ic->meta_dev)
2411                         queue_work(ic->writer_wq, &ic->writer_work);
2412                 drain_workqueue(ic->writer_wq);
2413                 dm_integrity_flush_buffers(ic);
2414         }
2416         WRITE_ONCE(ic->suspending, 0);
2418         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2420         ic->journal_uptodate = true;
2423 static void dm_integrity_resume(struct dm_target *ti)
2425         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2427         replay_journal(ic);
2429         if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2430                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2431                 if (recalc_pos < ic->provided_data_sectors) {
2432                         queue_work(ic->recalc_wq, &ic->recalc_work);
2433                 } else if (recalc_pos > ic->provided_data_sectors) {
2434                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2435                         recalc_write_super(ic);
2436                 }
2437         }
2440 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2441                                 unsigned status_flags, char *result, unsigned maxlen)
2443         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2444         unsigned arg_count;
2445         size_t sz = 0;
2447         switch (type) {
2448         case STATUSTYPE_INFO:
2449                 DMEMIT("%llu %llu",
2450                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
2451                         (unsigned long long)ic->provided_data_sectors);
2452                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2453                         DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2454                 else
2455                         DMEMIT(" -");
2456                 break;
2458         case STATUSTYPE_TABLE: {
2459                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2460                 watermark_percentage += ic->journal_entries / 2;
2461                 do_div(watermark_percentage, ic->journal_entries);
2462                 arg_count = 5;
2463                 arg_count += !!ic->meta_dev;
2464                 arg_count += ic->sectors_per_block != 1;
2465                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2466                 arg_count += !!ic->internal_hash_alg.alg_string;
2467                 arg_count += !!ic->journal_crypt_alg.alg_string;
2468                 arg_count += !!ic->journal_mac_alg.alg_string;
2469                 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2470                        ic->tag_size, ic->mode, arg_count);
2471                 if (ic->meta_dev)
2472                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
2473                 if (ic->sectors_per_block != 1)
2474                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2475                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2476                         DMEMIT(" recalculate");
2477                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2478                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2479                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2480                 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2481                 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2483 #define EMIT_ALG(a, n)                                                  \
2484                 do {                                                    \
2485                         if (ic->a.alg_string) {                         \
2486                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
2487                                 if (ic->a.key_string)                   \
2488                                         DMEMIT(":%s", ic->a.key_string);\
2489                         }                                               \
2490                 } while (0)
2491                 EMIT_ALG(internal_hash_alg, "internal_hash");
2492                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2493                 EMIT_ALG(journal_mac_alg, "journal_mac");
2494                 break;
2495         }
2496         }
2499 static int dm_integrity_iterate_devices(struct dm_target *ti,
2500                                         iterate_devices_callout_fn fn, void *data)
2502         struct dm_integrity_c *ic = ti->private;
2504         if (!ic->meta_dev)
2505                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2506         else
2507                 return fn(ti, ic->dev, 0, ti->len, data);
2510 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2512         struct dm_integrity_c *ic = ti->private;
2514         if (ic->sectors_per_block > 1) {
2515                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2516                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2517                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2518         }
2521 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2523         unsigned sector_space = JOURNAL_SECTOR_DATA;
2525         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2526         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2527                                          JOURNAL_ENTRY_ROUNDUP);
2529         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2530                 sector_space -= JOURNAL_MAC_PER_SECTOR;
2531         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2532         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2533         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2534         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2537 static int calculate_device_limits(struct dm_integrity_c *ic)
2539         __u64 initial_sectors;
2541         calculate_journal_section_size(ic);
2542         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2543         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
2544                 return -EINVAL;
2545         ic->initial_sectors = initial_sectors;
2547         if (!ic->meta_dev) {
2548                 sector_t last_sector, last_area, last_offset;
2550                 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2551                                            (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2552                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
2553                         ic->log2_metadata_run = __ffs(ic->metadata_run);
2554                 else
2555                         ic->log2_metadata_run = -1;
2557                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2558                 last_sector = get_data_sector(ic, last_area, last_offset);
2559                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
2560                         return -EINVAL;
2561         } else {
2562                 __u64 meta_size = ic->provided_data_sectors * ic->tag_size;
2563                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
2564                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
2565                 meta_size <<= ic->log2_buffer_sectors;
2566                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
2567                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
2568                         return -EINVAL;
2569                 ic->metadata_run = 1;
2570                 ic->log2_metadata_run = 0;
2571         }
2573         return 0;
2576 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2578         unsigned journal_sections;
2579         int test_bit;
2581         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2582         memcpy(ic->sb->magic, SB_MAGIC, 8);
2583         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2584         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2585         if (ic->journal_mac_alg.alg_string)
2586                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2588         calculate_journal_section_size(ic);
2589         journal_sections = journal_sectors / ic->journal_section_sectors;
2590         if (!journal_sections)
2591                 journal_sections = 1;
2593         if (!ic->meta_dev) {
2594                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
2595                 if (!interleave_sectors)
2596                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2597                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2598                 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2599                 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2601                 ic->provided_data_sectors = 0;
2602                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
2603                         __u64 prev_data_sectors = ic->provided_data_sectors;
2605                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
2606                         if (calculate_device_limits(ic))
2607                                 ic->provided_data_sectors = prev_data_sectors;
2608                 }
2609                 if (!ic->provided_data_sectors)
2610                         return -EINVAL;
2611         } else {
2612                 ic->sb->log2_interleave_sectors = 0;
2613                 ic->provided_data_sectors = ic->data_device_sectors;
2614                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
2616 try_smaller_buffer:
2617                 ic->sb->journal_sections = cpu_to_le32(0);
2618                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
2619                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
2620                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
2621                         if (test_journal_sections > journal_sections)
2622                                 continue;
2623                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
2624                         if (calculate_device_limits(ic))
2625                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
2627                 }
2628                 if (!le32_to_cpu(ic->sb->journal_sections)) {
2629                         if (ic->log2_buffer_sectors > 3) {
2630                                 ic->log2_buffer_sectors--;
2631                                 goto try_smaller_buffer;
2632                         }
2633                         return -EINVAL;
2634                 }
2635         }
2637         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2639         sb_set_version(ic);
2641         return 0;
2644 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2646         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2647         struct blk_integrity bi;
2649         memset(&bi, 0, sizeof(bi));
2650         bi.profile = &dm_integrity_profile;
2651         bi.tuple_size = ic->tag_size;
2652         bi.tag_size = bi.tuple_size;
2653         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2655         blk_integrity_register(disk, &bi);
2656         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2659 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2661         unsigned i;
2663         if (!pl)
2664                 return;
2665         for (i = 0; i < ic->journal_pages; i++)
2666                 if (pl[i].page)
2667                         __free_page(pl[i].page);
2668         kvfree(pl);
2671 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2673         size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2674         struct page_list *pl;
2675         unsigned i;
2677         pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2678         if (!pl)
2679                 return NULL;
2681         for (i = 0; i < ic->journal_pages; i++) {
2682                 pl[i].page = alloc_page(GFP_KERNEL);
2683                 if (!pl[i].page) {
2684                         dm_integrity_free_page_list(ic, pl);
2685                         return NULL;
2686                 }
2687                 if (i)
2688                         pl[i - 1].next = &pl[i];
2689         }
2691         return pl;
2694 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2696         unsigned i;
2697         for (i = 0; i < ic->journal_sections; i++)
2698                 kvfree(sl[i]);
2699         kvfree(sl);
2702 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2704         struct scatterlist **sl;
2705         unsigned i;
2707         sl = kvmalloc_array(ic->journal_sections,
2708                             sizeof(struct scatterlist *),
2709                             GFP_KERNEL | __GFP_ZERO);
2710         if (!sl)
2711                 return NULL;
2713         for (i = 0; i < ic->journal_sections; i++) {
2714                 struct scatterlist *s;
2715                 unsigned start_index, start_offset;
2716                 unsigned end_index, end_offset;
2717                 unsigned n_pages;
2718                 unsigned idx;
2720                 page_list_location(ic, i, 0, &start_index, &start_offset);
2721                 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2723                 n_pages = (end_index - start_index + 1);
2725                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
2726                                    GFP_KERNEL);
2727                 if (!s) {
2728                         dm_integrity_free_journal_scatterlist(ic, sl);
2729                         return NULL;
2730                 }
2732                 sg_init_table(s, n_pages);
2733                 for (idx = start_index; idx <= end_index; idx++) {
2734                         char *va = lowmem_page_address(pl[idx].page);
2735                         unsigned start = 0, end = PAGE_SIZE;
2736                         if (idx == start_index)
2737                                 start = start_offset;
2738                         if (idx == end_index)
2739                                 end = end_offset + (1 << SECTOR_SHIFT);
2740                         sg_set_buf(&s[idx - start_index], va + start, end - start);
2741                 }
2743                 sl[i] = s;
2744         }
2746         return sl;
2749 static void free_alg(struct alg_spec *a)
2751         kzfree(a->alg_string);
2752         kzfree(a->key);
2753         memset(a, 0, sizeof *a);
2756 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2758         char *k;
2760         free_alg(a);
2762         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2763         if (!a->alg_string)
2764                 goto nomem;
2766         k = strchr(a->alg_string, ':');
2767         if (k) {
2768                 *k = 0;
2769                 a->key_string = k + 1;
2770                 if (strlen(a->key_string) & 1)
2771                         goto inval;
2773                 a->key_size = strlen(a->key_string) / 2;
2774                 a->key = kmalloc(a->key_size, GFP_KERNEL);
2775                 if (!a->key)
2776                         goto nomem;
2777                 if (hex2bin(a->key, a->key_string, a->key_size))
2778                         goto inval;
2779         }
2781         return 0;
2782 inval:
2783         *error = error_inval;
2784         return -EINVAL;
2785 nomem:
2786         *error = "Out of memory for an argument";
2787         return -ENOMEM;
2790 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2791                    char *error_alg, char *error_key)
2793         int r;
2795         if (a->alg_string) {
2796                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
2797                 if (IS_ERR(*hash)) {
2798                         *error = error_alg;
2799                         r = PTR_ERR(*hash);
2800                         *hash = NULL;
2801                         return r;
2802                 }
2804                 if (a->key) {
2805                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
2806                         if (r) {
2807                                 *error = error_key;
2808                                 return r;
2809                         }
2810                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
2811                         *error = error_key;
2812                         return -ENOKEY;
2813                 }
2814         }
2816         return 0;
2819 static int create_journal(struct dm_integrity_c *ic, char **error)
2821         int r = 0;
2822         unsigned i;
2823         __u64 journal_pages, journal_desc_size, journal_tree_size;
2824         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
2825         struct skcipher_request *req = NULL;
2827         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2828         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2829         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2830         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2832         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2833                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2834         journal_desc_size = journal_pages * sizeof(struct page_list);
2835         if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
2836                 *error = "Journal doesn't fit into memory";
2837                 r = -ENOMEM;
2838                 goto bad;
2839         }
2840         ic->journal_pages = journal_pages;
2842         ic->journal = dm_integrity_alloc_page_list(ic);
2843         if (!ic->journal) {
2844                 *error = "Could not allocate memory for journal";
2845                 r = -ENOMEM;
2846                 goto bad;
2847         }
2848         if (ic->journal_crypt_alg.alg_string) {
2849                 unsigned ivsize, blocksize;
2850                 struct journal_completion comp;
2852                 comp.ic = ic;
2853                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2854                 if (IS_ERR(ic->journal_crypt)) {
2855                         *error = "Invalid journal cipher";
2856                         r = PTR_ERR(ic->journal_crypt);
2857                         ic->journal_crypt = NULL;
2858                         goto bad;
2859                 }
2860                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2861                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2863                 if (ic->journal_crypt_alg.key) {
2864                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2865                                                    ic->journal_crypt_alg.key_size);
2866                         if (r) {
2867                                 *error = "Error setting encryption key";
2868                                 goto bad;
2869                         }
2870                 }
2871                 DEBUG_print("cipher %s, block size %u iv size %u\n",
2872                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2874                 ic->journal_io = dm_integrity_alloc_page_list(ic);
2875                 if (!ic->journal_io) {
2876                         *error = "Could not allocate memory for journal io";
2877                         r = -ENOMEM;
2878                         goto bad;
2879                 }
2881                 if (blocksize == 1) {
2882                         struct scatterlist *sg;
2884                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2885                         if (!req) {
2886                                 *error = "Could not allocate crypt request";
2887                                 r = -ENOMEM;
2888                                 goto bad;
2889                         }
2891                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2892                         if (!crypt_iv) {
2893                                 *error = "Could not allocate iv";
2894                                 r = -ENOMEM;
2895                                 goto bad;
2896                         }
2898                         ic->journal_xor = dm_integrity_alloc_page_list(ic);
2899                         if (!ic->journal_xor) {
2900                                 *error = "Could not allocate memory for journal xor";
2901                                 r = -ENOMEM;
2902                                 goto bad;
2903                         }
2905                         sg = kvmalloc_array(ic->journal_pages + 1,
2906                                             sizeof(struct scatterlist),
2907                                             GFP_KERNEL);
2908                         if (!sg) {
2909                                 *error = "Unable to allocate sg list";
2910                                 r = -ENOMEM;
2911                                 goto bad;
2912                         }
2913                         sg_init_table(sg, ic->journal_pages + 1);
2914                         for (i = 0; i < ic->journal_pages; i++) {
2915                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
2916                                 clear_page(va);
2917                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
2918                         }
2919                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2920                         memset(crypt_iv, 0x00, ivsize);
2922                         skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
2923                         init_completion(&comp.comp);
2924                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2925                         if (do_crypt(true, req, &comp))
2926                                 wait_for_completion(&comp.comp);
2927                         kvfree(sg);
2928                         r = dm_integrity_failed(ic);
2929                         if (r) {
2930                                 *error = "Unable to encrypt journal";
2931                                 goto bad;
2932                         }
2933                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2935                         crypto_free_skcipher(ic->journal_crypt);
2936                         ic->journal_crypt = NULL;
2937                 } else {
2938                         unsigned crypt_len = roundup(ivsize, blocksize);
2940                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2941                         if (!req) {
2942                                 *error = "Could not allocate crypt request";
2943                                 r = -ENOMEM;
2944                                 goto bad;
2945                         }
2947                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2948                         if (!crypt_iv) {
2949                                 *error = "Could not allocate iv";
2950                                 r = -ENOMEM;
2951                                 goto bad;
2952                         }
2954                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2955                         if (!crypt_data) {
2956                                 *error = "Unable to allocate crypt data";
2957                                 r = -ENOMEM;
2958                                 goto bad;
2959                         }
2961                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2962                         if (!ic->journal_scatterlist) {
2963                                 *error = "Unable to allocate sg list";
2964                                 r = -ENOMEM;
2965                                 goto bad;
2966                         }
2967                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2968                         if (!ic->journal_io_scatterlist) {
2969                                 *error = "Unable to allocate sg list";
2970                                 r = -ENOMEM;
2971                                 goto bad;
2972                         }
2973                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
2974                                                          sizeof(struct skcipher_request *),
2975                                                          GFP_KERNEL | __GFP_ZERO);
2976                         if (!ic->sk_requests) {
2977                                 *error = "Unable to allocate sk requests";
2978                                 r = -ENOMEM;
2979                                 goto bad;
2980                         }
2981                         for (i = 0; i < ic->journal_sections; i++) {
2982                                 struct scatterlist sg;
2983                                 struct skcipher_request *section_req;
2984                                 __u32 section_le = cpu_to_le32(i);
2986                                 memset(crypt_iv, 0x00, ivsize);
2987                                 memset(crypt_data, 0x00, crypt_len);
2988                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
2990                                 sg_init_one(&sg, crypt_data, crypt_len);
2991                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
2992                                 init_completion(&comp.comp);
2993                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2994                                 if (do_crypt(true, req, &comp))
2995                                         wait_for_completion(&comp.comp);
2997                                 r = dm_integrity_failed(ic);
2998                                 if (r) {
2999                                         *error = "Unable to generate iv";
3000                                         goto bad;
3001                                 }
3003                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3004                                 if (!section_req) {
3005                                         *error = "Unable to allocate crypt request";
3006                                         r = -ENOMEM;
3007                                         goto bad;
3008                                 }
3009                                 section_req->iv = kmalloc_array(ivsize, 2,
3010                                                                 GFP_KERNEL);
3011                                 if (!section_req->iv) {
3012                                         skcipher_request_free(section_req);
3013                                         *error = "Unable to allocate iv";
3014                                         r = -ENOMEM;
3015                                         goto bad;
3016                                 }
3017                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3018                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3019                                 ic->sk_requests[i] = section_req;
3020                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3021                         }
3022                 }
3023         }
3025         for (i = 0; i < N_COMMIT_IDS; i++) {
3026                 unsigned j;
3027 retest_commit_id:
3028                 for (j = 0; j < i; j++) {
3029                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3030                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3031                                 goto retest_commit_id;
3032                         }
3033                 }
3034                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3035         }
3037         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3038         if (journal_tree_size > ULONG_MAX) {
3039                 *error = "Journal doesn't fit into memory";
3040                 r = -ENOMEM;
3041                 goto bad;
3042         }
3043         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3044         if (!ic->journal_tree) {
3045                 *error = "Could not allocate memory for journal tree";
3046                 r = -ENOMEM;
3047         }
3048 bad:
3049         kfree(crypt_data);
3050         kfree(crypt_iv);
3051         skcipher_request_free(req);
3053         return r;
3056 /*
3057  * Construct a integrity mapping
3058  *
3059  * Arguments:
3060  *      device
3061  *      offset from the start of the device
3062  *      tag size
3063  *      D - direct writes, J - journal writes, R - recovery mode
3064  *      number of optional arguments
3065  *      optional arguments:
3066  *              journal_sectors
3067  *              interleave_sectors
3068  *              buffer_sectors
3069  *              journal_watermark
3070  *              commit_time
3071  *              internal_hash
3072  *              journal_crypt
3073  *              journal_mac
3074  *              block_size
3075  */
3076 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3078         struct dm_integrity_c *ic;
3079         char dummy;
3080         int r;
3081         unsigned extra_args;
3082         struct dm_arg_set as;
3083         static const struct dm_arg _args[] = {
3084                 {0, 9, "Invalid number of feature args"},
3085         };
3086         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3087         bool recalculate;
3088         bool should_write_sb;
3089         __u64 threshold;
3090         unsigned long long start;
3092 #define DIRECT_ARGUMENTS        4
3094         if (argc <= DIRECT_ARGUMENTS) {
3095                 ti->error = "Invalid argument count";
3096                 return -EINVAL;
3097         }
3099         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3100         if (!ic) {
3101                 ti->error = "Cannot allocate integrity context";
3102                 return -ENOMEM;
3103         }
3104         ti->private = ic;
3105         ti->per_io_data_size = sizeof(struct dm_integrity_io);
3107         ic->in_progress = RB_ROOT;
3108         INIT_LIST_HEAD(&ic->wait_list);
3109         init_waitqueue_head(&ic->endio_wait);
3110         bio_list_init(&ic->flush_bio_list);
3111         init_waitqueue_head(&ic->copy_to_journal_wait);
3112         init_completion(&ic->crypto_backoff);
3113         atomic64_set(&ic->number_of_mismatches, 0);
3115         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3116         if (r) {
3117                 ti->error = "Device lookup failed";
3118                 goto bad;
3119         }
3121         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3122                 ti->error = "Invalid starting offset";
3123    &nbs