]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - rpmsg/rpmsg.git/blob - drivers/nvme/host/pci.c
Merge tag 'devicetree-fixes-for-4.19-3' of git://git.kernel.org/pub/scm/linux/kernel...
[rpmsg/rpmsg.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
34 #include "nvme.h"
36 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
37 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
39 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
41 /*
42  * These can be higher, but we need to ensure that any command doesn't
43  * require an sg allocation that needs more than a page of data.
44  */
45 #define NVME_MAX_KB_SZ  4096
46 #define NVME_MAX_SEGS   127
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63                 "Use SGLs when average request segment size is larger or equal to "
64                 "this size. Use 0 to disable SGLs.");
66 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
67 static const struct kernel_param_ops io_queue_depth_ops = {
68         .set = io_queue_depth_set,
69         .get = param_get_int,
70 };
72 static int io_queue_depth = 1024;
73 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
74 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
76 struct nvme_dev;
77 struct nvme_queue;
79 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
81 /*
82  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
83  */
84 struct nvme_dev {
85         struct nvme_queue *queues;
86         struct blk_mq_tag_set tagset;
87         struct blk_mq_tag_set admin_tagset;
88         u32 __iomem *dbs;
89         struct device *dev;
90         struct dma_pool *prp_page_pool;
91         struct dma_pool *prp_small_pool;
92         unsigned online_queues;
93         unsigned max_qid;
94         unsigned int num_vecs;
95         int q_depth;
96         u32 db_stride;
97         void __iomem *bar;
98         unsigned long bar_mapped_size;
99         struct work_struct remove_work;
100         struct mutex shutdown_lock;
101         bool subsystem;
102         void __iomem *cmb;
103         pci_bus_addr_t cmb_bus_addr;
104         u64 cmb_size;
105         u32 cmbsz;
106         u32 cmbloc;
107         struct nvme_ctrl ctrl;
108         struct completion ioq_wait;
110         mempool_t *iod_mempool;
112         /* shadow doorbell buffer support: */
113         u32 *dbbuf_dbs;
114         dma_addr_t dbbuf_dbs_dma_addr;
115         u32 *dbbuf_eis;
116         dma_addr_t dbbuf_eis_dma_addr;
118         /* host memory buffer support: */
119         u64 host_mem_size;
120         u32 nr_host_mem_descs;
121         dma_addr_t host_mem_descs_dma;
122         struct nvme_host_mem_buf_desc *host_mem_descs;
123         void **host_mem_desc_bufs;
124 };
126 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
128         int n = 0, ret;
130         ret = kstrtoint(val, 10, &n);
131         if (ret != 0 || n < 2)
132                 return -EINVAL;
134         return param_set_int(val, kp);
137 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
139         return qid * 2 * stride;
142 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
144         return (qid * 2 + 1) * stride;
147 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
149         return container_of(ctrl, struct nvme_dev, ctrl);
152 /*
153  * An NVM Express queue.  Each device has at least two (one for admin
154  * commands and one for I/O commands).
155  */
156 struct nvme_queue {
157         struct device *q_dmadev;
158         struct nvme_dev *dev;
159         spinlock_t sq_lock;
160         struct nvme_command *sq_cmds;
161         struct nvme_command __iomem *sq_cmds_io;
162         spinlock_t cq_lock ____cacheline_aligned_in_smp;
163         volatile struct nvme_completion *cqes;
164         struct blk_mq_tags **tags;
165         dma_addr_t sq_dma_addr;
166         dma_addr_t cq_dma_addr;
167         u32 __iomem *q_db;
168         u16 q_depth;
169         s16 cq_vector;
170         u16 sq_tail;
171         u16 cq_head;
172         u16 last_cq_head;
173         u16 qid;
174         u8 cq_phase;
175         u32 *dbbuf_sq_db;
176         u32 *dbbuf_cq_db;
177         u32 *dbbuf_sq_ei;
178         u32 *dbbuf_cq_ei;
179 };
181 /*
182  * The nvme_iod describes the data in an I/O, including the list of PRP
183  * entries.  You can't see it in this data structure because C doesn't let
184  * me express that.  Use nvme_init_iod to ensure there's enough space
185  * allocated to store the PRP list.
186  */
187 struct nvme_iod {
188         struct nvme_request req;
189         struct nvme_queue *nvmeq;
190         bool use_sgl;
191         int aborted;
192         int npages;             /* In the PRP list. 0 means small pool in use */
193         int nents;              /* Used in scatterlist */
194         int length;             /* Of data, in bytes */
195         dma_addr_t first_dma;
196         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
197         struct scatterlist *sg;
198         struct scatterlist inline_sg[0];
199 };
201 /*
202  * Check we didin't inadvertently grow the command struct
203  */
204 static inline void _nvme_check_size(void)
206         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
207         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
208         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
209         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
210         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
211         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
212         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
213         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
214         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
215         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
216         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
217         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
218         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
221 static inline unsigned int nvme_dbbuf_size(u32 stride)
223         return ((num_possible_cpus() + 1) * 8 * stride);
226 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
228         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
230         if (dev->dbbuf_dbs)
231                 return 0;
233         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
234                                             &dev->dbbuf_dbs_dma_addr,
235                                             GFP_KERNEL);
236         if (!dev->dbbuf_dbs)
237                 return -ENOMEM;
238         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
239                                             &dev->dbbuf_eis_dma_addr,
240                                             GFP_KERNEL);
241         if (!dev->dbbuf_eis) {
242                 dma_free_coherent(dev->dev, mem_size,
243                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
244                 dev->dbbuf_dbs = NULL;
245                 return -ENOMEM;
246         }
248         return 0;
251 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
253         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
255         if (dev->dbbuf_dbs) {
256                 dma_free_coherent(dev->dev, mem_size,
257                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
258                 dev->dbbuf_dbs = NULL;
259         }
260         if (dev->dbbuf_eis) {
261                 dma_free_coherent(dev->dev, mem_size,
262                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
263                 dev->dbbuf_eis = NULL;
264         }
267 static void nvme_dbbuf_init(struct nvme_dev *dev,
268                             struct nvme_queue *nvmeq, int qid)
270         if (!dev->dbbuf_dbs || !qid)
271                 return;
273         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
274         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
275         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
276         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
279 static void nvme_dbbuf_set(struct nvme_dev *dev)
281         struct nvme_command c;
283         if (!dev->dbbuf_dbs)
284                 return;
286         memset(&c, 0, sizeof(c));
287         c.dbbuf.opcode = nvme_admin_dbbuf;
288         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
289         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
291         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
292                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
293                 /* Free memory and continue on */
294                 nvme_dbbuf_dma_free(dev);
295         }
298 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
300         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
303 /* Update dbbuf and return true if an MMIO is required */
304 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
305                                               volatile u32 *dbbuf_ei)
307         if (dbbuf_db) {
308                 u16 old_value;
310                 /*
311                  * Ensure that the queue is written before updating
312                  * the doorbell in memory
313                  */
314                 wmb();
316                 old_value = *dbbuf_db;
317                 *dbbuf_db = value;
319                 /*
320                  * Ensure that the doorbell is updated before reading the event
321                  * index from memory.  The controller needs to provide similar
322                  * ordering to ensure the envent index is updated before reading
323                  * the doorbell.
324                  */
325                 mb();
327                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
328                         return false;
329         }
331         return true;
334 /*
335  * Max size of iod being embedded in the request payload
336  */
337 #define NVME_INT_PAGES          2
338 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
340 /*
341  * Will slightly overestimate the number of pages needed.  This is OK
342  * as it only leads to a small amount of wasted memory for the lifetime of
343  * the I/O.
344  */
345 static int nvme_npages(unsigned size, struct nvme_dev *dev)
347         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
348                                       dev->ctrl.page_size);
349         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
352 /*
353  * Calculates the number of pages needed for the SGL segments. For example a 4k
354  * page can accommodate 256 SGL descriptors.
355  */
356 static int nvme_pci_npages_sgl(unsigned int num_seg)
358         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
361 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
362                 unsigned int size, unsigned int nseg, bool use_sgl)
364         size_t alloc_size;
366         if (use_sgl)
367                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
368         else
369                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
371         return alloc_size + sizeof(struct scatterlist) * nseg;
374 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
376         unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
377                                     NVME_INT_BYTES(dev), NVME_INT_PAGES,
378                                     use_sgl);
380         return sizeof(struct nvme_iod) + alloc_size;
383 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
384                                 unsigned int hctx_idx)
386         struct nvme_dev *dev = data;
387         struct nvme_queue *nvmeq = &dev->queues[0];
389         WARN_ON(hctx_idx != 0);
390         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
391         WARN_ON(nvmeq->tags);
393         hctx->driver_data = nvmeq;
394         nvmeq->tags = &dev->admin_tagset.tags[0];
395         return 0;
398 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
400         struct nvme_queue *nvmeq = hctx->driver_data;
402         nvmeq->tags = NULL;
405 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
406                           unsigned int hctx_idx)
408         struct nvme_dev *dev = data;
409         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
411         if (!nvmeq->tags)
412                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
414         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415         hctx->driver_data = nvmeq;
416         return 0;
419 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
420                 unsigned int hctx_idx, unsigned int numa_node)
422         struct nvme_dev *dev = set->driver_data;
423         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
425         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
427         BUG_ON(!nvmeq);
428         iod->nvmeq = nvmeq;
430         nvme_req(req)->ctrl = &dev->ctrl;
431         return 0;
434 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
436         struct nvme_dev *dev = set->driver_data;
438         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
439                         dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
442 /**
443  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
444  * @nvmeq: The queue to use
445  * @cmd: The command to send
446  */
447 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
449         spin_lock(&nvmeq->sq_lock);
450         if (nvmeq->sq_cmds_io)
451                 memcpy_toio(&nvmeq->sq_cmds_io[nvmeq->sq_tail], cmd,
452                                 sizeof(*cmd));
453         else
454                 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
456         if (++nvmeq->sq_tail == nvmeq->q_depth)
457                 nvmeq->sq_tail = 0;
458         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
459                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
460                 writel(nvmeq->sq_tail, nvmeq->q_db);
461         spin_unlock(&nvmeq->sq_lock);
464 static void **nvme_pci_iod_list(struct request *req)
466         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
467         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
470 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
472         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
473         int nseg = blk_rq_nr_phys_segments(req);
474         unsigned int avg_seg_size;
476         if (nseg == 0)
477                 return false;
479         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
481         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
482                 return false;
483         if (!iod->nvmeq->qid)
484                 return false;
485         if (!sgl_threshold || avg_seg_size < sgl_threshold)
486                 return false;
487         return true;
490 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
492         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
493         int nseg = blk_rq_nr_phys_segments(rq);
494         unsigned int size = blk_rq_payload_bytes(rq);
496         iod->use_sgl = nvme_pci_use_sgls(dev, rq);
498         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
499                 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
500                 if (!iod->sg)
501                         return BLK_STS_RESOURCE;
502         } else {
503                 iod->sg = iod->inline_sg;
504         }
506         iod->aborted = 0;
507         iod->npages = -1;
508         iod->nents = 0;
509         iod->length = size;
511         return BLK_STS_OK;
514 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
516         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
517         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
518         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
520         int i;
522         if (iod->npages == 0)
523                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
524                         dma_addr);
526         for (i = 0; i < iod->npages; i++) {
527                 void *addr = nvme_pci_iod_list(req)[i];
529                 if (iod->use_sgl) {
530                         struct nvme_sgl_desc *sg_list = addr;
532                         next_dma_addr =
533                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
534                 } else {
535                         __le64 *prp_list = addr;
537                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
538                 }
540                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
541                 dma_addr = next_dma_addr;
542         }
544         if (iod->sg != iod->inline_sg)
545                 mempool_free(iod->sg, dev->iod_mempool);
548 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
550         int i;
551         struct scatterlist *sg;
553         for_each_sg(sgl, sg, nents, i) {
554                 dma_addr_t phys = sg_phys(sg);
555                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
556                         "dma_address:%pad dma_length:%d\n",
557                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
558                         sg_dma_len(sg));
559         }
562 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
563                 struct request *req, struct nvme_rw_command *cmnd)
565         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
566         struct dma_pool *pool;
567         int length = blk_rq_payload_bytes(req);
568         struct scatterlist *sg = iod->sg;
569         int dma_len = sg_dma_len(sg);
570         u64 dma_addr = sg_dma_address(sg);
571         u32 page_size = dev->ctrl.page_size;
572         int offset = dma_addr & (page_size - 1);
573         __le64 *prp_list;
574         void **list = nvme_pci_iod_list(req);
575         dma_addr_t prp_dma;
576         int nprps, i;
578         length -= (page_size - offset);
579         if (length <= 0) {
580                 iod->first_dma = 0;
581                 goto done;
582         }
584         dma_len -= (page_size - offset);
585         if (dma_len) {
586                 dma_addr += (page_size - offset);
587         } else {
588                 sg = sg_next(sg);
589                 dma_addr = sg_dma_address(sg);
590                 dma_len = sg_dma_len(sg);
591         }
593         if (length <= page_size) {
594                 iod->first_dma = dma_addr;
595                 goto done;
596         }
598         nprps = DIV_ROUND_UP(length, page_size);
599         if (nprps <= (256 / 8)) {
600                 pool = dev->prp_small_pool;
601                 iod->npages = 0;
602         } else {
603                 pool = dev->prp_page_pool;
604                 iod->npages = 1;
605         }
607         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
608         if (!prp_list) {
609                 iod->first_dma = dma_addr;
610                 iod->npages = -1;
611                 return BLK_STS_RESOURCE;
612         }
613         list[0] = prp_list;
614         iod->first_dma = prp_dma;
615         i = 0;
616         for (;;) {
617                 if (i == page_size >> 3) {
618                         __le64 *old_prp_list = prp_list;
619                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
620                         if (!prp_list)
621                                 return BLK_STS_RESOURCE;
622                         list[iod->npages++] = prp_list;
623                         prp_list[0] = old_prp_list[i - 1];
624                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
625                         i = 1;
626                 }
627                 prp_list[i++] = cpu_to_le64(dma_addr);
628                 dma_len -= page_size;
629                 dma_addr += page_size;
630                 length -= page_size;
631                 if (length <= 0)
632                         break;
633                 if (dma_len > 0)
634                         continue;
635                 if (unlikely(dma_len < 0))
636                         goto bad_sgl;
637                 sg = sg_next(sg);
638                 dma_addr = sg_dma_address(sg);
639                 dma_len = sg_dma_len(sg);
640         }
642 done:
643         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
644         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
646         return BLK_STS_OK;
648  bad_sgl:
649         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
650                         "Invalid SGL for payload:%d nents:%d\n",
651                         blk_rq_payload_bytes(req), iod->nents);
652         return BLK_STS_IOERR;
655 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
656                 struct scatterlist *sg)
658         sge->addr = cpu_to_le64(sg_dma_address(sg));
659         sge->length = cpu_to_le32(sg_dma_len(sg));
660         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
663 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
664                 dma_addr_t dma_addr, int entries)
666         sge->addr = cpu_to_le64(dma_addr);
667         if (entries < SGES_PER_PAGE) {
668                 sge->length = cpu_to_le32(entries * sizeof(*sge));
669                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
670         } else {
671                 sge->length = cpu_to_le32(PAGE_SIZE);
672                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
673         }
676 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
677                 struct request *req, struct nvme_rw_command *cmd, int entries)
679         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
680         struct dma_pool *pool;
681         struct nvme_sgl_desc *sg_list;
682         struct scatterlist *sg = iod->sg;
683         dma_addr_t sgl_dma;
684         int i = 0;
686         /* setting the transfer type as SGL */
687         cmd->flags = NVME_CMD_SGL_METABUF;
689         if (entries == 1) {
690                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
691                 return BLK_STS_OK;
692         }
694         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
695                 pool = dev->prp_small_pool;
696                 iod->npages = 0;
697         } else {
698                 pool = dev->prp_page_pool;
699                 iod->npages = 1;
700         }
702         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
703         if (!sg_list) {
704                 iod->npages = -1;
705                 return BLK_STS_RESOURCE;
706         }
708         nvme_pci_iod_list(req)[0] = sg_list;
709         iod->first_dma = sgl_dma;
711         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
713         do {
714                 if (i == SGES_PER_PAGE) {
715                         struct nvme_sgl_desc *old_sg_desc = sg_list;
716                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
718                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
719                         if (!sg_list)
720                                 return BLK_STS_RESOURCE;
722                         i = 0;
723                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
724                         sg_list[i++] = *link;
725                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
726                 }
728                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
729                 sg = sg_next(sg);
730         } while (--entries > 0);
732         return BLK_STS_OK;
735 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
736                 struct nvme_command *cmnd)
738         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
739         struct request_queue *q = req->q;
740         enum dma_data_direction dma_dir = rq_data_dir(req) ?
741                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
742         blk_status_t ret = BLK_STS_IOERR;
743         int nr_mapped;
745         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
746         iod->nents = blk_rq_map_sg(q, req, iod->sg);
747         if (!iod->nents)
748                 goto out;
750         ret = BLK_STS_RESOURCE;
751         nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
752                         DMA_ATTR_NO_WARN);
753         if (!nr_mapped)
754                 goto out;
756         if (iod->use_sgl)
757                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
758         else
759                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
761         if (ret != BLK_STS_OK)
762                 goto out_unmap;
764         ret = BLK_STS_IOERR;
765         if (blk_integrity_rq(req)) {
766                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
767                         goto out_unmap;
769                 sg_init_table(&iod->meta_sg, 1);
770                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
771                         goto out_unmap;
773                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
774                         goto out_unmap;
775         }
777         if (blk_integrity_rq(req))
778                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
779         return BLK_STS_OK;
781 out_unmap:
782         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
783 out:
784         return ret;
787 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
789         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
790         enum dma_data_direction dma_dir = rq_data_dir(req) ?
791                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
793         if (iod->nents) {
794                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
795                 if (blk_integrity_rq(req))
796                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
797         }
799         nvme_cleanup_cmd(req);
800         nvme_free_iod(dev, req);
803 /*
804  * NOTE: ns is NULL when called on the admin queue.
805  */
806 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
807                          const struct blk_mq_queue_data *bd)
809         struct nvme_ns *ns = hctx->queue->queuedata;
810         struct nvme_queue *nvmeq = hctx->driver_data;
811         struct nvme_dev *dev = nvmeq->dev;
812         struct request *req = bd->rq;
813         struct nvme_command cmnd;
814         blk_status_t ret;
816         /*
817          * We should not need to do this, but we're still using this to
818          * ensure we can drain requests on a dying queue.
819          */
820         if (unlikely(nvmeq->cq_vector < 0))
821                 return BLK_STS_IOERR;
823         ret = nvme_setup_cmd(ns, req, &cmnd);
824         if (ret)
825                 return ret;
827         ret = nvme_init_iod(req, dev);
828         if (ret)
829                 goto out_free_cmd;
831         if (blk_rq_nr_phys_segments(req)) {
832                 ret = nvme_map_data(dev, req, &cmnd);
833                 if (ret)
834                         goto out_cleanup_iod;
835         }
837         blk_mq_start_request(req);
838         nvme_submit_cmd(nvmeq, &cmnd);
839         return BLK_STS_OK;
840 out_cleanup_iod:
841         nvme_free_iod(dev, req);
842 out_free_cmd:
843         nvme_cleanup_cmd(req);
844         return ret;
847 static void nvme_pci_complete_rq(struct request *req)
849         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
851         nvme_unmap_data(iod->nvmeq->dev, req);
852         nvme_complete_rq(req);
855 /* We read the CQE phase first to check if the rest of the entry is valid */
856 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
858         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
859                         nvmeq->cq_phase;
862 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
864         u16 head = nvmeq->cq_head;
866         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
867                                               nvmeq->dbbuf_cq_ei))
868                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
871 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
873         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
874         struct request *req;
876         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
877                 dev_warn(nvmeq->dev->ctrl.device,
878                         "invalid id %d completed on queue %d\n",
879                         cqe->command_id, le16_to_cpu(cqe->sq_id));
880                 return;
881         }
883         /*
884          * AEN requests are special as they don't time out and can
885          * survive any kind of queue freeze and often don't respond to
886          * aborts.  We don't even bother to allocate a struct request
887          * for them but rather special case them here.
888          */
889         if (unlikely(nvmeq->qid == 0 &&
890                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
891                 nvme_complete_async_event(&nvmeq->dev->ctrl,
892                                 cqe->status, &cqe->result);
893                 return;
894         }
896         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
897         nvme_end_request(req, cqe->status, cqe->result);
900 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
902         while (start != end) {
903                 nvme_handle_cqe(nvmeq, start);
904                 if (++start == nvmeq->q_depth)
905                         start = 0;
906         }
909 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
911         if (++nvmeq->cq_head == nvmeq->q_depth) {
912                 nvmeq->cq_head = 0;
913                 nvmeq->cq_phase = !nvmeq->cq_phase;
914         }
917 static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
918                 u16 *end, int tag)
920         bool found = false;
922         *start = nvmeq->cq_head;
923         while (!found && nvme_cqe_pending(nvmeq)) {
924                 if (nvmeq->cqes[nvmeq->cq_head].command_id == tag)
925                         found = true;
926                 nvme_update_cq_head(nvmeq);
927         }
928         *end = nvmeq->cq_head;
930         if (*start != *end)
931                 nvme_ring_cq_doorbell(nvmeq);
932         return found;
935 static irqreturn_t nvme_irq(int irq, void *data)
937         struct nvme_queue *nvmeq = data;
938         irqreturn_t ret = IRQ_NONE;
939         u16 start, end;
941         spin_lock(&nvmeq->cq_lock);
942         if (nvmeq->cq_head != nvmeq->last_cq_head)
943                 ret = IRQ_HANDLED;
944         nvme_process_cq(nvmeq, &start, &end, -1);
945         nvmeq->last_cq_head = nvmeq->cq_head;
946         spin_unlock(&nvmeq->cq_lock);
948         if (start != end) {
949                 nvme_complete_cqes(nvmeq, start, end);
950                 return IRQ_HANDLED;
951         }
953         return ret;
956 static irqreturn_t nvme_irq_check(int irq, void *data)
958         struct nvme_queue *nvmeq = data;
959         if (nvme_cqe_pending(nvmeq))
960                 return IRQ_WAKE_THREAD;
961         return IRQ_NONE;
964 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
966         u16 start, end;
967         bool found;
969         if (!nvme_cqe_pending(nvmeq))
970                 return 0;
972         spin_lock_irq(&nvmeq->cq_lock);
973         found = nvme_process_cq(nvmeq, &start, &end, tag);
974         spin_unlock_irq(&nvmeq->cq_lock);
976         nvme_complete_cqes(nvmeq, start, end);
977         return found;
980 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
982         struct nvme_queue *nvmeq = hctx->driver_data;
984         return __nvme_poll(nvmeq, tag);
987 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
989         struct nvme_dev *dev = to_nvme_dev(ctrl);
990         struct nvme_queue *nvmeq = &dev->queues[0];
991         struct nvme_command c;
993         memset(&c, 0, sizeof(c));
994         c.common.opcode = nvme_admin_async_event;
995         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
996         nvme_submit_cmd(nvmeq, &c);
999 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1001         struct nvme_command c;
1003         memset(&c, 0, sizeof(c));
1004         c.delete_queue.opcode = opcode;
1005         c.delete_queue.qid = cpu_to_le16(id);
1007         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1010 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1011                 struct nvme_queue *nvmeq, s16 vector)
1013         struct nvme_command c;
1014         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1016         /*
1017          * Note: we (ab)use the fact that the prp fields survive if no data
1018          * is attached to the request.
1019          */
1020         memset(&c, 0, sizeof(c));
1021         c.create_cq.opcode = nvme_admin_create_cq;
1022         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1023         c.create_cq.cqid = cpu_to_le16(qid);
1024         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1025         c.create_cq.cq_flags = cpu_to_le16(flags);
1026         c.create_cq.irq_vector = cpu_to_le16(vector);
1028         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1031 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1032                                                 struct nvme_queue *nvmeq)
1034         struct nvme_ctrl *ctrl = &dev->ctrl;
1035         struct nvme_command c;
1036         int flags = NVME_QUEUE_PHYS_CONTIG;
1038         /*
1039          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1040          * set. Since URGENT priority is zeroes, it makes all queues
1041          * URGENT.
1042          */
1043         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1044                 flags |= NVME_SQ_PRIO_MEDIUM;
1046         /*
1047          * Note: we (ab)use the fact that the prp fields survive if no data
1048          * is attached to the request.
1049          */
1050         memset(&c, 0, sizeof(c));
1051         c.create_sq.opcode = nvme_admin_create_sq;
1052         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1053         c.create_sq.sqid = cpu_to_le16(qid);
1054         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1055         c.create_sq.sq_flags = cpu_to_le16(flags);
1056         c.create_sq.cqid = cpu_to_le16(qid);
1058         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1061 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1063         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1066 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1068         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1071 static void abort_endio(struct request *req, blk_status_t error)
1073         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1074         struct nvme_queue *nvmeq = iod->nvmeq;
1076         dev_warn(nvmeq->dev->ctrl.device,
1077                  "Abort status: 0x%x", nvme_req(req)->status);
1078         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1079         blk_mq_free_request(req);
1082 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1085         /* If true, indicates loss of adapter communication, possibly by a
1086          * NVMe Subsystem reset.
1087          */
1088         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1090         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1091         switch (dev->ctrl.state) {
1092         case NVME_CTRL_RESETTING:
1093         case NVME_CTRL_CONNECTING:
1094                 return false;
1095         default:
1096                 break;
1097         }
1099         /* We shouldn't reset unless the controller is on fatal error state
1100          * _or_ if we lost the communication with it.
1101          */
1102         if (!(csts & NVME_CSTS_CFS) && !nssro)
1103                 return false;
1105         return true;
1108 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1110         /* Read a config register to help see what died. */
1111         u16 pci_status;
1112         int result;
1114         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1115                                       &pci_status);
1116         if (result == PCIBIOS_SUCCESSFUL)
1117                 dev_warn(dev->ctrl.device,
1118                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1119                          csts, pci_status);
1120         else
1121                 dev_warn(dev->ctrl.device,
1122                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1123                          csts, result);
1126 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1128         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1129         struct nvme_queue *nvmeq = iod->nvmeq;
1130         struct nvme_dev *dev = nvmeq->dev;
1131         struct request *abort_req;
1132         struct nvme_command cmd;
1133         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1135         /* If PCI error recovery process is happening, we cannot reset or
1136          * the recovery mechanism will surely fail.
1137          */
1138         mb();
1139         if (pci_channel_offline(to_pci_dev(dev->dev)))
1140                 return BLK_EH_RESET_TIMER;
1142         /*
1143          * Reset immediately if the controller is failed
1144          */
1145         if (nvme_should_reset(dev, csts)) {
1146                 nvme_warn_reset(dev, csts);
1147                 nvme_dev_disable(dev, false);
1148                 nvme_reset_ctrl(&dev->ctrl);
1149                 return BLK_EH_DONE;
1150         }
1152         /*
1153          * Did we miss an interrupt?
1154          */
1155         if (__nvme_poll(nvmeq, req->tag)) {
1156                 dev_warn(dev->ctrl.device,
1157                          "I/O %d QID %d timeout, completion polled\n",
1158                          req->tag, nvmeq->qid);
1159                 return BLK_EH_DONE;
1160         }
1162         /*
1163          * Shutdown immediately if controller times out while starting. The
1164          * reset work will see the pci device disabled when it gets the forced
1165          * cancellation error. All outstanding requests are completed on
1166          * shutdown, so we return BLK_EH_DONE.
1167          */
1168         switch (dev->ctrl.state) {
1169         case NVME_CTRL_CONNECTING:
1170         case NVME_CTRL_RESETTING:
1171                 dev_warn_ratelimited(dev->ctrl.device,
1172                          "I/O %d QID %d timeout, disable controller\n",
1173                          req->tag, nvmeq->qid);
1174                 nvme_dev_disable(dev, false);
1175                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1176                 return BLK_EH_DONE;
1177         default:
1178                 break;
1179         }
1181         /*
1182          * Shutdown the controller immediately and schedule a reset if the
1183          * command was already aborted once before and still hasn't been
1184          * returned to the driver, or if this is the admin queue.
1185          */
1186         if (!nvmeq->qid || iod->aborted) {
1187                 dev_warn(dev->ctrl.device,
1188                          "I/O %d QID %d timeout, reset controller\n",
1189                          req->tag, nvmeq->qid);
1190                 nvme_dev_disable(dev, false);
1191                 nvme_reset_ctrl(&dev->ctrl);
1193                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1194                 return BLK_EH_DONE;
1195         }
1197         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1198                 atomic_inc(&dev->ctrl.abort_limit);
1199                 return BLK_EH_RESET_TIMER;
1200         }
1201         iod->aborted = 1;
1203         memset(&cmd, 0, sizeof(cmd));
1204         cmd.abort.opcode = nvme_admin_abort_cmd;
1205         cmd.abort.cid = req->tag;
1206         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1208         dev_warn(nvmeq->dev->ctrl.device,
1209                 "I/O %d QID %d timeout, aborting\n",
1210                  req->tag, nvmeq->qid);
1212         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1213                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1214         if (IS_ERR(abort_req)) {
1215                 atomic_inc(&dev->ctrl.abort_limit);
1216                 return BLK_EH_RESET_TIMER;
1217         }
1219         abort_req->timeout = ADMIN_TIMEOUT;
1220         abort_req->end_io_data = NULL;
1221         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1223         /*
1224          * The aborted req will be completed on receiving the abort req.
1225          * We enable the timer again. If hit twice, it'll cause a device reset,
1226          * as the device then is in a faulty state.
1227          */
1228         return BLK_EH_RESET_TIMER;
1231 static void nvme_free_queue(struct nvme_queue *nvmeq)
1233         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1234                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1235         if (nvmeq->sq_cmds)
1236                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1237                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1240 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1242         int i;
1244         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1245                 dev->ctrl.queue_count--;
1246                 nvme_free_queue(&dev->queues[i]);
1247         }
1250 /**
1251  * nvme_suspend_queue - put queue into suspended state
1252  * @nvmeq - queue to suspend
1253  */
1254 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1256         int vector;
1258         spin_lock_irq(&nvmeq->cq_lock);
1259         if (nvmeq->cq_vector == -1) {
1260                 spin_unlock_irq(&nvmeq->cq_lock);
1261                 return 1;
1262         }
1263         vector = nvmeq->cq_vector;
1264         nvmeq->dev->online_queues--;
1265         nvmeq->cq_vector = -1;
1266         spin_unlock_irq(&nvmeq->cq_lock);
1268         /*
1269          * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without
1270          * having to grab the lock.
1271          */
1272         mb();
1274         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1275                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1277         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1279         return 0;
1282 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1284         struct nvme_queue *nvmeq = &dev->queues[0];
1285         u16 start, end;
1287         if (shutdown)
1288                 nvme_shutdown_ctrl(&dev->ctrl);
1289         else
1290                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1292         spin_lock_irq(&nvmeq->cq_lock);
1293         nvme_process_cq(nvmeq, &start, &end, -1);
1294         spin_unlock_irq(&nvmeq->cq_lock);
1296         nvme_complete_cqes(nvmeq, start, end);
1299 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1300                                 int entry_size)
1302         int q_depth = dev->q_depth;
1303         unsigned q_size_aligned = roundup(q_depth * entry_size,
1304                                           dev->ctrl.page_size);
1306         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1307                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1308                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1309                 q_depth = div_u64(mem_per_q, entry_size);
1311                 /*
1312                  * Ensure the reduced q_depth is above some threshold where it
1313                  * would be better to map queues in system memory with the
1314                  * original depth
1315                  */
1316                 if (q_depth < 64)
1317                         return -ENOMEM;
1318         }
1320         return q_depth;
1323 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1324                                 int qid, int depth)
1326         /* CMB SQEs will be mapped before creation */
1327         if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1328                 return 0;
1330         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1331                                             &nvmeq->sq_dma_addr, GFP_KERNEL);
1332         if (!nvmeq->sq_cmds)
1333                 return -ENOMEM;
1334         return 0;
1337 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1339         struct nvme_queue *nvmeq = &dev->queues[qid];
1341         if (dev->ctrl.queue_count > qid)
1342                 return 0;
1344         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1345                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1346         if (!nvmeq->cqes)
1347                 goto free_nvmeq;
1349         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1350                 goto free_cqdma;
1352         nvmeq->q_dmadev = dev->dev;
1353         nvmeq->dev = dev;
1354         spin_lock_init(&nvmeq->sq_lock);
1355         spin_lock_init(&nvmeq->cq_lock);
1356         nvmeq->cq_head = 0;
1357         nvmeq->cq_phase = 1;
1358         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1359         nvmeq->q_depth = depth;
1360         nvmeq->qid = qid;
1361         nvmeq->cq_vector = -1;
1362         dev->ctrl.queue_count++;
1364         return 0;
1366  free_cqdma:
1367         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1368                                                         nvmeq->cq_dma_addr);
1369  free_nvmeq:
1370         return -ENOMEM;
1373 static int queue_request_irq(struct nvme_queue *nvmeq)
1375         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1376         int nr = nvmeq->dev->ctrl.instance;
1378         if (use_threaded_interrupts) {
1379                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1380                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1381         } else {
1382                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1383                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1384         }
1387 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1389         struct nvme_dev *dev = nvmeq->dev;
1391         spin_lock_irq(&nvmeq->cq_lock);
1392         nvmeq->sq_tail = 0;
1393         nvmeq->cq_head = 0;
1394         nvmeq->cq_phase = 1;
1395         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1396         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1397         nvme_dbbuf_init(dev, nvmeq, qid);
1398         dev->online_queues++;
1399         spin_unlock_irq(&nvmeq->cq_lock);
1402 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1404         struct nvme_dev *dev = nvmeq->dev;
1405         int result;
1406         s16 vector;
1408         if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1409                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1410                                                       dev->ctrl.page_size);
1411                 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1412                 nvmeq->sq_cmds_io = dev->cmb + offset;
1413         }
1415         /*
1416          * A queue's vector matches the queue identifier unless the controller
1417          * has only one vector available.
1418          */
1419         vector = dev->num_vecs == 1 ? 0 : qid;
1420         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1421         if (result)
1422                 return result;
1424         result = adapter_alloc_sq(dev, qid, nvmeq);
1425         if (result < 0)
1426                 return result;
1427         else if (result)
1428                 goto release_cq;
1430         /*
1431          * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will
1432          * invoke free_irq for it and cause a 'Trying to free already-free IRQ
1433          * xxx' warning if the create CQ/SQ command times out.
1434          */
1435         nvmeq->cq_vector = vector;
1436         nvme_init_queue(nvmeq, qid);
1437         result = queue_request_irq(nvmeq);
1438         if (result < 0)
1439                 goto release_sq;
1441         return result;
1443 release_sq:
1444         nvmeq->cq_vector = -1;
1445         dev->online_queues--;
1446         adapter_delete_sq(dev, qid);
1447 release_cq:
1448         adapter_delete_cq(dev, qid);
1449         return result;
1452 static const struct blk_mq_ops nvme_mq_admin_ops = {
1453         .queue_rq       = nvme_queue_rq,
1454         .complete       = nvme_pci_complete_rq,
1455         .init_hctx      = nvme_admin_init_hctx,
1456         .exit_hctx      = nvme_admin_exit_hctx,
1457         .init_request   = nvme_init_request,
1458         .timeout        = nvme_timeout,
1459 };
1461 static const struct blk_mq_ops nvme_mq_ops = {
1462         .queue_rq       = nvme_queue_rq,
1463         .complete       = nvme_pci_complete_rq,
1464         .init_hctx      = nvme_init_hctx,
1465         .init_request   = nvme_init_request,
1466         .map_queues     = nvme_pci_map_queues,
1467         .timeout        = nvme_timeout,
1468         .poll           = nvme_poll,
1469 };
1471 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1473         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1474                 /*
1475                  * If the controller was reset during removal, it's possible
1476                  * user requests may be waiting on a stopped queue. Start the
1477                  * queue to flush these to completion.
1478                  */
1479                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1480                 blk_cleanup_queue(dev->ctrl.admin_q);
1481                 blk_mq_free_tag_set(&dev->admin_tagset);
1482         }
1485 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1487         if (!dev->ctrl.admin_q) {
1488                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1489                 dev->admin_tagset.nr_hw_queues = 1;
1491                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1492                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1493                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1494                 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1495                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1496                 dev->admin_tagset.driver_data = dev;
1498                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1499                         return -ENOMEM;
1500                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1502                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1503                 if (IS_ERR(dev->ctrl.admin_q)) {
1504                         blk_mq_free_tag_set(&dev->admin_tagset);
1505                         return -ENOMEM;
1506                 }
1507                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1508                         nvme_dev_remove_admin(dev);
1509                         dev->ctrl.admin_q = NULL;
1510                         return -ENODEV;
1511                 }
1512         } else
1513                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1515         return 0;
1518 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1520         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1523 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1525         struct pci_dev *pdev = to_pci_dev(dev->dev);
1527         if (size <= dev->bar_mapped_size)
1528                 return 0;
1529         if (size > pci_resource_len(pdev, 0))
1530                 return -ENOMEM;
1531         if (dev->bar)
1532                 iounmap(dev->bar);
1533         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1534         if (!dev->bar) {
1535                 dev->bar_mapped_size = 0;
1536                 return -ENOMEM;
1537         }
1538         dev->bar_mapped_size = size;
1539         dev->dbs = dev->bar + NVME_REG_DBS;
1541         return 0;
1544 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1546         int result;
1547         u32 aqa;
1548         struct nvme_queue *nvmeq;
1550         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1551         if (result < 0)
1552                 return result;
1554         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1555                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1557         if (dev->subsystem &&
1558             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1559                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1561         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1562         if (result < 0)
1563                 return result;
1565         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1566         if (result)
1567                 return result;
1569         nvmeq = &dev->queues[0];
1570         aqa = nvmeq->q_depth - 1;
1571         aqa |= aqa << 16;
1573         writel(aqa, dev->bar + NVME_REG_AQA);
1574         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1575         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1577         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1578         if (result)
1579                 return result;
1581         nvmeq->cq_vector = 0;
1582         nvme_init_queue(nvmeq, 0);
1583         result = queue_request_irq(nvmeq);
1584         if (result) {
1585                 nvmeq->cq_vector = -1;
1586                 return result;
1587         }
1589         return result;
1592 static int nvme_create_io_queues(struct nvme_dev *dev)
1594         unsigned i, max;
1595         int ret = 0;
1597         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1598                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1599                         ret = -ENOMEM;
1600                         break;
1601                 }
1602         }
1604         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1605         for (i = dev->online_queues; i <= max; i++) {
1606                 ret = nvme_create_queue(&dev->queues[i], i);
1607                 if (ret)
1608                         break;
1609         }
1611         /*
1612          * Ignore failing Create SQ/CQ commands, we can continue with less
1613          * than the desired amount of queues, and even a controller without
1614          * I/O queues can still be used to issue admin commands.  This might
1615          * be useful to upgrade a buggy firmware for example.
1616          */
1617         return ret >= 0 ? 0 : ret;
1620 static ssize_t nvme_cmb_show(struct device *dev,
1621                              struct device_attribute *attr,
1622                              char *buf)
1624         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1626         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1627                        ndev->cmbloc, ndev->cmbsz);
1629 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1631 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1633         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1635         return 1ULL << (12 + 4 * szu);
1638 static u32 nvme_cmb_size(struct nvme_dev *dev)
1640         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1643 static void nvme_map_cmb(struct nvme_dev *dev)
1645         u64 size, offset;
1646         resource_size_t bar_size;
1647         struct pci_dev *pdev = to_pci_dev(dev->dev);
1648         int bar;
1650         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1651         if (!dev->cmbsz)
1652                 return;
1653         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1655         if (!use_cmb_sqes)
1656                 return;
1658         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1659         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1660         bar = NVME_CMB_BIR(dev->cmbloc);
1661         bar_size = pci_resource_len(pdev, bar);
1663         if (offset > bar_size)
1664                 return;
1666         /*
1667          * Controllers may support a CMB size larger than their BAR,
1668          * for example, due to being behind a bridge. Reduce the CMB to
1669          * the reported size of the BAR
1670          */
1671         if (size > bar_size - offset)
1672                 size = bar_size - offset;
1674         dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1675         if (!dev->cmb)
1676                 return;
1677         dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1678         dev->cmb_size = size;
1680         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1681                                     &dev_attr_cmb.attr, NULL))
1682                 dev_warn(dev->ctrl.device,
1683                          "failed to add sysfs attribute for CMB\n");
1686 static inline void nvme_release_cmb(struct nvme_dev *dev)
1688         if (dev->cmb) {
1689                 iounmap(dev->cmb);
1690                 dev->cmb = NULL;
1691                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1692                                              &dev_attr_cmb.attr, NULL);
1693                 dev->cmbsz = 0;
1694         }
1697 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1699         u64 dma_addr = dev->host_mem_descs_dma;
1700         struct nvme_command c;
1701         int ret;
1703         memset(&c, 0, sizeof(c));
1704         c.features.opcode       = nvme_admin_set_features;
1705         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1706         c.features.dword11      = cpu_to_le32(bits);
1707         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1708                                               ilog2(dev->ctrl.page_size));
1709         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1710         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1711         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1713         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1714         if (ret) {
1715                 dev_warn(dev->ctrl.device,
1716                          "failed to set host mem (err %d, flags %#x).\n",
1717                          ret, bits);
1718         }
1719         return ret;
1722 static void nvme_free_host_mem(struct nvme_dev *dev)
1724         int i;
1726         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1727                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1728                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1730                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1731                                 le64_to_cpu(desc->addr));
1732         }
1734         kfree(dev->host_mem_desc_bufs);
1735         dev->host_mem_desc_bufs = NULL;
1736         dma_free_coherent(dev->dev,
1737                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1738                         dev->host_mem_descs, dev->host_mem_descs_dma);
1739         dev->host_mem_descs = NULL;
1740         dev->nr_host_mem_descs = 0;
1743 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1744                 u32 chunk_size)
1746         struct nvme_host_mem_buf_desc *descs;
1747         u32 max_entries, len;
1748         dma_addr_t descs_dma;
1749         int i = 0;
1750         void **bufs;
1751         u64 size, tmp;
1753         tmp = (preferred + chunk_size - 1);
1754         do_div(tmp, chunk_size);
1755         max_entries = tmp;
1757         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1758                 max_entries = dev->ctrl.hmmaxd;
1760         descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1761                         &descs_dma, GFP_KERNEL);
1762         if (!descs)
1763                 goto out;
1765         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1766         if (!bufs)
1767                 goto out_free_descs;
1769         for (size = 0; size < preferred && i < max_entries; size += len) {
1770                 dma_addr_t dma_addr;
1772                 len = min_t(u64, chunk_size, preferred - size);
1773                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1774                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1775                 if (!bufs[i])
1776                         break;
1778                 descs[i].addr = cpu_to_le64(dma_addr);
1779                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1780                 i++;
1781         }
1783         if (!size)
1784                 goto out_free_bufs;
1786         dev->nr_host_mem_descs = i;
1787         dev->host_mem_size = size;
1788         dev->host_mem_descs = descs;
1789         dev->host_mem_descs_dma = descs_dma;
1790         dev->host_mem_desc_bufs = bufs;
1791         return 0;
1793 out_free_bufs:
1794         while (--i >= 0) {
1795                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1797                 dma_free_coherent(dev->dev, size, bufs[i],
1798                                 le64_to_cpu(descs[i].addr));
1799         }
1801         kfree(bufs);
1802 out_free_descs:
1803         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1804                         descs_dma);
1805 out:
1806         dev->host_mem_descs = NULL;
1807         return -ENOMEM;
1810 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1812         u32 chunk_size;
1814         /* start big and work our way down */
1815         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1816              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1817              chunk_size /= 2) {
1818                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1819                         if (!min || dev->host_mem_size >= min)
1820                                 return 0;
1821                         nvme_free_host_mem(dev);
1822                 }
1823         }
1825         return -ENOMEM;
1828 static int nvme_setup_host_mem(struct nvme_dev *dev)
1830         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1831         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1832         u64 min = (u64)dev->ctrl.hmmin * 4096;
1833         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1834         int ret;
1836         preferred = min(preferred, max);
1837         if (min > max) {
1838                 dev_warn(dev->ctrl.device,
1839                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1840                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1841                 nvme_free_host_mem(dev);
1842                 return 0;
1843         }
1845         /*
1846          * If we already have a buffer allocated check if we can reuse it.
1847          */
1848         if (dev->host_mem_descs) {
1849                 if (dev->host_mem_size >= min)
1850                         enable_bits |= NVME_HOST_MEM_RETURN;
1851                 else
1852                         nvme_free_host_mem(dev);
1853         }
1855         if (!dev->host_mem_descs) {
1856                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1857                         dev_warn(dev->ctrl.device,
1858                                 "failed to allocate host memory buffer.\n");
1859                         return 0; /* controller must work without HMB */
1860                 }
1862                 dev_info(dev->ctrl.device,
1863                         "allocated %lld MiB host memory buffer.\n",
1864                         dev->host_mem_size >> ilog2(SZ_1M));
1865         }
1867         ret = nvme_set_host_mem(dev, enable_bits);
1868         if (ret)
1869                 nvme_free_host_mem(dev);
1870         return ret;
1873 static int nvme_setup_io_queues(struct nvme_dev *dev)
1875         struct nvme_queue *adminq = &dev->queues[0];
1876         struct pci_dev *pdev = to_pci_dev(dev->dev);
1877         int result, nr_io_queues;
1878         unsigned long size;
1880         struct irq_affinity affd = {
1881                 .pre_vectors = 1
1882         };
1884         nr_io_queues = num_possible_cpus();
1885         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1886         if (result < 0)
1887                 return result;
1889         if (nr_io_queues == 0)
1890                 return 0;
1892         if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1893                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1894                                 sizeof(struct nvme_command));
1895                 if (result > 0)
1896                         dev->q_depth = result;
1897                 else
1898                         nvme_release_cmb(dev);
1899         }
1901         do {
1902                 size = db_bar_size(dev, nr_io_queues);
1903                 result = nvme_remap_bar(dev, size);
1904                 if (!result)
1905                         break;
1906                 if (!--nr_io_queues)
1907                         return -ENOMEM;
1908         } while (1);
1909         adminq->q_db = dev->dbs;
1911         /* Deregister the admin queue's interrupt */
1912         pci_free_irq(pdev, 0, adminq);
1914         /*
1915          * If we enable msix early due to not intx, disable it again before
1916          * setting up the full range we need.
1917          */
1918         pci_free_irq_vectors(pdev);
1919         result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1920                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1921         if (result <= 0)
1922                 return -EIO;
1923         dev->num_vecs = result;
1924         dev->max_qid = max(result - 1, 1);
1926         /*
1927          * Should investigate if there's a performance win from allocating
1928          * more queues than interrupt vectors; it might allow the submission
1929          * path to scale better, even if the receive path is limited by the
1930          * number of interrupts.
1931          */
1933         result = queue_request_irq(adminq);
1934         if (result) {
1935                 adminq->cq_vector = -1;
1936                 return result;
1937         }
1938         return nvme_create_io_queues(dev);
1941 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1943         struct nvme_queue *nvmeq = req->end_io_data;
1945         blk_mq_free_request(req);
1946         complete(&nvmeq->dev->ioq_wait);
1949 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1951         struct nvme_queue *nvmeq = req->end_io_data;
1952         u16 start, end;
1954         if (!error) {
1955                 unsigned long flags;
1957                 spin_lock_irqsave(&nvmeq->cq_lock, flags);
1958                 nvme_process_cq(nvmeq, &start, &end, -1);
1959                 spin_unlock_irqrestore(&nvmeq->cq_lock, flags);
1961                 nvme_complete_cqes(nvmeq, start, end);
1962         }
1964         nvme_del_queue_end(req, error);
1967 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1969         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1970         struct request *req;
1971         struct nvme_command cmd;
1973         memset(&cmd, 0, sizeof(cmd));
1974         cmd.delete_queue.opcode = opcode;
1975         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1977         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1978         if (IS_ERR(req))
1979                 return PTR_ERR(req);
1981         req->timeout = ADMIN_TIMEOUT;
1982         req->end_io_data = nvmeq;
1984         blk_execute_rq_nowait(q, NULL, req, false,
1985                         opcode == nvme_admin_delete_cq ?
1986                                 nvme_del_cq_end : nvme_del_queue_end);
1987         return 0;
1990 static void nvme_disable_io_queues(struct nvme_dev *dev)
1992         int pass, queues = dev->online_queues - 1;
1993         unsigned long timeout;
1994         u8 opcode = nvme_admin_delete_sq;
1996         for (pass = 0; pass < 2; pass++) {
1997                 int sent = 0, i = queues;
1999                 reinit_completion(&dev->ioq_wait);
2000  retry:
2001                 timeout = ADMIN_TIMEOUT;
2002                 for (; i > 0; i--, sent++)
2003                         if (nvme_delete_queue(&dev->queues[i], opcode))
2004                                 break;
2006                 while (sent--) {
2007                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2008                         if (timeout == 0)
2009                                 return;
2010                         if (i)
2011                                 goto retry;
2012                 }
2013                 opcode = nvme_admin_delete_cq;
2014         }
2017 /*
2018  * return error value only when tagset allocation failed
2019  */
2020 static int nvme_dev_add(struct nvme_dev *dev)
2022         int ret;
2024         if (!dev->ctrl.tagset) {
2025                 dev->tagset.ops = &nvme_mq_ops;
2026                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2027                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2028                 dev->tagset.numa_node = dev_to_node(dev->dev);
2029                 dev->tagset.queue_depth =
2030                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2031                 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2032                 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2033                         dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2034                                         nvme_pci_cmd_size(dev, true));
2035                 }
2036                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2037                 dev->tagset.driver_data = dev;
2039                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2040                 if (ret) {
2041                         dev_warn(dev->ctrl.device,
2042                                 "IO queues tagset allocation failed %d\n", ret);
2043                         return ret;
2044                 }
2045                 dev->ctrl.tagset = &dev->tagset;
2047                 nvme_dbbuf_set(dev);
2048         } else {
2049                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2051                 /* Free previously allocated queues that are no longer usable */
2052                 nvme_free_queues(dev, dev->online_queues);
2053         }
2055         return 0;
2058 static int nvme_pci_enable(struct nvme_dev *dev)
2060         int result = -ENOMEM;
2061         struct pci_dev *pdev = to_pci_dev(dev->dev);
2063         if (pci_enable_device_mem(pdev))
2064                 return result;
2066         pci_set_master(pdev);
2068         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2069             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2070                 goto disable;
2072         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2073                 result = -ENODEV;
2074                 goto disable;
2075         }
2077         /*
2078          * Some devices and/or platforms don't advertise or work with INTx
2079          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2080          * adjust this later.
2081          */
2082         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2083         if (result < 0)
2084                 return result;
2086         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2088         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2089                                 io_queue_depth);
2090         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2091         dev->dbs = dev->bar + 4096;
2093         /*
2094          * Temporary fix for the Apple controller found in the MacBook8,1 and
2095          * some MacBook7,1 to avoid controller resets and data loss.
2096          */
2097         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2098                 dev->q_depth = 2;
2099                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2100                         "set queue depth=%u to work around controller resets\n",
2101                         dev->q_depth);
2102         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2103                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2104                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2105                 dev->q_depth = 64;
2106                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2107                         "set queue depth=%u\n", dev->q_depth);
2108         }
2110         nvme_map_cmb(dev);
2112         pci_enable_pcie_error_reporting(pdev);
2113         pci_save_state(pdev);
2114         return 0;
2116  disable:
2117         pci_disable_device(pdev);
2118         return result;
2121 static void nvme_dev_unmap(struct nvme_dev *dev)
2123         if (dev->bar)
2124                 iounmap(dev->bar);
2125         pci_release_mem_regions(to_pci_dev(dev->dev));
2128 static void nvme_pci_disable(struct nvme_dev *dev)
2130         struct pci_dev *pdev = to_pci_dev(dev->dev);
2132         nvme_release_cmb(dev);
2133         pci_free_irq_vectors(pdev);
2135         if (pci_is_enabled(pdev)) {
2136                 pci_disable_pcie_error_reporting(pdev);
2137                 pci_disable_device(pdev);
2138         }
2141 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2143         int i;
2144         bool dead = true;
2145         struct pci_dev *pdev = to_pci_dev(dev->dev);
2147         mutex_lock(&dev->shutdown_lock);
2148         if (pci_is_enabled(pdev)) {
2149                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2151                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2152                     dev->ctrl.state == NVME_CTRL_RESETTING)
2153                         nvme_start_freeze(&dev->ctrl);
2154                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2155                         pdev->error_state  != pci_channel_io_normal);
2156         }
2158         /*
2159          * Give the controller a chance to complete all entered requests if
2160          * doing a safe shutdown.
2161          */
2162         if (!dead) {
2163                 if (shutdown)
2164                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2165         }
2167         nvme_stop_queues(&dev->ctrl);
2169         if (!dead && dev->ctrl.queue_count > 0) {
2170                 nvme_disable_io_queues(dev);
2171                 nvme_disable_admin_queue(dev, shutdown);
2172         }
2173         for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2174                 nvme_suspend_queue(&dev->queues[i]);
2176         nvme_pci_disable(dev);
2178         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2179         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2181         /*
2182          * The driver will not be starting up queues again if shutting down so
2183          * must flush all entered requests to their failed completion to avoid
2184          * deadlocking blk-mq hot-cpu notifier.
2185          */
2186         if (shutdown)
2187                 nvme_start_queues(&dev->ctrl);
2188         mutex_unlock(&dev->shutdown_lock);
2191 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2193         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2194                                                 PAGE_SIZE, PAGE_SIZE, 0);
2195         if (!dev->prp_page_pool)
2196                 return -ENOMEM;
2198         /* Optimisation for I/Os between 4k and 128k */
2199         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2200                                                 256, 256, 0);
2201         if (!dev->prp_small_pool) {
2202                 dma_pool_destroy(dev->prp_page_pool);
2203                 return -ENOMEM;
2204         }
2205         return 0;
2208 static void nvme_release_prp_pools(struct nvme_dev *dev)
2210         dma_pool_destroy(dev->prp_page_pool);
2211         dma_pool_destroy(dev->prp_small_pool);
2214 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2216         struct nvme_dev *dev = to_nvme_dev(ctrl);
2218         nvme_dbbuf_dma_free(dev);
2219         put_device(dev->dev);
2220         if (dev->tagset.tags)
2221                 blk_mq_free_tag_set(&dev->tagset);
2222         if (dev->ctrl.admin_q)
2223                 blk_put_queue(dev->ctrl.admin_q);
2224         kfree(dev->queues);
2225         free_opal_dev(dev->ctrl.opal_dev);
2226         mempool_destroy(dev->iod_mempool);
2227         kfree(dev);
2230 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2232         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2234         nvme_get_ctrl(&dev->ctrl);
2235         nvme_dev_disable(dev, false);
2236         nvme_kill_queues(&dev->ctrl);
2237         if (!queue_work(nvme_wq, &dev->remove_work))
2238                 nvme_put_ctrl(&dev->ctrl);
2241 static void nvme_reset_work(struct work_struct *work)
2243         struct nvme_dev *dev =
2244                 container_of(work, struct nvme_dev, ctrl.reset_work);
2245         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2246         int result = -ENODEV;
2247         enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2249         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2250                 goto out;
2252         /*
2253          * If we're called to reset a live controller first shut it down before
2254          * moving on.
2255          */
2256         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2257                 nvme_dev_disable(dev, false);
2259         /*
2260          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2261          * initializing procedure here.
2262          */
2263         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2264                 dev_warn(dev->ctrl.device,
2265                         "failed to mark controller CONNECTING\n");
2266                 goto out;
2267         }
2269         result = nvme_pci_enable(dev);
2270         if (result)
2271                 goto out;
2273         result = nvme_pci_configure_admin_queue(dev);
2274         if (result)
2275                 goto out;
2277         result = nvme_alloc_admin_tags(dev);
2278         if (result)
2279                 goto out;
2281         /*
2282          * Limit the max command size to prevent iod->sg allocations going
2283          * over a single page.
2284          */
2285         dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2286         dev->ctrl.max_segments = NVME_MAX_SEGS;
2288         result = nvme_init_identify(&dev->ctrl);
2289         if (result)
2290                 goto out;
2292         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2293                 if (!dev->ctrl.opal_dev)
2294                         dev->ctrl.opal_dev =
2295                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2296                 else if (was_suspend)
2297                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2298         } else {
2299                 free_opal_dev(dev->ctrl.opal_dev);
2300                 dev->ctrl.opal_dev = NULL;
2301         }
2303         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2304                 result = nvme_dbbuf_dma_alloc(dev);
2305                 if (result)
2306                         dev_warn(dev->dev,
2307                                  "unable to allocate dma for dbbuf\n");
2308         }
2310         if (dev->ctrl.hmpre) {
2311                 result = nvme_setup_host_mem(dev);
2312                 if (result < 0)
2313                         goto out;
2314         }
2316         result = nvme_setup_io_queues(dev);
2317         if (result)
2318                 goto out;
2320         /*
2321          * Keep the controller around but remove all namespaces if we don't have
2322          * any working I/O queue.
2323          */
2324         if (dev->online_queues < 2) {
2325                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2326                 nvme_kill_queues(&dev->ctrl);
2327                 nvme_remove_namespaces(&dev->ctrl);
2328                 new_state = NVME_CTRL_ADMIN_ONLY;
2329         } else {
2330                 nvme_start_queues(&dev->ctrl);
2331                 nvme_wait_freeze(&dev->ctrl);
2332                 /* hit this only when allocate tagset fails */
2333                 if (nvme_dev_add(dev))
2334                         new_state = NVME_CTRL_ADMIN_ONLY;
2335                 nvme_unfreeze(&dev->ctrl);
2336         }
2338         /*
2339          * If only admin queue live, keep it to do further investigation or
2340          * recovery.
2341          */
2342         if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2343                 dev_warn(dev->ctrl.device,
2344                         "failed to mark controller state %d\n", new_state);
2345                 goto out;
2346         }
2348         nvme_start_ctrl(&dev->ctrl);
2349         return;
2351  out:
2352         nvme_remove_dead_ctrl(dev, result);
2355 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2357         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2358         struct pci_dev *pdev = to_pci_dev(dev->dev);
2360         if (pci_get_drvdata(pdev))
2361                 device_release_driver(&pdev->dev);
2362         nvme_put_ctrl(&dev->ctrl);
2365 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2367         *val = readl(to_nvme_dev(ctrl)->bar + off);
2368         return 0;
2371 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2373         writel(val, to_nvme_dev(ctrl)->bar + off);
2374         return 0;
2377 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2379         *val = readq(to_nvme_dev(ctrl)->bar + off);
2380         return 0;
2383 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2385         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2387         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2390 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2391         .name                   = "pcie",
2392         .module                 = THIS_MODULE,
2393         .flags                  = NVME_F_METADATA_SUPPORTED,
2394         .reg_read32             = nvme_pci_reg_read32,
2395         .reg_write32            = nvme_pci_reg_write32,
2396         .reg_read64             = nvme_pci_reg_read64,
2397         .free_ctrl              = nvme_pci_free_ctrl,
2398         .submit_async_event     = nvme_pci_submit_async_event,
2399         .get_address            = nvme_pci_get_address,
2400 };
2402 static int nvme_dev_map(struct nvme_dev *dev)
2404         struct pci_dev *pdev = to_pci_dev(dev->dev);
2406         if (pci_request_mem_regions(pdev, "nvme"))
2407                 return -ENODEV;
2409         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2410                 goto release;
2412         return 0;
2413   release:
2414         pci_release_mem_regions(pdev);
2415         return -ENODEV;
2418 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2420         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2421                 /*
2422                  * Several Samsung devices seem to drop off the PCIe bus
2423                  * randomly when APST is on and uses the deepest sleep state.
2424                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2425                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2426                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2427                  * laptops.
2428                  */
2429                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2430                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2431                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2432                         return NVME_QUIRK_NO_DEEPEST_PS;
2433         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2434                 /*
2435                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2436                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2437                  * within few minutes after bootup on a Coffee Lake board -
2438                  * ASUS PRIME Z370-A
2439                  */
2440                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2441                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2442                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2443                         return NVME_QUIRK_NO_APST;
2444         }
2446         return 0;
2449 static void nvme_async_probe(void *data, async_cookie_t cookie)
2451         struct nvme_dev *dev = data;
2453         nvme_reset_ctrl_sync(&dev->ctrl);
2454         flush_work(&dev->ctrl.scan_work);
2455         nvme_put_ctrl(&dev->ctrl);
2458 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2460         int node, result = -ENOMEM;
2461         struct nvme_dev *dev;
2462         unsigned long quirks = id->driver_data;
2463         size_t alloc_size;
2465         node = dev_to_node(&pdev->dev);
2466         if (node == NUMA_NO_NODE)
2467                 set_dev_node(&pdev->dev, first_memory_node);
2469         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2470         if (!dev)
2471                 return -ENOMEM;
2473         dev->queues = kcalloc_node(num_possible_cpus() + 1,
2474                         sizeof(struct nvme_queue), GFP_KERNEL, node);
2475         if (!dev->queues)
2476                 goto free;
2478         dev->dev = get_device(&pdev->dev);
2479         pci_set_drvdata(pdev, dev);
2481         result = nvme_dev_map(dev);
2482         if (result)
2483                 goto put_pci;
2485         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2486         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2487         mutex_init(&dev->shutdown_lock);
2488         init_completion(&dev->ioq_wait);
2490         result = nvme_setup_prp_pools(dev);
2491         if (result)
2492                 goto unmap;
2494         quirks |= check_vendor_combination_bug(pdev);
2496         /*
2497          * Double check that our mempool alloc size will cover the biggest
2498          * command we support.
2499          */
2500         alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2501                                                 NVME_MAX_SEGS, true);
2502         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2504         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2505                                                 mempool_kfree,
2506                                                 (void *) alloc_size,
2507                                                 GFP_KERNEL, node);
2508         if (!dev->iod_mempool) {
2509                 result = -ENOMEM;
2510                 goto release_pools;
2511         }
2513         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2514                         quirks);
2515         if (result)
2516                 goto release_mempool;
2518         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2520         nvme_get_ctrl(&dev->ctrl);
2521         async_schedule(nvme_async_probe, dev);
2523         return 0;
2525  release_mempool:
2526         mempool_destroy(dev->iod_mempool);
2527  release_pools:
2528         nvme_release_prp_pools(dev);
2529  unmap:
2530         nvme_dev_unmap(dev);
2531  put_pci:
2532         put_device(dev->dev);
2533  free:
2534         kfree(dev->queues);
2535         kfree(dev);
2536         return result;
2539 static void nvme_reset_prepare(struct pci_dev *pdev)
2541         struct nvme_dev *dev = pci_get_drvdata(pdev);
2542         nvme_dev_disable(dev, false);
2545 static void nvme_reset_done(struct pci_dev *pdev)
2547         struct nvme_dev *dev = pci_get_drvdata(pdev);
2548         nvme_reset_ctrl_sync(&dev->ctrl);
2551 static void nvme_shutdown(struct pci_dev *pdev)
2553         struct nvme_dev *dev = pci_get_drvdata(pdev);
2554         nvme_dev_disable(dev, true);
2557 /*
2558  * The driver's remove may be called on a device in a partially initialized
2559  * state. This function must not have any dependencies on the device state in
2560  * order to proceed.
2561  */
2562 static void nvme_remove(struct pci_dev *pdev)
2564         struct nvme_dev *dev = pci_get_drvdata(pdev);
2566         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2568         cancel_work_sync(&dev->ctrl.reset_work);
2569         pci_set_drvdata(pdev, NULL);
2571         if (!pci_device_is_present(pdev)) {
2572                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2573                 nvme_dev_disable(dev, true);
2574         }
2576         flush_work(&dev->ctrl.reset_work);
2577         nvme_stop_ctrl(&dev->ctrl);
2578         nvme_remove_namespaces(&dev->ctrl);
2579         nvme_dev_disable(dev, true);
2580         nvme_free_host_mem(dev);
2581         nvme_dev_remove_admin(dev);
2582         nvme_free_queues(dev, 0);
2583         nvme_uninit_ctrl(&dev->ctrl);
2584         nvme_release_prp_pools(dev);
2585         nvme_dev_unmap(dev);
2586         nvme_put_ctrl(&dev->ctrl);
2589 #ifdef CONFIG_PM_SLEEP
2590 static int nvme_suspend(struct device *dev)
2592         struct pci_dev *pdev = to_pci_dev(dev);
2593         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2595         nvme_dev_disable(ndev, true);
2596         return 0;
2599 static int nvme_resume(struct device *dev)
2601         struct pci_dev *pdev = to_pci_dev(dev);
2602         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2604         nvme_reset_ctrl(&ndev->ctrl);
2605         return 0;
2607 #endif
2609 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2611 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2612                                                 pci_channel_state_t state)
2614         struct nvme_dev *dev = pci_get_drvdata(pdev);
2616         /*
2617          * A frozen channel requires a reset. When detected, this method will
2618          * shutdown the controller to quiesce. The controller will be restarted
2619          * after the slot reset through driver's slot_reset callback.
2620          */
2621         switch (state) {
2622         case pci_channel_io_normal:
2623                 return PCI_ERS_RESULT_CAN_RECOVER;
2624         case pci_channel_io_frozen:
2625                 dev_warn(dev->ctrl.device,
2626                         "frozen state error detected, reset controller\n");
2627                 nvme_dev_disable(dev, false);
2628                 return PCI_ERS_RESULT_NEED_RESET;
2629         case pci_channel_io_perm_failure:
2630                 dev_warn(dev->ctrl.device,
2631                         "failure state error detected, request disconnect\n");
2632                 return PCI_ERS_RESULT_DISCONNECT;
2633         }
2634         return PCI_ERS_RESULT_NEED_RESET;
2637 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2639         struct nvme_dev *dev = pci_get_drvdata(pdev);
2641         dev_info(dev->ctrl.device, "restart after slot reset\n");
2642         pci_restore_state(pdev);
2643         nvme_reset_ctrl(&dev->ctrl);
2644         return PCI_ERS_RESULT_RECOVERED;
2647 static void nvme_error_resume(struct pci_dev *pdev)
2649         struct nvme_dev *dev = pci_get_drvdata(pdev);
2651         flush_work(&dev->ctrl.reset_work);
2652         pci_cleanup_aer_uncorrect_error_status(pdev);
2655 static const struct pci_error_handlers nvme_err_handler = {
2656         .error_detected = nvme_error_detected,
2657         .slot_reset     = nvme_slot_reset,
2658         .resume         = nvme_error_resume,
2659         .reset_prepare  = nvme_reset_prepare,
2660         .reset_done     = nvme_reset_done,
2661 };
2663 static const struct pci_device_id nvme_id_table[] = {
2664         { PCI_VDEVICE(INTEL, 0x0953),
2665                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2666                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2667         { PCI_VDEVICE(INTEL, 0x0a53),
2668                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2669                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2670         { PCI_VDEVICE(INTEL, 0x0a54),
2671                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2672                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2673         { PCI_VDEVICE(INTEL, 0x0a55),
2674                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2675                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2676         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2677                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2678                                 NVME_QUIRK_MEDIUM_PRIO_SQ },
2679         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2680                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2681         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2682                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2683         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2684                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2685         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2686                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2687         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2688                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2689         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2690                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2691         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2692                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2693         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2694                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2695         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2696                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2697         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
2698                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2699         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2700         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2701         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2702         { 0, }
2703 };
2704 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2706 static struct pci_driver nvme_driver = {
2707         .name           = "nvme",
2708         .id_table       = nvme_id_table,
2709         .probe          = nvme_probe,
2710         .remove         = nvme_remove,
2711         .shutdown       = nvme_shutdown,
2712         .driver         = {
2713                 .pm     = &nvme_dev_pm_ops,
2714         },
2715         .sriov_configure = pci_sriov_configure_simple,
2716         .err_handler    = &nvme_err_handler,
2717 };
2719 static int __init nvme_init(void)
2721         return pci_register_driver(&nvme_driver);
2724 static void __exit nvme_exit(void)
2726         pci_unregister_driver(&nvme_driver);
2727         flush_workqueue(nvme_wq);
2728         _nvme_check_size();
2731 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2732 MODULE_LICENSE("GPL");
2733 MODULE_VERSION("1.0");
2734 module_init(nvme_init);
2735 module_exit(nvme_exit);