]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - rpmsg/rpmsg.git/blob - drivers/remoteproc/ti_k3_r5_remoteproc.c
remoteproc/k3-r5: fix probe failure on Split-mode _only_ devices
[rpmsg/rpmsg.git] / drivers / remoteproc / ti_k3_r5_remoteproc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * TI K3 R5F (MCU) Remote Processor driver
4  *
5  * Copyright (C) 2017-2019 Texas Instruments Incorporated - http://www.ti.com/
6  *      Suman Anna <s-anna@ti.com>
7  */
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/mailbox_client.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/of_address.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/remoteproc.h>
21 #include <linux/omap-mailbox.h>
22 #include <linux/reset.h>
23 #include <linux/soc/ti/ti_sci_protocol.h>
25 #include "omap_remoteproc.h"
26 #include "remoteproc_internal.h"
27 #include "ti_sci_proc.h"
29 /* This address can either be for ATCM or BTCM with the other at address 0x0 */
30 #define K3_R5_TCM_DEV_ADDR      0x41010000
32 /* R5 TI-SCI Processor Configuration Flags */
33 #define PROC_BOOT_CFG_FLAG_R5_DBG_EN                    0x00000001
34 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN                 0x00000002
35 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP                  0x00000100
36 #define PROC_BOOT_CFG_FLAG_R5_TEINIT                    0x00000200
37 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN                   0x00000400
38 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE               0x00000800
39 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN                   0x00001000
40 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN                   0x00002000
42 /* R5 TI-SCI Processor Control Flags */
43 #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT                0x00000001
45 /* R5 TI-SCI Processor Status Flags */
46 #define PROC_BOOT_STATUS_FLAG_R5_WFE                    0x00000001
47 #define PROC_BOOT_STATUS_FLAG_R5_WFI                    0x00000002
48 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED              0x00000004
49 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED     0x00000100
51 /**
52  * struct k3_r5_mem - internal memory structure
53  * @cpu_addr: MPU virtual address of the memory region
54  * @bus_addr: Bus address used to access the memory region
55  * @dev_addr: Device address from remoteproc view
56  * @size: Size of the memory region
57  */
58 struct k3_r5_mem {
59         void __iomem *cpu_addr;
60         phys_addr_t bus_addr;
61         u32 dev_addr;
62         size_t size;
63 };
65 enum cluster_mode {
66         CLUSTER_MODE_SPLIT = 0,
67         CLUSTER_MODE_LOCKSTEP,
68 };
70 /**
71  * struct k3_r5_cluster - K3 R5F Cluster structure
72  * @dev: cached device pointer
73  * @mode: Mode to configure the Cluster - Split or LockStep
74  * @cores: list of R5 cores within the cluster
75  */
76 struct k3_r5_cluster {
77         struct device *dev;
78         enum cluster_mode mode;
79         struct list_head cores;
80 };
82 /**
83  * struct k3_r5_core - K3 R5 core structure
84  * @dev: cached device pointer
85  * @rproc: rproc handle representing this core
86  * @mem: internal memory regions data
87  * @sram: on-chip SRAM memory regions data
88  * @num_mems: number of internal memory regions
89  * @num_sram: number of on-chip SRAM memory regions
90  * @reset: reset control handle
91  * @tsp: TI-SCI processor control handle
92  * @ti_sci: TI-SCI handle
93  * @ti_sci_id: TI-SCI device identifier
94  * @atcm_enable: flag to control ATCM enablement
95  * @btcm_enable: flag to control BTCM enablement
96  * @loczrama: flag to dictate which TCM is at device address 0x0
97  */
98 struct k3_r5_core {
99         struct list_head elem;
100         struct device *dev;
101         struct rproc *rproc;
102         struct k3_r5_mem *mem;
103         struct k3_r5_mem *sram;
104         int num_mems;
105         int num_sram;
106         struct reset_control *reset;
107         struct ti_sci_proc *tsp;
108         const struct ti_sci_handle *ti_sci;
109         u32 ti_sci_id;
110         u32 atcm_enable;
111         u32 btcm_enable;
112         u32 loczrama;
113 };
115 /**
116  * struct k3_r5_rproc - K3 remote processor state
117  * @dev: cached device pointer
118  * @cluster: cached pointer to parent cluster structure
119  * @mbox: mailbox channel handle
120  * @client: mailbox client to request the mailbox channel
121  * @rproc: rproc handle
122  * @core: cached pointer to r5 core structure being used
123  * @rmem: reserved memory regions data
124  * @num_rmems: number of reserved memory regions
125  */
126 struct k3_r5_rproc {
127         struct device *dev;
128         struct k3_r5_cluster *cluster;
129         struct mbox_chan *mbox;
130         struct mbox_client client;
131         struct rproc *rproc;
132         struct k3_r5_core *core;
133         struct k3_r5_mem *rmem;
134         int num_rmems;
135 };
137 /**
138  * struct k3_r5_rproc_dev_data - device data for the remote processor
139  * @device_name: device name of the remote processor
140  * @fw_name: firmware name to use
141  */
142 struct k3_r5_rproc_dev_data {
143         const char *device_name;
144         const char *fw_name;
145 };
147 /**
148  * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
149  * @client: mailbox client pointer used for requesting the mailbox channel
150  * @data: mailbox payload
151  *
152  * This handler is invoked by the OMAP mailbox driver whenever a mailbox
153  * message is received. Usually, the mailbox payload simply contains
154  * the index of the virtqueue that is kicked by the remote processor,
155  * and we let remoteproc core handle it.
156  *
157  * In addition to virtqueue indices, we also have some out-of-band values
158  * that indicate different events. Those values are deliberately very
159  * large so they don't coincide with virtqueue indices.
160  */
161 static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
163         struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
164                                                 client);
165         struct device *dev = kproc->rproc->dev.parent;
166         const char *name = kproc->rproc->name;
167         u32 msg = to_omap_mbox_msg(data);
169         dev_dbg(dev, "mbox msg: 0x%x\n", msg);
171         switch (msg) {
172         case RP_MBOX_CRASH:
173                 /*
174                  * remoteproc detected an exception, but error recovery is not
175                  * supported. So, just log this for now
176                  */
177                 dev_err(dev, "K3 R5F rproc %s crashed\n", name);
178                 break;
179         case RP_MBOX_ECHO_REPLY:
180                 dev_info(dev, "received echo reply from %s\n", name);
181                 break;
182         default:
183                 /* silently handle all other valid messages */
184                 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
185                         return;
186                 if (msg > kproc->rproc->max_notifyid) {
187                         dev_dbg(dev, "dropping unknown message 0x%x", msg);
188                         return;
189                 }
190                 /* msg contains the index of the triggered vring */
191                 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
192                         dev_dbg(dev, "no message was found in vqid %d\n", msg);
193         }
196 /* kick a virtqueue */
197 static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
199         struct k3_r5_rproc *kproc = rproc->priv;
200         struct device *dev = rproc->dev.parent;
201         mbox_msg_t msg = (mbox_msg_t)vqid;
202         int ret;
204         /* send the index of the triggered virtqueue in the mailbox payload */
205         ret = mbox_send_message(kproc->mbox, (void *)msg);
206         if (ret < 0)
207                 dev_err(dev, "failed to send mailbox message, status = %d\n",
208                         ret);
211 static int k3_r5_split_reset(struct k3_r5_core *core)
213         int ret;
215         ret = reset_control_assert(core->reset);
216         if (ret) {
217                 dev_err(core->dev, "local-reset assert failed, ret = %d\n",
218                         ret);
219                 return ret;
220         }
222         ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
223                                                    core->ti_sci_id);
224         if (ret) {
225                 dev_err(core->dev, "module-reset assert failed, ret = %d\n",
226                         ret);
227                 if (reset_control_deassert(core->reset))
228                         dev_warn(core->dev, "local-reset deassert back failed\n");
229         }
231         return ret;
234 static int k3_r5_split_release(struct k3_r5_core *core)
236         int ret;
238         ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
239                                                    core->ti_sci_id);
240         if (ret) {
241                 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
242                         ret);
243                 return ret;
244         }
246         ret = reset_control_deassert(core->reset);
247         if (ret) {
248                 dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
249                         ret);
250                 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
251                                                          core->ti_sci_id))
252                         dev_warn(core->dev, "module-reset assert back failed\n");
253         }
255         return ret;
258 static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
260         struct k3_r5_core *core;
261         int ret;
263         /* assert local reset on all applicable cores */
264         list_for_each_entry(core, &cluster->cores, elem) {
265                 ret = reset_control_assert(core->reset);
266                 if (ret) {
267                         dev_err(core->dev, "local-reset assert failed, ret = %d\n",
268                                 ret);
269                         core = list_prev_entry(core, elem);
270                         goto unroll_local_reset;
271                 }
272         }
274         /* disable PSC modules on all applicable cores */
275         list_for_each_entry(core, &cluster->cores, elem) {
276                 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
277                                                            core->ti_sci_id);
278                 if (ret) {
279                         dev_err(core->dev, "module-reset assert failed, ret = %d\n",
280                                 ret);
281                         goto unroll_module_reset;
282                 }
283         }
285         return 0;
287 unroll_module_reset:
288         list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
289                 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
290                                                          core->ti_sci_id))
291                         dev_warn(core->dev, "module-reset assert back failed\n");
292         }
293         core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
294 unroll_local_reset:
295         list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
296                 if (reset_control_deassert(core->reset))
297                         dev_warn(core->dev, "local-reset deassert back failed\n");
298         }
300         return ret;
303 static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
305         struct k3_r5_core *core;
306         int ret;
308         /* enable PSC modules on all applicable cores */
309         list_for_each_entry_reverse(core, &cluster->cores, elem) {
310                 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
311                                                            core->ti_sci_id);
312                 if (ret) {
313                         dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
314                                 ret);
315                         core = list_next_entry(core, elem);
316                         goto unroll_module_reset;
317                 }
318         }
320         /* deassert local reset on all applicable cores */
321         list_for_each_entry_reverse(core, &cluster->cores, elem) {
322                 ret = reset_control_deassert(core->reset);
323                 if (ret) {
324                         dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
325                                 ret);
326                         goto unroll_local_reset;
327                 }
328         }
330         return 0;
332 unroll_local_reset:
333         list_for_each_entry_continue(core, &cluster->cores, elem) {
334                 if (reset_control_assert(core->reset))
335                         dev_warn(core->dev, "local-reset assert back failed\n");
336         }
337         core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
338 unroll_module_reset:
339         list_for_each_entry_from(core, &cluster->cores, elem) {
340                 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
341                                                          core->ti_sci_id))
342                         dev_warn(core->dev, "module-reset assert back failed\n");
343         }
345         return ret;
348 static inline int k3_r5_core_halt(struct k3_r5_core *core)
350         return ti_sci_proc_set_control(core->tsp,
351                                        PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
354 static inline int k3_r5_core_run(struct k3_r5_core *core)
356         return ti_sci_proc_set_control(core->tsp,
357                                        0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
360 /*
361  * The R5F cores have controls for both a reset and a halt/run. The code
362  * execution from DDR requires the initial boot-strapping code to be run
363  * from the internal TCMs. This function is used to release the resets on
364  * applicable cores to allow loading into the TCMs. The .prepare() ops is
365  * invoked by remoteproc core before any firmware loading, and is followed
366  * by the .start() ops after loading to actually let the R5 cores run.
367  */
368 static int k3_r5_rproc_prepare(struct rproc *rproc)
370         struct k3_r5_rproc *kproc = rproc->priv;
371         struct k3_r5_cluster *cluster = kproc->cluster;
372         struct k3_r5_core *core = kproc->core;
373         struct device *dev = kproc->dev;
374         int ret;
376         ret = cluster->mode ? k3_r5_lockstep_release(cluster) :
377                               k3_r5_split_release(core);
378         if (ret)
379                 dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
380                         ret);
382         /*
383          * Zero out both TCMs unconditionally (access from v8 Arm core is not
384          * affected by ATCM & BTCM enable configuration values) so that ECC
385          * can be effective on all TCM addresses.
386          */
387         dev_dbg(dev, "zeroing out ATCM memory\n");
388         memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
390         dev_dbg(dev, "zeroing out BTCM memory\n");
391         memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
393         return ret;
396 /*
397  * This function implements the .unprepare() ops and performs the complimentary
398  * operations to that of the .prepare() ops. The function is used to assert the
399  * resets on all applicable cores for the rproc device (depending on LockStep
400  * or Split mode). This completes the second portion of powering down the R5F
401  * cores. The cores themselves are only halted in the .stop() ops, and the
402  * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
403  * stopped.
404  */
405 static int k3_r5_rproc_unprepare(struct rproc *rproc)
407         struct k3_r5_rproc *kproc = rproc->priv;
408         struct k3_r5_cluster *cluster = kproc->cluster;
409         struct k3_r5_core *core = kproc->core;
410         struct device *dev = kproc->dev;
411         int ret;
413         ret = cluster->mode ? k3_r5_lockstep_reset(cluster) :
414                               k3_r5_split_reset(core);
415         if (ret)
416                 dev_err(dev, "unable to disable cores, ret = %d\n", ret);
418         return ret;
421 /*
422  * The R5F start sequence includes two different operations
423  * 1. Configure the boot vector for R5F core(s)
424  * 2. Unhalt/Run the R5F core(s)
425  *
426  * The sequence is different between LockStep and Split modes. The LockStep
427  * mode requires the boot vector to be configured only for Core0, and then
428  * unhalt both the cores to start the execution - Core1 needs to be unhalted
429  * first followed by Core0. The Split-mode requires that Core0 to be maintained
430  * always in a higher power state that Core1 (implying Core1 needs to be started
431  * always only after Core0 is started).
432  */
433 static int k3_r5_rproc_start(struct rproc *rproc)
435         struct k3_r5_rproc *kproc = rproc->priv;
436         struct k3_r5_cluster *cluster = kproc->cluster;
437         struct mbox_client *client = &kproc->client;
438         struct device *dev = kproc->dev;
439         struct k3_r5_core *core;
440         u32 boot_addr;
441         int ret;
443         client->dev = dev;
444         client->tx_done = NULL;
445         client->rx_callback = k3_r5_rproc_mbox_callback;
446         client->tx_block = false;
447         client->knows_txdone = false;
449         kproc->mbox = mbox_request_channel(client, 0);
450         if (IS_ERR(kproc->mbox)) {
451                 ret = -EBUSY;
452                 dev_err(dev, "mbox_request_channel failed: %ld\n",
453                         PTR_ERR(kproc->mbox));
454                 return ret;
455         }
457         /*
458          * Ping the remote processor, this is only for sanity-sake for now;
459          * there is no functional effect whatsoever.
460          *
461          * Note that the reply will _not_ arrive immediately: this message
462          * will wait in the mailbox fifo until the remote processor is booted.
463          */
464         ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
465         if (ret < 0) {
466                 dev_err(dev, "mbox_send_message failed: %d\n", ret);
467                 goto put_mbox;
468         }
470         boot_addr = rproc->bootaddr;
471         /* TODO: add boot_addr sanity checking */
472         dev_err(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
474         /* boot vector need not be programmed for Core1 in LockStep mode */
475         core = kproc->core;
476         ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
477         if (ret)
478                 goto put_mbox;
480         /* unhalt/run all applicable cores */
481         if (cluster->mode) {
482                 list_for_each_entry_reverse(core, &cluster->cores, elem) {
483                         ret = k3_r5_core_run(core);
484                         if (ret)
485                                 goto unroll_core_run;
486                 }
487         } else {
488                 ret = k3_r5_core_run(core);
489                 if (ret)
490                         goto put_mbox;
491         }
493         return 0;
495 unroll_core_run:
496         list_for_each_entry_continue(core, &cluster->cores, elem) {
497                 if (k3_r5_core_halt(core))
498                         dev_warn(core->dev, "core halt back failed\n");
499         }
500 put_mbox:
501         mbox_free_channel(kproc->mbox);
502         return ret;
505 /*
506  * The R5F stop function includes the following operations
507  * 1. Halt R5F core(s)
508  *
509  * The sequence is different between LockStep and Split modes, and the order
510  * of cores the operations are performed are also in general reverse to that
511  * of the start function. The LockStep mode requires each operation to be
512  * performed first on Core0 followed by Core1. The Split-mode requires that
513  * Core0 to be maintained always in a higher power state that Core1 (implying
514  * Core1 needs to be stopped first before Core0).
515  *
516  * Note that the R5F halt operation in general is not effective when the R5F
517  * core is running, but is needed to make sure the core won't run after
518  * deasserting the reset the subsequent time. The asserting of reset can
519  * be done here, but is preferred to be done in the .unprepare() ops - this
520  * maintains the symmetric behavior between the .start(), .stop(), .prepare()
521  * and .unprepare() ops, and also balances them well between sysfs 'state'
522  * flow and device bind/unbind or module removal.
523  */
524 static int k3_r5_rproc_stop(struct rproc *rproc)
526         struct k3_r5_rproc *kproc = rproc->priv;
527         struct k3_r5_cluster *cluster = kproc->cluster;
528         struct k3_r5_core *core = kproc->core;
529         int ret;
531         /* halt all applicable cores */
532         if (cluster->mode) {
533                 list_for_each_entry(core, &cluster->cores, elem) {
534                         ret = k3_r5_core_halt(core);
535                         if (ret) {
536                                 core = list_prev_entry(core, elem);
537                                 goto unroll_core_halt;
538                         }
539                 }
540         } else {
541                 ret = k3_r5_core_halt(core);
542                 if (ret)
543                         goto out;
544         }
546         mbox_free_channel(kproc->mbox);
548         return 0;
550 unroll_core_halt:
551         list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
552                 if (k3_r5_core_run(core))
553                         dev_warn(core->dev, "core run back failed\n");
554         }
555 out:
556         return ret;
559 /*
560  * Internal Memory translation helper
561  *
562  * Custom function implementing the rproc .da_to_va ops to provide address
563  * translation (device address to kernel virtual address) for internal RAMs
564  * present in a DSP or IPU device). The translated addresses can be used
565  * either by the remoteproc core for loading, or by any rpmsg bus drivers.
566  */
567 static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, int len,
568                                   u32 flags)
570         struct k3_r5_rproc *kproc = rproc->priv;
571         struct k3_r5_core *core = kproc->core;
572         void __iomem *va = NULL;
573         phys_addr_t bus_addr;
574         u32 dev_addr, offset;
575         size_t size;
576         int i;
578         if (len <= 0)
579                 return NULL;
581         /* handle both R5 and SoC views of ATCM and BTCM */
582         for (i = 0; i < core->num_mems; i++) {
583                 bus_addr = core->mem[i].bus_addr;
584                 dev_addr = core->mem[i].dev_addr;
585                 size = core->mem[i].size;
587                 /* handle R5-view addresses of TCMs */
588                 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
589                         offset = da - dev_addr;
590                         va = core->mem[i].cpu_addr + offset;
591                         return (__force void *)va;
592                 }
594                 /* handle SoC-view addresses of TCMs */
595                 if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
596                         offset = da - bus_addr;
597                         va = core->mem[i].cpu_addr + offset;
598                         return (__force void *)va;
599                 }
600         }
602         /* handle any SRAM regions using SoC-view addresses */
603         for (i = 0; i < core->num_sram; i++) {
604                 dev_addr = core->sram[i].dev_addr;
605                 size = core->sram[i].size;
607                 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
608                         offset = da - dev_addr;
609                         va = core->sram[i].cpu_addr + offset;
610                         return (__force void *)va;
611                 }
612         }
614         /* handle static DDR reserved memory regions */
615         for (i = 0; i < kproc->num_rmems; i++) {
616                 dev_addr = kproc->rmem[i].dev_addr;
617                 size = kproc->rmem[i].size;
619                 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
620                         offset = da - dev_addr;
621                         va = kproc->rmem[i].cpu_addr + offset;
622                         return (__force void *)va;
623                 }
624         }
626         return NULL;
629 static const struct rproc_ops k3_r5_rproc_ops = {
630         .prepare        = k3_r5_rproc_prepare,
631         .unprepare      = k3_r5_rproc_unprepare,
632         .start          = k3_r5_rproc_start,
633         .stop           = k3_r5_rproc_stop,
634         .kick           = k3_r5_rproc_kick,
635         .da_to_va       = k3_r5_rproc_da_to_va,
636 };
638 static const char *k3_r5_rproc_get_firmware(struct device *dev)
640         const struct k3_r5_rproc_dev_data *data =
641                                 of_device_get_match_data(dev->parent);
643         if (!data) {
644                 dev_err(dev, "data is NULL, %s\n", dev_name(dev));
645                 return ERR_PTR(-ENODEV);
646         }
648         for (; data && data->device_name; data++) {
649                 if (!strcmp(dev_name(dev), data->device_name))
650                         return data->fw_name;
651         }
653         return ERR_PTR(-ENODEV);
656 static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
658         struct k3_r5_cluster *cluster = kproc->cluster;
659         struct device *dev = kproc->dev;
660         struct k3_r5_core *core0, *core, *temp;
661         u32 ctrl = 0, cfg = 0, stat = 0;
662         u32 set_cfg = 0, clr_cfg = 0;
663         u64 boot_vec = 0;
664         bool lockstep_en;
665         int ret;
667         core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
668         core = cluster->mode ? core0 : kproc->core;
670         ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
671                                      &stat);
672         if (ret < 0)
673                 return ret;
675         dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
676                 boot_vec, cfg, ctrl, stat);
678         lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
679         if (!lockstep_en && cluster->mode) {
680                 dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
681                 cluster->mode = 0;
682         }
684         /* always enable ARM mode and set boot vector to 0 */
685         boot_vec = 0x0;
686         if (core == core0) {
687                 clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
688                 if (lockstep_en)
689                         clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
690         }
692         if (core->atcm_enable)
693                 set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
694         else
695                 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
697         if (core->btcm_enable)
698                 set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
699         else
700                 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
702         if (core->loczrama)
703                 set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
704         else
705                 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
707         if (cluster->mode) {
708                 /*
709                  * work around system firmware limitations to make sure both
710                  * cores are programmed symmetrically in LockStep. LockStep
711                  * and TEINIT config is only allowed with Core0.
712                  */
713                 list_for_each_entry(temp, &cluster->cores, elem) {
714                         ret = k3_r5_core_halt(core);
715                         if (ret)
716                                 goto out;
718                         if (temp != core) {
719                                 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
720                                 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
721                         }
722                         ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
723                                                      set_cfg, clr_cfg);
724                         if (ret)
725                                 goto out;
726                 }
728                 set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
729                 clr_cfg = 0;
730                 ret = ti_sci_proc_set_config(core->tsp, boot_vec,
731                                              set_cfg, clr_cfg);
732         } else {
733                 ret = k3_r5_core_halt(core);
734                 if (ret)
735                         goto out;
737                 ret = ti_sci_proc_set_config(core->tsp, boot_vec,
738                                              set_cfg, clr_cfg);
739         }
741 out:
742         return ret;
745 static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
747         struct device *dev = kproc->dev;
748         struct device_node *np = dev->of_node;
749         struct device_node *rmem_np;
750         struct reserved_mem *rmem;
751         int num_rmems;
752         int ret, i;
754         num_rmems = of_property_count_elems_of_size(np, "memory-region",
755                                                     sizeof(phandle));
756         if (num_rmems <= 0) {
757                 dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
758                         num_rmems);
759                 return -EINVAL;
760         }
761         if (num_rmems < 2) {
762                 dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n",
763                         num_rmems);
764                 return -EINVAL;
765         }
767         /* use reserved memory region 0 for vring DMA allocations */
768         ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
769         if (ret) {
770                 dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
771                         ret);
772                 return ret;
773         }
775         num_rmems--;
776         kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
777         if (!kproc->rmem) {
778                 ret = -ENOMEM;
779                 goto release_rmem;
780         }
782         /* use remaining reserved memory regions for static carveouts */
783         for (i = 0; i < num_rmems; i++) {
784                 rmem_np = of_parse_phandle(np, "memory-region", i + 1);
785                 if (!rmem_np) {
786                         ret = -EINVAL;
787                         goto unmap_rmem;
788                 }
790                 rmem = of_reserved_mem_lookup(rmem_np);
791                 if (!rmem) {
792                         of_node_put(rmem_np);
793                         ret = -EINVAL;
794                         goto unmap_rmem;
795                 }
796                 of_node_put(rmem_np);
798                 kproc->rmem[i].bus_addr = rmem->base;
799                 /* 64-bit address regions currently not supported */
800                 kproc->rmem[i].dev_addr = (u32)rmem->base;
801                 kproc->rmem[i].size = rmem->size;
802                 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
803                 if (!kproc->rmem[i].cpu_addr) {
804                         dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
805                                 i + 1, &rmem->base, &rmem->size);
806                         ret = -ENOMEM;
807                         goto unmap_rmem;
808                 }
810                 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
811                         i + 1, &kproc->rmem[i].bus_addr,
812                         kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
813                         kproc->rmem[i].dev_addr);
814         }
815         kproc->num_rmems = num_rmems;
817         return 0;
819 unmap_rmem:
820         for (i--; i >= 0; i--) {
821                 if (kproc->rmem[i].cpu_addr)
822                         iounmap(kproc->rmem[i].cpu_addr);
823         }
824         kfree(kproc->rmem);
825 release_rmem:
826         of_reserved_mem_device_release(dev);
827         return ret;
830 static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
832         int i;
834         for (i = 0; i < kproc->num_rmems; i++)
835                 iounmap(kproc->rmem[i].cpu_addr);
836         kfree(kproc->rmem);
838         of_reserved_mem_device_release(kproc->dev);
841 static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
843         struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
844         struct device *dev = &pdev->dev;
845         struct k3_r5_rproc *kproc;
846         struct k3_r5_core *core, *core1;
847         struct device *cdev;
848         const char *fw_name;
849         struct rproc *rproc;
850         int ret;
852         core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
853         list_for_each_entry(core, &cluster->cores, elem) {
854                 cdev = core->dev;
855                 fw_name = k3_r5_rproc_get_firmware(cdev);
856                 if (IS_ERR(fw_name)) {
857                         ret = PTR_ERR(fw_name);
858                         goto out;
859                 }
861                 rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
862                                     fw_name, sizeof(*kproc));
863                 if (!rproc) {
864                         ret = -ENOMEM;
865                         goto out;
866                 }
868                 /* K3 R5s have a Region Address Translator (RAT) but no MMU */
869                 rproc->has_iommu = false;
870                 /* error recovery is not supported at present */
871                 rproc->recovery_disabled = true;
873                 kproc = rproc->priv;
874                 kproc->cluster = cluster;
875                 kproc->core = core;
876                 kproc->dev = cdev;
877                 kproc->rproc = rproc;
878                 core->rproc = rproc;
880                 ret = k3_r5_rproc_configure(kproc);
881                 if (ret) {
882                         dev_err(dev, "initial configure failed, ret = %d\n",
883                                 ret);
884                         goto err_config;
885                 }
887                 ret = k3_r5_reserved_mem_init(kproc);
888                 if (ret) {
889                         dev_err(dev, "reserved memory init failed, ret = %d\n",
890                                 ret);
891                         goto err_config;
892                 }
894                 ret = rproc_add(rproc);
895                 if (ret) {
896                         dev_err(dev, "rproc_add failed, ret = %d\n", ret);
897                         goto err_add;
898                 }
900                 /* create only one rproc in lockstep mode */
901                 if (cluster->mode)
902                         break;
903         }
905         return 0;
907 err_split:
908         rproc_del(rproc);
909 err_add:
910         k3_r5_reserved_mem_exit(kproc);
911 err_config:
912         rproc_free(rproc);
913         core->rproc = NULL;
914 out:
915         /* undo core0 upon any failures on core1 in split-mode */
916         if (!cluster->mode && core == core1) {
917                 core = list_prev_entry(core, elem);
918                 rproc = core->rproc;
919                 kproc = rproc->priv;
920                 goto err_split;
921         }
922         return ret;
925 static int k3_r5_cluster_rproc_exit(struct platform_device *pdev)
927         struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
928         struct k3_r5_rproc *kproc;
929         struct k3_r5_core *core;
930         struct rproc *rproc;
932         /*
933          * lockstep mode has only one rproc associated with first core, whereas
934          * split-mode has two rprocs associated with each core, and requires
935          * that core1 be powered down first
936          */
937         core = cluster->mode ?
938                 list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
939                 list_last_entry(&cluster->cores, struct k3_r5_core, elem);
941         list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
942                 rproc = core->rproc;
943                 kproc = rproc->priv;
945                 rproc_del(rproc);
947                 k3_r5_reserved_mem_exit(kproc);
949                 rproc_free(rproc);
950                 core->rproc = NULL;
951         }
953         return 0;
956 static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
957                                                struct k3_r5_core *core)
959         static const char * const mem_names[] = {"atcm", "btcm"};
960         struct device *dev = &pdev->dev;
961         struct resource *res;
962         int num_mems;
963         int i, ret;
965         num_mems = ARRAY_SIZE(mem_names);
966         core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
967         if (!core->mem)
968                 return -ENOMEM;
970         for (i = 0; i < num_mems; i++) {
971                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
972                                                    mem_names[i]);
973                 if (!res) {
974                         dev_err(dev, "found no memory resource for %s\n",
975                                 mem_names[i]);
976                         ret = -EINVAL;
977                         goto fail;
978                 }
979                 if (!devm_request_mem_region(dev, res->start,
980                                              resource_size(res),
981                                              dev_name(dev))) {
982                         dev_err(dev, "could not request %s region for resource\n",
983                                 mem_names[i]);
984                         ret = -EBUSY;
985                         goto fail;
986                 }
988                 core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
989                                                         resource_size(res));
990                 if (IS_ERR(core->mem[i].cpu_addr)) {
991                         dev_err(dev, "failed to map %s memory\n", mem_names[i]);
992                         ret = PTR_ERR(core->mem[i].cpu_addr);
993                         devm_release_mem_region(dev, res->start,
994                                                 resource_size(res));
995                         goto fail;
996                 }
997                 core->mem[i].bus_addr = res->start;
999                 /*
1000                  * TODO:
1001                  * The R5F cores can place ATCM & BTCM anywhere in its address
1002                  * based on the corresponding Region Registers in the System
1003                  * Control coprocessor. For now, place ATCM and BTCM at
1004                  * addresses 0 and 0x41010000 (same as the bus address on AM65x
1005                  * SoCs) based on loczrama setting
1006                  */
1007                 if (!strcmp(mem_names[i], "atcm")) {
1008                         core->mem[i].dev_addr = core->loczrama ?
1009                                                         0 : K3_R5_TCM_DEV_ADDR;
1010                 } else {
1011                         core->mem[i].dev_addr = core->loczrama ?
1012                                                         K3_R5_TCM_DEV_ADDR : 0;
1013                 }
1014                 core->mem[i].size = resource_size(res);
1016                 dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %p da 0x%x\n",
1017                         mem_names[i], &core->mem[i].bus_addr,
1018                         core->mem[i].size, core->mem[i].cpu_addr,
1019                         core->mem[i].dev_addr);
1020         }
1021         core->num_mems = num_mems;
1023         return 0;
1025 fail:
1026         for (i--; i >= 0; i--) {
1027                 devm_release_mem_region(dev, core->mem[i].bus_addr,
1028                                         core->mem[i].size);
1029                 devm_iounmap(dev, core->mem[i].cpu_addr);
1030         }
1031         if (core->mem)
1032                 devm_kfree(dev, core->mem);
1033         return ret;
1036 static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
1037                                            struct k3_r5_core *core)
1039         struct device_node *np = pdev->dev.of_node;
1040         struct device *dev = &pdev->dev;
1041         struct device_node *sram_np;
1042         struct resource res;
1043         int num_sram;
1044         int i, ret;
1046         num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
1047         if (num_sram <= 0) {
1048                 dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
1049                         num_sram);
1050                 return 0;
1051         }
1053         core->sram = kcalloc(num_sram, sizeof(*core->sram), GFP_KERNEL);
1054         if (!core->sram)
1055                 return -ENOMEM;
1057         for (i = 0; i < num_sram; i++) {
1058                 sram_np = of_parse_phandle(np, "sram", i);
1059                 if (!sram_np) {
1060                         ret = -EINVAL;
1061                         goto fail;
1062                 }
1064                 if (!of_device_is_available(sram_np)) {
1065                         of_node_put(sram_np);
1066                         ret = -EINVAL;
1067                         goto fail;
1068                 }
1070                 ret = of_address_to_resource(sram_np, 0, &res);
1071                 of_node_put(sram_np);
1072                 if (ret) {
1073                         ret = -EINVAL;
1074                         goto fail;
1075                 }
1076                 core->sram[i].bus_addr = res.start;
1077                 core->sram[i].dev_addr = res.start;
1078                 core->sram[i].size = resource_size(&res);
1079                 core->sram[i].cpu_addr = ioremap_wc(res.start,
1080                                                     resource_size(&res));
1081                 if (!core->sram[i].cpu_addr) {
1082                         dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
1083                                 i, &res.start);
1084                         ret = -ENOMEM;
1085                         goto fail;
1086                 }
1088                 dev_dbg(dev, "memory    sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1089                         i, &core->sram[i].bus_addr,
1090                         core->sram[i].size, core->sram[i].cpu_addr,
1091                         core->sram[i].dev_addr);
1092         }
1093         core->num_sram = num_sram;
1095         return 0;
1097 fail:
1098         for (i--; i >= 0; i--) {
1099                 if (core->sram[i].cpu_addr)
1100                         iounmap(core->sram[i].cpu_addr);
1101         }
1102         kfree(core->sram);
1104         return ret;
1107 static
1108 struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
1109                                           const struct ti_sci_handle *sci)
1111         struct ti_sci_proc *tsp;
1112         u32 temp[2];
1113         int ret;
1115         ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids",
1116                                          temp, 2);
1117         if (ret < 0)
1118                 return ERR_PTR(ret);
1120         tsp = kzalloc(sizeof(*tsp), GFP_KERNEL);
1121         if (!tsp)
1122                 return ERR_PTR(-ENOMEM);
1124         tsp->dev = dev;
1125         tsp->sci = sci;
1126         tsp->ops = &sci->ops.proc_ops;
1127         tsp->proc_id = temp[0];
1128         tsp->host_id = temp[1];
1130         return tsp;
1133 static int k3_r5_core_of_init(struct platform_device *pdev)
1135         struct device *dev = &pdev->dev;
1136         struct device_node *np = dev->of_node;
1137         struct k3_r5_core *core;
1138         int ret, ret1, i;
1140         core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
1141         if (!core)
1142                 return -ENOMEM;
1144         core->dev = dev;
1145         core->atcm_enable = 0;
1146         core->btcm_enable = 1;
1147         core->loczrama = 1;
1149         ret = of_property_read_u32(np, "atcm-enable", &core->atcm_enable);
1150         if (ret < 0 && ret != -EINVAL) {
1151                 dev_err(dev, "invalid format for atcm-enable, ret = %d\n", ret);
1152                 goto err_of;
1153         }
1155         ret = of_property_read_u32(np, "btcm-enable", &core->btcm_enable);
1156         if (ret < 0 && ret != -EINVAL) {
1157                 dev_err(dev, "invalid format for btcm-enable, ret = %d\n", ret);
1158                 goto err_of;
1159         }
1161         ret = of_property_read_u32(np, "loczrama", &core->loczrama);
1162         if (ret < 0 && ret != -EINVAL) {
1163                 dev_err(dev, "invalid format for loczrama, ret = %d\n", ret);
1164                 goto err_of;
1165         }
1167         core->ti_sci = ti_sci_get_by_phandle(np, "ti,sci");
1168         if (IS_ERR(core->ti_sci)) {
1169                 ret = PTR_ERR(core->ti_sci);
1170                 if (ret != -EPROBE_DEFER) {
1171                         dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
1172                                 ret);
1173                 }
1174                 core->ti_sci = NULL;
1175                 goto err_of;
1176         }
1178         ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
1179         if (ret) {
1180                 dev_err(dev, "missing 'ti,sci-dev-id' property\n");
1181                 goto err_sci_id;
1182         }
1184         core->reset = reset_control_get_exclusive(dev, NULL);
1185         if (IS_ERR(core->reset)) {
1186                 ret = PTR_ERR(core->reset);
1187                 if (ret != -EPROBE_DEFER) {
1188                         dev_err(dev, "failed to get reset handle, ret = %d\n",
1189                                 ret);
1190                 }
1191                 goto err_sci_id;
1192         }
1194         core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
1195         if (IS_ERR(core->tsp)) {
1196                 dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
1197                         ret);
1198                 ret = PTR_ERR(core->tsp);
1199                 goto err_sci_proc;
1200         }
1202         ret = ti_sci_proc_request(core->tsp);
1203         if (ret < 0) {
1204                 dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
1205                 goto err_proc;
1206         }
1208         ret = k3_r5_core_of_get_internal_memories(pdev, core);
1209         if (ret) {
1210                 dev_err(dev, "failed to get internal memories, ret = %d\n",
1211                         ret);
1212                 goto err_intmem;
1213         }
1215         ret = k3_r5_core_of_get_sram_memories(pdev, core);
1216         if (ret) {
1217                 dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
1218                 goto err_sram;
1219         }
1221         platform_set_drvdata(pdev, core);
1223         return 0;
1225 err_sram:
1226         for (i = 0; i < core->num_mems; i++) {
1227                 devm_release_mem_region(dev, core->mem[i].bus_addr,
1228                                         core->mem[i].size);
1229                 devm_iounmap(dev, core->mem[i].cpu_addr);
1230         }
1231         devm_kfree(dev, core->mem);
1232 err_intmem:
1233         ret1 = ti_sci_proc_release(core->tsp);
1234         if (ret1)
1235                 dev_err(dev, "failed to release proc, ret1 = %d\n", ret1);
1236 err_proc:
1237         kfree(core->tsp);
1238 err_sci_proc:
1239         reset_control_put(core->reset);
1240 err_sci_id:
1241         ret1 = ti_sci_put_handle(core->ti_sci);
1242         if (ret1)
1243                 dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1);
1244 err_of:
1245         devm_kfree(dev, core);
1246         return ret;
1249 /*
1250  * free the resources explicitly since driver model is not being used
1251  * for the child R5F devices
1252  */
1253 static int k3_r5_core_of_exit(struct platform_device *pdev)
1255         struct k3_r5_core *core = platform_get_drvdata(pdev);
1256         struct device *dev = &pdev->dev;
1257         int i, ret;
1259         for (i = 0; i < core->num_sram; i++)
1260                 iounmap(core->sram[i].cpu_addr);
1261         kfree(core->sram);
1263         for (i = 0; i < core->num_mems; i++) {
1264                 devm_release_mem_region(dev, core->mem[i].bus_addr,
1265                                         core->mem[i].size);
1266                 devm_iounmap(dev, core->mem[i].cpu_addr);
1267         }
1268         if (core->mem)
1269                 devm_kfree(dev, core->mem);
1271         ret = ti_sci_proc_release(core->tsp);
1272         if (ret)
1273                 dev_err(dev, "failed to release proc, ret = %d\n", ret);
1275         kfree(core->tsp);
1276         reset_control_put(core->reset);
1278         ret = ti_sci_put_handle(core->ti_sci);
1279         if (ret)
1280                 dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret);
1282         platform_set_drvdata(pdev, NULL);
1283         devm_kfree(dev, core);
1285         return ret;
1288 static int k3_r5_cluster_of_init(struct platform_device *pdev)
1290         struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1291         struct device *dev = &pdev->dev;
1292         struct device_node *np = dev->of_node;
1293         struct platform_device *cpdev;
1294         struct device_node *child;
1295         struct k3_r5_core *core, *temp;
1296         int ret;
1298         for_each_available_child_of_node(np, child) {
1299                 cpdev = of_find_device_by_node(child);
1300                 if (!cpdev) {
1301                         ret = -ENODEV;
1302                         dev_err(dev, "could not get R5 core platform device\n");
1303                         goto fail;
1304                 }
1306                 ret = k3_r5_core_of_init(cpdev);
1307                 if (ret) {
1308                         dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
1309                                 ret);
1310                         put_device(&cpdev->dev);
1311                         goto fail;
1312                 }
1314                 core = platform_get_drvdata(cpdev);
1315                 put_device(&cpdev->dev);
1316                 list_add_tail(&core->elem, &cluster->cores);
1317         }
1319         return 0;
1321 fail:
1322         list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
1323                 list_del(&core->elem);
1324                 cpdev = to_platform_device(core->dev);
1325                 if (k3_r5_core_of_exit(cpdev))
1326                         dev_err(dev, "k3_r5_core_of_exit cleanup failed\n");
1327         }
1328         return ret;
1331 static int k3_r5_cluster_of_exit(struct platform_device *pdev)
1333         struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1334         struct device *dev = &pdev->dev;
1335         struct platform_device *cpdev;
1336         struct k3_r5_core *core, *temp;
1337         int ret;
1339         list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
1340                 list_del(&core->elem);
1341                 cpdev = to_platform_device(core->dev);
1342                 ret = k3_r5_core_of_exit(cpdev);
1343                 if (ret) {
1344                         dev_err(dev, "k3_r5_core_of_exit failed, ret = %d\n",
1345                                 ret);
1346                         break;
1347                 }
1348         }
1350         return ret;
1353 static int k3_r5_probe(struct platform_device *pdev)
1355         struct device *dev = &pdev->dev;
1356         struct device_node *np = dev->of_node;
1357         struct k3_r5_cluster *cluster;
1358         int ret, ret1;
1359         int num_cores;
1361         cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
1362         if (!cluster)
1363                 return -ENOMEM;
1365         cluster->dev = dev;
1366         cluster->mode = CLUSTER_MODE_LOCKSTEP;
1367         INIT_LIST_HEAD(&cluster->cores);
1369         ret = of_property_read_u32(np, "lockstep-mode", &cluster->mode);
1370         if (ret < 0 && ret != -EINVAL) {
1371                 dev_err(dev, "invalid format for lockstep-mode, ret = %d\n",
1372                         ret);
1373                 return ret;
1374         }
1376         num_cores = of_get_available_child_count(np);
1377         if (num_cores != 2) {
1378                 dev_err(dev, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n",
1379                         num_cores);
1380                 return -ENODEV;
1381         }
1383         platform_set_drvdata(pdev, cluster);
1385         dev_info(dev, "creating child devices for R5F cores\n");
1386         ret = of_platform_populate(np, NULL, NULL, dev);
1387         if (ret) {
1388                 dev_err(dev, "of_platform_populate failed, ret = %d\n", ret);
1389                 return ret;
1390         }
1392         ret = k3_r5_cluster_of_init(pdev);
1393         if (ret) {
1394                 dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
1395                 goto fail_of;
1396         }
1398         ret = k3_r5_cluster_rproc_init(pdev);
1399         if (ret) {
1400                 dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
1401                         ret);
1402                 goto fail_rproc;
1403         }
1405         return 0;
1407 fail_rproc:
1408         ret1 = k3_r5_cluster_of_exit(pdev);
1409         if (ret1)
1410                 dev_err(dev, "k3_r5_cluster_of_exit failed, ret = %d\n", ret1);
1411 fail_of:
1412         of_platform_depopulate(dev);
1413         return ret;
1416 static int k3_r5_remove(struct platform_device *pdev)
1418         struct device *dev = &pdev->dev;
1419         int ret;
1421         ret = k3_r5_cluster_rproc_exit(pdev);
1422         if (ret) {
1423                 dev_err(dev, "k3_r5_cluster_rproc_exit failed, ret = %d\n",
1424                         ret);
1425                 goto fail;
1426         }
1428         ret = k3_r5_cluster_of_exit(pdev);
1429         if (ret) {
1430                 dev_err(dev, "k3_r5_cluster_of_exit failed, ret = %d\n", ret);
1431                 goto fail;
1432         }
1434         dev_info(dev, "removing child devices for R5F cores\n");
1435         of_platform_depopulate(dev);
1437 fail:
1438         return ret;
1441 static const struct k3_r5_rproc_dev_data am65x_r5f_dev_data[] = {
1442         {
1443                 .device_name    = "41000000.r5f",
1444                 .fw_name        = "am65x-mcu-r5f0_0-fw",
1445         },
1446         {
1447                 .device_name    = "41400000.r5f",
1448                 .fw_name        = "am65x-mcu-r5f0_1-fw",
1449         },
1450         {
1451                 /* sentinel */
1452         },
1453 };
1455 static const struct of_device_id k3_r5_of_match[] = {
1456         {
1457                 .compatible     = "ti,am654-r5fss",
1458                 .data           = am65x_r5f_dev_data,
1459         },
1460         { /* sentinel */ },
1461 };
1462 MODULE_DEVICE_TABLE(of, k3_r5_of_match);
1464 static struct platform_driver k3_r5_rproc_driver = {
1465         .probe = k3_r5_probe,
1466         .remove = k3_r5_remove,
1467         .driver = {
1468                 .name = "k3_r5_rproc",
1469                 .of_match_table = k3_r5_of_match,
1470         },
1471 };
1473 module_platform_driver(k3_r5_rproc_driver);
1475 MODULE_LICENSE("GPL v2");
1476 MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
1477 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");