]> Gitweb @ Texas Instruments - Open Source Git Repositories - git.TI.com/gitweb - sitara-epos/sitara-epos-kernel.git/blob - arch/arm/mach-omap2/gpmc-onenand.c
ARM: OMAP: AM33XX: Remove autoidle regs
[sitara-epos/sitara-epos-kernel.git] / arch / arm / mach-omap2 / gpmc-onenand.c
1 /*
2  * linux/arch/arm/mach-omap2/gpmc-onenand.c
3  *
4  * Copyright (C) 2006 - 2009 Nokia Corporation
5  * Contacts:    Juha Yrjola
6  *              Tony Lindgren
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
13 #include <linux/string.h>
14 #include <linux/kernel.h>
15 #include <linux/platform_device.h>
16 #include <linux/mtd/onenand_regs.h>
17 #include <linux/io.h>
19 #include <asm/mach/flash.h>
21 #include <plat/onenand.h>
22 #include <plat/board.h>
23 #include <plat/gpmc.h>
25 static struct omap_onenand_platform_data *gpmc_onenand_data;
27 static struct platform_device gpmc_onenand_device = {
28         .name           = "omap2-onenand",
29         .id             = -1,
30 };
32 static int omap2_onenand_set_async_mode(int cs, void __iomem *onenand_base)
33 {
34         struct gpmc_timings t;
35         u32 reg;
36         int err;
38         const int t_cer = 15;
39         const int t_avdp = 12;
40         const int t_aavdh = 7;
41         const int t_ce = 76;
42         const int t_aa = 76;
43         const int t_oe = 20;
44         const int t_cez = 20; /* max of t_cez, t_oez */
45         const int t_ds = 30;
46         const int t_wpl = 40;
47         const int t_wph = 30;
49         /* Ensure sync read and sync write are disabled */
50         reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
51         reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
52         writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
54         memset(&t, 0, sizeof(t));
55         t.sync_clk = 0;
56         t.cs_on = 0;
57         t.adv_on = 0;
59         /* Read */
60         t.adv_rd_off = gpmc_round_ns_to_ticks(max_t(int, t_avdp, t_cer));
61         t.oe_on  = t.adv_rd_off + gpmc_round_ns_to_ticks(t_aavdh);
62         t.access = t.adv_on + gpmc_round_ns_to_ticks(t_aa);
63         t.access = max_t(int, t.access, t.cs_on + gpmc_round_ns_to_ticks(t_ce));
64         t.access = max_t(int, t.access, t.oe_on + gpmc_round_ns_to_ticks(t_oe));
65         t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
66         t.cs_rd_off = t.oe_off;
67         t.rd_cycle  = t.cs_rd_off + gpmc_round_ns_to_ticks(t_cez);
69         /* Write */
70         t.adv_wr_off = t.adv_rd_off;
71         t.we_on  = t.oe_on;
72         if (cpu_is_omap34xx()) {
73                 t.wr_data_mux_bus = t.we_on;
74                 t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
75         }
76         t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
77         t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
78         t.wr_cycle  = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
80         /* Configure GPMC for asynchronous read */
81         gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
82                           GPMC_CONFIG1_DEVICESIZE_16 |
83                           GPMC_CONFIG1_MUXADDDATA);
85         err = gpmc_cs_set_timings(cs, &t);
86         if (err)
87                 return err;
89         /* Ensure sync read and sync write are disabled */
90         reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
91         reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
92         writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
94         return 0;
95 }
97 static void set_onenand_cfg(void __iomem *onenand_base, int latency,
98                                 int sync_read, int sync_write, int hf, int vhf)
99 {
100         u32 reg;
102         reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
103         reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9));
104         reg |=  (latency << ONENAND_SYS_CFG1_BRL_SHIFT) |
105                 ONENAND_SYS_CFG1_BL_16;
106         if (sync_read)
107                 reg |= ONENAND_SYS_CFG1_SYNC_READ;
108         else
109                 reg &= ~ONENAND_SYS_CFG1_SYNC_READ;
110         if (sync_write)
111                 reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
112         else
113                 reg &= ~ONENAND_SYS_CFG1_SYNC_WRITE;
114         if (hf)
115                 reg |= ONENAND_SYS_CFG1_HF;
116         else
117                 reg &= ~ONENAND_SYS_CFG1_HF;
118         if (vhf)
119                 reg |= ONENAND_SYS_CFG1_VHF;
120         else
121                 reg &= ~ONENAND_SYS_CFG1_VHF;
122         writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
125 static int omap2_onenand_get_freq(struct omap_onenand_platform_data *cfg,
126                                   void __iomem *onenand_base, bool *clk_dep)
128         u16 ver = readw(onenand_base + ONENAND_REG_VERSION_ID);
129         int freq = 0;
131         if (cfg->get_freq) {
132                 struct onenand_freq_info fi;
134                 fi.maf_id = readw(onenand_base + ONENAND_REG_MANUFACTURER_ID);
135                 fi.dev_id = readw(onenand_base + ONENAND_REG_DEVICE_ID);
136                 fi.ver_id = ver;
137                 freq = cfg->get_freq(&fi, clk_dep);
138                 if (freq)
139                         return freq;
140         }
142         switch ((ver >> 4) & 0xf) {
143         case 0:
144                 freq = 40;
145                 break;
146         case 1:
147                 freq = 54;
148                 break;
149         case 2:
150                 freq = 66;
151                 break;
152         case 3:
153                 freq = 83;
154                 break;
155         case 4:
156                 freq = 104;
157                 break;
158         default:
159                 freq = 54;
160                 break;
161         }
163         return freq;
166 static int omap2_onenand_set_sync_mode(struct omap_onenand_platform_data *cfg,
167                                         void __iomem *onenand_base,
168                                         int *freq_ptr)
170         struct gpmc_timings t;
171         const int t_cer  = 15;
172         const int t_avdp = 12;
173         const int t_cez  = 20; /* max of t_cez, t_oez */
174         const int t_ds   = 30;
175         const int t_wpl  = 40;
176         const int t_wph  = 30;
177         int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
178         int tick_ns, div, fclk_offset_ns, fclk_offset, gpmc_clk_ns, latency;
179         int first_time = 0, hf = 0, vhf = 0, sync_read = 0, sync_write = 0;
180         int err, ticks_cez;
181         int cs = cfg->cs, freq = *freq_ptr;
182         u32 reg;
183         bool clk_dep = false;
185         if (cfg->flags & ONENAND_SYNC_READ) {
186                 sync_read = 1;
187         } else if (cfg->flags & ONENAND_SYNC_READWRITE) {
188                 sync_read = 1;
189                 sync_write = 1;
190         } else
191                 return omap2_onenand_set_async_mode(cs, onenand_base);
193         if (!freq) {
194                 /* Very first call freq is not known */
195                 err = omap2_onenand_set_async_mode(cs, onenand_base);
196                 if (err)
197                         return err;
198                 freq = omap2_onenand_get_freq(cfg, onenand_base, &clk_dep);
199                 first_time = 1;
200         }
202         switch (freq) {
203         case 104:
204                 min_gpmc_clk_period = 9600; /* 104 MHz */
205                 t_ces   = 3;
206                 t_avds  = 4;
207                 t_avdh  = 2;
208                 t_ach   = 3;
209                 t_aavdh = 6;
210                 t_rdyo  = 6;
211                 break;
212         case 83:
213                 min_gpmc_clk_period = 12000; /* 83 MHz */
214                 t_ces   = 5;
215                 t_avds  = 4;
216                 t_avdh  = 2;
217                 t_ach   = 6;
218                 t_aavdh = 6;
219                 t_rdyo  = 9;
220                 break;
221         case 66:
222                 min_gpmc_clk_period = 15000; /* 66 MHz */
223                 t_ces   = 6;
224                 t_avds  = 5;
225                 t_avdh  = 2;
226                 t_ach   = 6;
227                 t_aavdh = 6;
228                 t_rdyo  = 11;
229                 break;
230         default:
231                 min_gpmc_clk_period = 18500; /* 54 MHz */
232                 t_ces   = 7;
233                 t_avds  = 7;
234                 t_avdh  = 7;
235                 t_ach   = 9;
236                 t_aavdh = 7;
237                 t_rdyo  = 15;
238                 sync_write = 0;
239                 break;
240         }
242         tick_ns = gpmc_ticks_to_ns(1);
243         div = gpmc_cs_calc_divider(cs, min_gpmc_clk_period);
244         gpmc_clk_ns = gpmc_ticks_to_ns(div);
245         if (gpmc_clk_ns < 15) /* >66Mhz */
246                 hf = 1;
247         if (gpmc_clk_ns < 12) /* >83Mhz */
248                 vhf = 1;
249         if (vhf)
250                 latency = 8;
251         else if (hf)
252                 latency = 6;
253         else if (gpmc_clk_ns >= 25) /* 40 MHz*/
254                 latency = 3;
255         else
256                 latency = 4;
258         if (clk_dep) {
259                 if (gpmc_clk_ns < 12) { /* >83Mhz */
260                         t_ces   = 3;
261                         t_avds  = 4;
262                 } else if (gpmc_clk_ns < 15) { /* >66Mhz */
263                         t_ces   = 5;
264                         t_avds  = 4;
265                 } else if (gpmc_clk_ns < 25) { /* >40Mhz */
266                         t_ces   = 6;
267                         t_avds  = 5;
268                 } else {
269                         t_ces   = 7;
270                         t_avds  = 7;
271                 }
272         }
274         if (first_time)
275                 set_onenand_cfg(onenand_base, latency,
276                                         sync_read, sync_write, hf, vhf);
278         if (div == 1) {
279                 reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
280                 reg |= (1 << 7);
281                 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
282                 reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
283                 reg |= (1 << 7);
284                 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
285                 reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
286                 reg |= (1 << 7);
287                 reg |= (1 << 23);
288                 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
289         } else {
290                 reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
291                 reg &= ~(1 << 7);
292                 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
293                 reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
294                 reg &= ~(1 << 7);
295                 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
296                 reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
297                 reg &= ~(1 << 7);
298                 reg &= ~(1 << 23);
299                 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
300         }
302         /* Set synchronous read timings */
303         memset(&t, 0, sizeof(t));
304         t.sync_clk = min_gpmc_clk_period;
305         t.cs_on = 0;
306         t.adv_on = 0;
307         fclk_offset_ns = gpmc_round_ns_to_ticks(max_t(int, t_ces, t_avds));
308         fclk_offset = gpmc_ns_to_ticks(fclk_offset_ns);
309         t.page_burst_access = gpmc_clk_ns;
311         /* Read */
312         t.adv_rd_off = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_avdh));
313         t.oe_on = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_ach));
314         /* Force at least 1 clk between AVD High to OE Low */
315         if (t.oe_on <= t.adv_rd_off)
316                 t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(1);
317         t.access = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div);
318         t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
319         t.cs_rd_off = t.oe_off;
320         ticks_cez = ((gpmc_ns_to_ticks(t_cez) + div - 1) / div) * div;
321         t.rd_cycle = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div +
322                      ticks_cez);
324         /* Write */
325         if (sync_write) {
326                 t.adv_wr_off = t.adv_rd_off;
327                 t.we_on  = 0;
328                 t.we_off = t.cs_rd_off;
329                 t.cs_wr_off = t.cs_rd_off;
330                 t.wr_cycle  = t.rd_cycle;
331                 if (cpu_is_omap34xx()) {
332                         t.wr_data_mux_bus = gpmc_ticks_to_ns(fclk_offset +
333                                         gpmc_ps_to_ticks(min_gpmc_clk_period +
334                                         t_rdyo * 1000));
335                         t.wr_access = t.access;
336                 }
337         } else {
338                 t.adv_wr_off = gpmc_round_ns_to_ticks(max_t(int,
339                                                         t_avdp, t_cer));
340                 t.we_on  = t.adv_wr_off + gpmc_round_ns_to_ticks(t_aavdh);
341                 t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
342                 t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
343                 t.wr_cycle  = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
344                 if (cpu_is_omap34xx()) {
345                         t.wr_data_mux_bus = t.we_on;
346                         t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
347                 }
348         }
350         /* Configure GPMC for synchronous read */
351         gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
352                           GPMC_CONFIG1_WRAPBURST_SUPP |
353                           GPMC_CONFIG1_READMULTIPLE_SUPP |
354                           (sync_read ? GPMC_CONFIG1_READTYPE_SYNC : 0) |
355                           (sync_write ? GPMC_CONFIG1_WRITEMULTIPLE_SUPP : 0) |
356                           (sync_write ? GPMC_CONFIG1_WRITETYPE_SYNC : 0) |
357                           GPMC_CONFIG1_CLKACTIVATIONTIME(fclk_offset) |
358                           GPMC_CONFIG1_PAGE_LEN(2) |
359                           (cpu_is_omap34xx() ? 0 :
360                                 (GPMC_CONFIG1_WAIT_READ_MON |
361                                  GPMC_CONFIG1_WAIT_PIN_SEL(0))) |
362                           GPMC_CONFIG1_DEVICESIZE_16 |
363                           GPMC_CONFIG1_DEVICETYPE_NOR |
364                           GPMC_CONFIG1_MUXADDDATA);
366         err = gpmc_cs_set_timings(cs, &t);
367         if (err)
368                 return err;
370         set_onenand_cfg(onenand_base, latency, sync_read, sync_write, hf, vhf);
372         *freq_ptr = freq;
374         return 0;
377 static int gpmc_onenand_setup(void __iomem *onenand_base, int *freq_ptr)
379         struct device *dev = &gpmc_onenand_device.dev;
381         /* Set sync timings in GPMC */
382         if (omap2_onenand_set_sync_mode(gpmc_onenand_data, onenand_base,
383                         freq_ptr) < 0) {
384                 dev_err(dev, "Unable to set synchronous mode\n");
385                 return -EINVAL;
386         }
388         return 0;
391 void __init gpmc_onenand_init(struct omap_onenand_platform_data *_onenand_data)
393         gpmc_onenand_data = _onenand_data;
394         gpmc_onenand_data->onenand_setup = gpmc_onenand_setup;
395         gpmc_onenand_device.dev.platform_data = gpmc_onenand_data;
397         if (cpu_is_omap24xx() &&
398                         (gpmc_onenand_data->flags & ONENAND_SYNC_READWRITE)) {
399                 printk(KERN_ERR "Onenand using only SYNC_READ on 24xx\n");
400                 gpmc_onenand_data->flags &= ~ONENAND_SYNC_READWRITE;
401                 gpmc_onenand_data->flags |= ONENAND_SYNC_READ;
402         }
404         if (platform_device_register(&gpmc_onenand_device) < 0) {
405                 printk(KERN_ERR "Unable to register OneNAND device\n");
406                 return;
407         }