ASoC: Fix module refcount for auxiliary devices
[sitara-epos/sitara-epos-kernel.git] / sound / soc / soc-core.c
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/jack.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/initval.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
45 #define NAME_SIZE       32
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
50 #ifdef CONFIG_DEBUG_FS
51 static struct dentry *debugfs_root;
52 #endif
54 static DEFINE_MUTEX(client_mutex);
55 static LIST_HEAD(card_list);
56 static LIST_HEAD(dai_list);
57 static LIST_HEAD(platform_list);
58 static LIST_HEAD(codec_list);
60 static int snd_soc_register_card(struct snd_soc_card *card);
61 static int snd_soc_unregister_card(struct snd_soc_card *card);
62 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
64 /*
65  * This is a timeout to do a DAPM powerdown after a stream is closed().
66  * It can be used to eliminate pops between different playback streams, e.g.
67  * between two audio tracks.
68  */
69 static int pmdown_time = 5000;
70 module_param(pmdown_time, int, 0);
71 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
73 /* codec register dump */
74 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
75 {
76         int ret, i, step = 1, count = 0;
78         if (!codec->driver->reg_cache_size)
79                 return 0;
81         if (codec->driver->reg_cache_step)
82                 step = codec->driver->reg_cache_step;
84         count += sprintf(buf, "%s registers\n", codec->name);
85         for (i = 0; i < codec->driver->reg_cache_size; i += step) {
86                 if (codec->driver->readable_register && !codec->driver->readable_register(i))
87                         continue;
89                 count += sprintf(buf + count, "%2x: ", i);
90                 if (count >= PAGE_SIZE - 1)
91                         break;
93                 if (codec->driver->display_register) {
94                         count += codec->driver->display_register(codec, buf + count,
95                                                          PAGE_SIZE - count, i);
96                 } else {
97                         /* If the read fails it's almost certainly due to
98                          * the register being volatile and the device being
99                          * powered off.
100                          */
101                         ret = snd_soc_read(codec, i);
102                         if (ret >= 0)
103                                 count += snprintf(buf + count,
104                                                   PAGE_SIZE - count,
105                                                   "%4x", ret);
106                         else
107                                 count += snprintf(buf + count,
108                                                   PAGE_SIZE - count,
109                                                   "<no data: %d>", ret);
110                 }
112                 if (count >= PAGE_SIZE - 1)
113                         break;
115                 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
116                 if (count >= PAGE_SIZE - 1)
117                         break;
118         }
120         /* Truncate count; min() would cause a warning */
121         if (count >= PAGE_SIZE)
122                 count = PAGE_SIZE - 1;
124         return count;
126 static ssize_t codec_reg_show(struct device *dev,
127         struct device_attribute *attr, char *buf)
129         struct snd_soc_pcm_runtime *rtd =
130                         container_of(dev, struct snd_soc_pcm_runtime, dev);
132         return soc_codec_reg_show(rtd->codec, buf);
135 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
137 static ssize_t pmdown_time_show(struct device *dev,
138                                 struct device_attribute *attr, char *buf)
140         struct snd_soc_pcm_runtime *rtd =
141                         container_of(dev, struct snd_soc_pcm_runtime, dev);
143         return sprintf(buf, "%ld\n", rtd->pmdown_time);
146 static ssize_t pmdown_time_set(struct device *dev,
147                                struct device_attribute *attr,
148                                const char *buf, size_t count)
150         struct snd_soc_pcm_runtime *rtd =
151                         container_of(dev, struct snd_soc_pcm_runtime, dev);
152         int ret;
154         ret = strict_strtol(buf, 10, &rtd->pmdown_time);
155         if (ret)
156                 return ret;
158         return count;
161 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
163 #ifdef CONFIG_DEBUG_FS
164 static int codec_reg_open_file(struct inode *inode, struct file *file)
166         file->private_data = inode->i_private;
167         return 0;
170 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
171                                size_t count, loff_t *ppos)
173         ssize_t ret;
174         struct snd_soc_codec *codec = file->private_data;
175         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
176         if (!buf)
177                 return -ENOMEM;
178         ret = soc_codec_reg_show(codec, buf);
179         if (ret >= 0)
180                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
181         kfree(buf);
182         return ret;
185 static ssize_t codec_reg_write_file(struct file *file,
186                 const char __user *user_buf, size_t count, loff_t *ppos)
188         char buf[32];
189         int buf_size;
190         char *start = buf;
191         unsigned long reg, value;
192         int step = 1;
193         struct snd_soc_codec *codec = file->private_data;
195         buf_size = min(count, (sizeof(buf)-1));
196         if (copy_from_user(buf, user_buf, buf_size))
197                 return -EFAULT;
198         buf[buf_size] = 0;
200         if (codec->driver->reg_cache_step)
201                 step = codec->driver->reg_cache_step;
203         while (*start == ' ')
204                 start++;
205         reg = simple_strtoul(start, &start, 16);
206         if ((reg >= codec->driver->reg_cache_size) || (reg % step))
207                 return -EINVAL;
208         while (*start == ' ')
209                 start++;
210         if (strict_strtoul(start, 16, &value))
211                 return -EINVAL;
212         snd_soc_write(codec, reg, value);
213         return buf_size;
216 static const struct file_operations codec_reg_fops = {
217         .open = codec_reg_open_file,
218         .read = codec_reg_read_file,
219         .write = codec_reg_write_file,
220         .llseek = default_llseek,
221 };
223 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
225         struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
227         codec->debugfs_codec_root = debugfs_create_dir(codec->name,
228                                                        debugfs_card_root);
229         if (!codec->debugfs_codec_root) {
230                 printk(KERN_WARNING
231                        "ASoC: Failed to create codec debugfs directory\n");
232                 return;
233         }
235         codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
236                                                  codec->debugfs_codec_root,
237                                                  codec, &codec_reg_fops);
238         if (!codec->debugfs_reg)
239                 printk(KERN_WARNING
240                        "ASoC: Failed to create codec register debugfs file\n");
242         codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
243                                                  codec->debugfs_codec_root);
244         if (!codec->dapm.debugfs_dapm)
245                 printk(KERN_WARNING
246                        "Failed to create DAPM debugfs directory\n");
248         snd_soc_dapm_debugfs_init(&codec->dapm);
251 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
253         debugfs_remove_recursive(codec->debugfs_codec_root);
256 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
257                                     size_t count, loff_t *ppos)
259         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
260         ssize_t len, ret = 0;
261         struct snd_soc_codec *codec;
263         if (!buf)
264                 return -ENOMEM;
266         list_for_each_entry(codec, &codec_list, list) {
267                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
268                                codec->name);
269                 if (len >= 0)
270                         ret += len;
271                 if (ret > PAGE_SIZE) {
272                         ret = PAGE_SIZE;
273                         break;
274                 }
275         }
277         if (ret >= 0)
278                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
280         kfree(buf);
282         return ret;
285 static const struct file_operations codec_list_fops = {
286         .read = codec_list_read_file,
287         .llseek = default_llseek,/* read accesses f_pos */
288 };
290 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
291                                   size_t count, loff_t *ppos)
293         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
294         ssize_t len, ret = 0;
295         struct snd_soc_dai *dai;
297         if (!buf)
298                 return -ENOMEM;
300         list_for_each_entry(dai, &dai_list, list) {
301                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
302                 if (len >= 0)
303                         ret += len;
304                 if (ret > PAGE_SIZE) {
305                         ret = PAGE_SIZE;
306                         break;
307                 }
308         }
310         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
312         kfree(buf);
314         return ret;
317 static const struct file_operations dai_list_fops = {
318         .read = dai_list_read_file,
319         .llseek = default_llseek,/* read accesses f_pos */
320 };
322 static ssize_t platform_list_read_file(struct file *file,
323                                        char __user *user_buf,
324                                        size_t count, loff_t *ppos)
326         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
327         ssize_t len, ret = 0;
328         struct snd_soc_platform *platform;
330         if (!buf)
331                 return -ENOMEM;
333         list_for_each_entry(platform, &platform_list, list) {
334                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
335                                platform->name);
336                 if (len >= 0)
337                         ret += len;
338                 if (ret > PAGE_SIZE) {
339                         ret = PAGE_SIZE;
340                         break;
341                 }
342         }
344         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
346         kfree(buf);
348         return ret;
351 static const struct file_operations platform_list_fops = {
352         .read = platform_list_read_file,
353         .llseek = default_llseek,/* read accesses f_pos */
354 };
356 static void soc_init_card_debugfs(struct snd_soc_card *card)
358         card->debugfs_card_root = debugfs_create_dir(card->name,
359                                                      debugfs_root);
360         if (!card->debugfs_card_root) {
361                 dev_warn(card->dev,
362                          "ASoC: Failed to create codec debugfs directory\n");
363                 return;
364         }
366         card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
367                                                     card->debugfs_card_root,
368                                                     &card->pop_time);
369         if (!card->debugfs_pop_time)
370                 dev_warn(card->dev,
371                        "Failed to create pop time debugfs file\n");
374 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
376         debugfs_remove_recursive(card->debugfs_card_root);
379 #else
381 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
385 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
389 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
393 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
396 #endif
398 #ifdef CONFIG_SND_SOC_AC97_BUS
399 /* unregister ac97 codec */
400 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
402         if (codec->ac97->dev.bus)
403                 device_unregister(&codec->ac97->dev);
404         return 0;
407 /* stop no dev release warning */
408 static void soc_ac97_device_release(struct device *dev){}
410 /* register ac97 codec to bus */
411 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
413         int err;
415         codec->ac97->dev.bus = &ac97_bus_type;
416         codec->ac97->dev.parent = codec->card->dev;
417         codec->ac97->dev.release = soc_ac97_device_release;
419         dev_set_name(&codec->ac97->dev, "%d-%d:%s",
420                      codec->card->snd_card->number, 0, codec->name);
421         err = device_register(&codec->ac97->dev);
422         if (err < 0) {
423                 snd_printk(KERN_ERR "Can't register ac97 bus\n");
424                 codec->ac97->dev.bus = NULL;
425                 return err;
426         }
427         return 0;
429 #endif
431 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
433         struct snd_soc_pcm_runtime *rtd = substream->private_data;
434         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
435         struct snd_soc_dai *codec_dai = rtd->codec_dai;
436         int ret;
438         if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
439                         rtd->dai_link->symmetric_rates) {
440                 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
441                                 rtd->rate);
443                 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
444                                                    SNDRV_PCM_HW_PARAM_RATE,
445                                                    rtd->rate,
446                                                    rtd->rate);
447                 if (ret < 0) {
448                         dev_err(&rtd->dev,
449                                 "Unable to apply rate symmetry constraint: %d\n", ret);
450                         return ret;
451                 }
452         }
454         return 0;
457 /*
458  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
459  * then initialized and any private data can be allocated. This also calls
460  * startup for the cpu DAI, platform, machine and codec DAI.
461  */
462 static int soc_pcm_open(struct snd_pcm_substream *substream)
464         struct snd_soc_pcm_runtime *rtd = substream->private_data;
465         struct snd_pcm_runtime *runtime = substream->runtime;
466         struct snd_soc_platform *platform = rtd->platform;
467         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
468         struct snd_soc_dai *codec_dai = rtd->codec_dai;
469         struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
470         struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
471         int ret = 0;
473         mutex_lock(&pcm_mutex);
475         /* startup the audio subsystem */
476         if (cpu_dai->driver->ops->startup) {
477                 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
478                 if (ret < 0) {
479                         printk(KERN_ERR "asoc: can't open interface %s\n",
480                                 cpu_dai->name);
481                         goto out;
482                 }
483         }
485         if (platform->driver->ops->open) {
486                 ret = platform->driver->ops->open(substream);
487                 if (ret < 0) {
488                         printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
489                         goto platform_err;
490                 }
491         }
493         if (codec_dai->driver->ops->startup) {
494                 ret = codec_dai->driver->ops->startup(substream, codec_dai);
495                 if (ret < 0) {
496                         printk(KERN_ERR "asoc: can't open codec %s\n",
497                                 codec_dai->name);
498                         goto codec_dai_err;
499                 }
500         }
502         if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
503                 ret = rtd->dai_link->ops->startup(substream);
504                 if (ret < 0) {
505                         printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
506                         goto machine_err;
507                 }
508         }
510         /* Check that the codec and cpu DAIs are compatible */
511         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
512                 runtime->hw.rate_min =
513                         max(codec_dai_drv->playback.rate_min,
514                             cpu_dai_drv->playback.rate_min);
515                 runtime->hw.rate_max =
516                         min(codec_dai_drv->playback.rate_max,
517                             cpu_dai_drv->playback.rate_max);
518                 runtime->hw.channels_min =
519                         max(codec_dai_drv->playback.channels_min,
520                                 cpu_dai_drv->playback.channels_min);
521                 runtime->hw.channels_max =
522                         min(codec_dai_drv->playback.channels_max,
523                                 cpu_dai_drv->playback.channels_max);
524                 runtime->hw.formats =
525                         codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
526                 runtime->hw.rates =
527                         codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
528                 if (codec_dai_drv->playback.rates
529                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
530                         runtime->hw.rates |= cpu_dai_drv->playback.rates;
531                 if (cpu_dai_drv->playback.rates
532                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
533                         runtime->hw.rates |= codec_dai_drv->playback.rates;
534         } else {
535                 runtime->hw.rate_min =
536                         max(codec_dai_drv->capture.rate_min,
537                             cpu_dai_drv->capture.rate_min);
538                 runtime->hw.rate_max =
539                         min(codec_dai_drv->capture.rate_max,
540                             cpu_dai_drv->capture.rate_max);
541                 runtime->hw.channels_min =
542                         max(codec_dai_drv->capture.channels_min,
543                                 cpu_dai_drv->capture.channels_min);
544                 runtime->hw.channels_max =
545                         min(codec_dai_drv->capture.channels_max,
546                                 cpu_dai_drv->capture.channels_max);
547                 runtime->hw.formats =
548                         codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
549                 runtime->hw.rates =
550                         codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
551                 if (codec_dai_drv->capture.rates
552                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
553                         runtime->hw.rates |= cpu_dai_drv->capture.rates;
554                 if (cpu_dai_drv->capture.rates
555                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
556                         runtime->hw.rates |= codec_dai_drv->capture.rates;
557         }
559         snd_pcm_limit_hw_rates(runtime);
560         if (!runtime->hw.rates) {
561                 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
562                         codec_dai->name, cpu_dai->name);
563                 goto config_err;
564         }
565         if (!runtime->hw.formats) {
566                 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
567                         codec_dai->name, cpu_dai->name);
568                 goto config_err;
569         }
570         if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
571                 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
572                                 codec_dai->name, cpu_dai->name);
573                 goto config_err;
574         }
576         /* Symmetry only applies if we've already got an active stream. */
577         if (cpu_dai->active || codec_dai->active) {
578                 ret = soc_pcm_apply_symmetry(substream);
579                 if (ret != 0)
580                         goto config_err;
581         }
583         pr_debug("asoc: %s <-> %s info:\n",
584                         codec_dai->name, cpu_dai->name);
585         pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
586         pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
587                  runtime->hw.channels_max);
588         pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
589                  runtime->hw.rate_max);
591         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
592                 cpu_dai->playback_active++;
593                 codec_dai->playback_active++;
594         } else {
595                 cpu_dai->capture_active++;
596                 codec_dai->capture_active++;
597         }
598         cpu_dai->active++;
599         codec_dai->active++;
600         rtd->codec->active++;
601         mutex_unlock(&pcm_mutex);
602         return 0;
604 config_err:
605         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
606                 rtd->dai_link->ops->shutdown(substream);
608 machine_err:
609         if (codec_dai->driver->ops->shutdown)
610                 codec_dai->driver->ops->shutdown(substream, codec_dai);
612 codec_dai_err:
613         if (platform->driver->ops->close)
614                 platform->driver->ops->close(substream);
616 platform_err:
617         if (cpu_dai->driver->ops->shutdown)
618                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
619 out:
620         mutex_unlock(&pcm_mutex);
621         return ret;
624 /*
625  * Power down the audio subsystem pmdown_time msecs after close is called.
626  * This is to ensure there are no pops or clicks in between any music tracks
627  * due to DAPM power cycling.
628  */
629 static void close_delayed_work(struct work_struct *work)
631         struct snd_soc_pcm_runtime *rtd =
632                         container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
633         struct snd_soc_dai *codec_dai = rtd->codec_dai;
635         mutex_lock(&pcm_mutex);
637         pr_debug("pop wq checking: %s status: %s waiting: %s\n",
638                  codec_dai->driver->playback.stream_name,
639                  codec_dai->playback_active ? "active" : "inactive",
640                  codec_dai->pop_wait ? "yes" : "no");
642         /* are we waiting on this codec DAI stream */
643         if (codec_dai->pop_wait == 1) {
644                 codec_dai->pop_wait = 0;
645                 snd_soc_dapm_stream_event(rtd,
646                         codec_dai->driver->playback.stream_name,
647                         SND_SOC_DAPM_STREAM_STOP);
648         }
650         mutex_unlock(&pcm_mutex);
653 /*
654  * Called by ALSA when a PCM substream is closed. Private data can be
655  * freed here. The cpu DAI, codec DAI, machine and platform are also
656  * shutdown.
657  */
658 static int soc_codec_close(struct snd_pcm_substream *substream)
660         struct snd_soc_pcm_runtime *rtd = substream->private_data;
661         struct snd_soc_platform *platform = rtd->platform;
662         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
663         struct snd_soc_dai *codec_dai = rtd->codec_dai;
664         struct snd_soc_codec *codec = rtd->codec;
666         mutex_lock(&pcm_mutex);
668         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
669                 cpu_dai->playback_active--;
670                 codec_dai->playback_active--;
671         } else {
672                 cpu_dai->capture_active--;
673                 codec_dai->capture_active--;
674         }
676         cpu_dai->active--;
677         codec_dai->active--;
678         codec->active--;
680         /* Muting the DAC suppresses artifacts caused during digital
681          * shutdown, for example from stopping clocks.
682          */
683         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
684                 snd_soc_dai_digital_mute(codec_dai, 1);
686         if (cpu_dai->driver->ops->shutdown)
687                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
689         if (codec_dai->driver->ops->shutdown)
690                 codec_dai->driver->ops->shutdown(substream, codec_dai);
692         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
693                 rtd->dai_link->ops->shutdown(substream);
695         if (platform->driver->ops->close)
696                 platform->driver->ops->close(substream);
697         cpu_dai->runtime = NULL;
699         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
700                 /* start delayed pop wq here for playback streams */
701                 codec_dai->pop_wait = 1;
702                 schedule_delayed_work(&rtd->delayed_work,
703                         msecs_to_jiffies(rtd->pmdown_time));
704         } else {
705                 /* capture streams can be powered down now */
706                 snd_soc_dapm_stream_event(rtd,
707                         codec_dai->driver->capture.stream_name,
708                         SND_SOC_DAPM_STREAM_STOP);
709         }
711         mutex_unlock(&pcm_mutex);
712         return 0;
715 /*
716  * Called by ALSA when the PCM substream is prepared, can set format, sample
717  * rate, etc.  This function is non atomic and can be called multiple times,
718  * it can refer to the runtime info.
719  */
720 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
722         struct snd_soc_pcm_runtime *rtd = substream->private_data;
723         struct snd_soc_platform *platform = rtd->platform;
724         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
725         struct snd_soc_dai *codec_dai = rtd->codec_dai;
726         int ret = 0;
728         mutex_lock(&pcm_mutex);
730         if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
731                 ret = rtd->dai_link->ops->prepare(substream);
732                 if (ret < 0) {
733                         printk(KERN_ERR "asoc: machine prepare error\n");
734                         goto out;
735                 }
736         }
738         if (platform->driver->ops->prepare) {
739                 ret = platform->driver->ops->prepare(substream);
740                 if (ret < 0) {
741                         printk(KERN_ERR "asoc: platform prepare error\n");
742                         goto out;
743                 }
744         }
746         if (codec_dai->driver->ops->prepare) {
747                 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
748                 if (ret < 0) {
749                         printk(KERN_ERR "asoc: codec DAI prepare error\n");
750                         goto out;
751                 }
752         }
754         if (cpu_dai->driver->ops->prepare) {
755                 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
756                 if (ret < 0) {
757                         printk(KERN_ERR "asoc: cpu DAI prepare error\n");
758                         goto out;
759                 }
760         }
762         /* cancel any delayed stream shutdown that is pending */
763         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
764             codec_dai->pop_wait) {
765                 codec_dai->pop_wait = 0;
766                 cancel_delayed_work(&rtd->delayed_work);
767         }
769         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
770                 snd_soc_dapm_stream_event(rtd,
771                                           codec_dai->driver->playback.stream_name,
772                                           SND_SOC_DAPM_STREAM_START);
773         else
774                 snd_soc_dapm_stream_event(rtd,
775                                           codec_dai->driver->capture.stream_name,
776                                           SND_SOC_DAPM_STREAM_START);
778         snd_soc_dai_digital_mute(codec_dai, 0);
780 out:
781         mutex_unlock(&pcm_mutex);
782         return ret;
785 /*
786  * Called by ALSA when the hardware params are set by application. This
787  * function can also be called multiple times and can allocate buffers
788  * (using snd_pcm_lib_* ). It's non-atomic.
789  */
790 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
791                                 struct snd_pcm_hw_params *params)
793         struct snd_soc_pcm_runtime *rtd = substream->private_data;
794         struct snd_soc_platform *platform = rtd->platform;
795         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
796         struct snd_soc_dai *codec_dai = rtd->codec_dai;
797         int ret = 0;
799         mutex_lock(&pcm_mutex);
801         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
802                 ret = rtd->dai_link->ops->hw_params(substream, params);
803                 if (ret < 0) {
804                         printk(KERN_ERR "asoc: machine hw_params failed\n");
805                         goto out;
806                 }
807         }
809         if (codec_dai->driver->ops->hw_params) {
810                 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
811                 if (ret < 0) {
812                         printk(KERN_ERR "asoc: can't set codec %s hw params\n",
813                                 codec_dai->name);
814                         goto codec_err;
815                 }
816         }
818         if (cpu_dai->driver->ops->hw_params) {
819                 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
820                 if (ret < 0) {
821                         printk(KERN_ERR "asoc: interface %s hw params failed\n",
822                                 cpu_dai->name);
823                         goto interface_err;
824                 }
825         }
827         if (platform->driver->ops->hw_params) {
828                 ret = platform->driver->ops->hw_params(substream, params);
829                 if (ret < 0) {
830                         printk(KERN_ERR "asoc: platform %s hw params failed\n",
831                                 platform->name);
832                         goto platform_err;
833                 }
834         }
836         rtd->rate = params_rate(params);
838 out:
839         mutex_unlock(&pcm_mutex);
840         return ret;
842 platform_err:
843         if (cpu_dai->driver->ops->hw_free)
844                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
846 interface_err:
847         if (codec_dai->driver->ops->hw_free)
848                 codec_dai->driver->ops->hw_free(substream, codec_dai);
850 codec_err:
851         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
852                 rtd->dai_link->ops->hw_free(substream);
854         mutex_unlock(&pcm_mutex);
855         return ret;
858 /*
859  * Frees resources allocated by hw_params, can be called multiple times
860  */
861 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
863         struct snd_soc_pcm_runtime *rtd = substream->private_data;
864         struct snd_soc_platform *platform = rtd->platform;
865         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
866         struct snd_soc_dai *codec_dai = rtd->codec_dai;
867         struct snd_soc_codec *codec = rtd->codec;
869         mutex_lock(&pcm_mutex);
871         /* apply codec digital mute */
872         if (!codec->active)
873                 snd_soc_dai_digital_mute(codec_dai, 1);
875         /* free any machine hw params */
876         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
877                 rtd->dai_link->ops->hw_free(substream);
879         /* free any DMA resources */
880         if (platform->driver->ops->hw_free)
881                 platform->driver->ops->hw_free(substream);
883         /* now free hw params for the DAIs  */
884         if (codec_dai->driver->ops->hw_free)
885                 codec_dai->driver->ops->hw_free(substream, codec_dai);
887         if (cpu_dai->driver->ops->hw_free)
888                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
890         mutex_unlock(&pcm_mutex);
891         return 0;
894 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
896         struct snd_soc_pcm_runtime *rtd = substream->private_data;
897         struct snd_soc_platform *platform = rtd->platform;
898         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
899         struct snd_soc_dai *codec_dai = rtd->codec_dai;
900         int ret;
902         if (codec_dai->driver->ops->trigger) {
903                 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
904                 if (ret < 0)
905                         return ret;
906         }
908         if (platform->driver->ops->trigger) {
909                 ret = platform->driver->ops->trigger(substream, cmd);
910                 if (ret < 0)
911                         return ret;
912         }
914         if (cpu_dai->driver->ops->trigger) {
915                 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
916                 if (ret < 0)
917                         return ret;
918         }
919         return 0;
922 /*
923  * soc level wrapper for pointer callback
924  * If cpu_dai, codec_dai, platform driver has the delay callback, than
925  * the runtime->delay will be updated accordingly.
926  */
927 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
929         struct snd_soc_pcm_runtime *rtd = substream->private_data;
930         struct snd_soc_platform *platform = rtd->platform;
931         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
932         struct snd_soc_dai *codec_dai = rtd->codec_dai;
933         struct snd_pcm_runtime *runtime = substream->runtime;
934         snd_pcm_uframes_t offset = 0;
935         snd_pcm_sframes_t delay = 0;
937         if (platform->driver->ops->pointer)
938                 offset = platform->driver->ops->pointer(substream);
940         if (cpu_dai->driver->ops->delay)
941                 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
943         if (codec_dai->driver->ops->delay)
944                 delay += codec_dai->driver->ops->delay(substream, codec_dai);
946         if (platform->driver->delay)
947                 delay += platform->driver->delay(substream, codec_dai);
949         runtime->delay = delay;
951         return offset;
954 /* ASoC PCM operations */
955 static struct snd_pcm_ops soc_pcm_ops = {
956         .open           = soc_pcm_open,
957         .close          = soc_codec_close,
958         .hw_params      = soc_pcm_hw_params,
959         .hw_free        = soc_pcm_hw_free,
960         .prepare        = soc_pcm_prepare,
961         .trigger        = soc_pcm_trigger,
962         .pointer        = soc_pcm_pointer,
963 };
965 #ifdef CONFIG_PM
966 /* powers down audio subsystem for suspend */
967 static int soc_suspend(struct device *dev)
969         struct platform_device *pdev = to_platform_device(dev);
970         struct snd_soc_card *card = platform_get_drvdata(pdev);
971         struct snd_soc_codec *codec;
972         int i;
974         /* If the initialization of this soc device failed, there is no codec
975          * associated with it. Just bail out in this case.
976          */
977         if (list_empty(&card->codec_dev_list))
978                 return 0;
980         /* Due to the resume being scheduled into a workqueue we could
981         * suspend before that's finished - wait for it to complete.
982          */
983         snd_power_lock(card->snd_card);
984         snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
985         snd_power_unlock(card->snd_card);
987         /* we're going to block userspace touching us until resume completes */
988         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
990         /* mute any active DACs */
991         for (i = 0; i < card->num_rtd; i++) {
992                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
993                 struct snd_soc_dai_driver *drv = dai->driver;
995                 if (card->rtd[i].dai_link->ignore_suspend)
996                         continue;
998                 if (drv->ops->digital_mute && dai->playback_active)
999                         drv->ops->digital_mute(dai, 1);
1000         }
1002         /* suspend all pcms */
1003         for (i = 0; i < card->num_rtd; i++) {
1004                 if (card->rtd[i].dai_link->ignore_suspend)
1005                         continue;
1007                 snd_pcm_suspend_all(card->rtd[i].pcm);
1008         }
1010         if (card->suspend_pre)
1011                 card->suspend_pre(pdev, PMSG_SUSPEND);
1013         for (i = 0; i < card->num_rtd; i++) {
1014                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1015                 struct snd_soc_platform *platform = card->rtd[i].platform;
1017                 if (card->rtd[i].dai_link->ignore_suspend)
1018                         continue;
1020                 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1021                         cpu_dai->driver->suspend(cpu_dai);
1022                 if (platform->driver->suspend && !platform->suspended) {
1023                         platform->driver->suspend(cpu_dai);
1024                         platform->suspended = 1;
1025                 }
1026         }
1028         /* close any waiting streams and save state */
1029         for (i = 0; i < card->num_rtd; i++) {
1030                 flush_delayed_work_sync(&card->rtd[i].delayed_work);
1031                 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1032         }
1034         for (i = 0; i < card->num_rtd; i++) {
1035                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1037                 if (card->rtd[i].dai_link->ignore_suspend)
1038                         continue;
1040                 if (driver->playback.stream_name != NULL)
1041                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1042                                 SND_SOC_DAPM_STREAM_SUSPEND);
1044                 if (driver->capture.stream_name != NULL)
1045                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1046                                 SND_SOC_DAPM_STREAM_SUSPEND);
1047         }
1049         /* suspend all CODECs */
1050         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1051                 /* If there are paths active then the CODEC will be held with
1052                  * bias _ON and should not be suspended. */
1053                 if (!codec->suspended && codec->driver->suspend) {
1054                         switch (codec->dapm.bias_level) {
1055                         case SND_SOC_BIAS_STANDBY:
1056                         case SND_SOC_BIAS_OFF:
1057                                 codec->driver->suspend(codec, PMSG_SUSPEND);
1058                                 codec->suspended = 1;
1059                                 break;
1060                         default:
1061                                 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1062                                 break;
1063                         }
1064                 }
1065         }
1067         for (i = 0; i < card->num_rtd; i++) {
1068                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1070                 if (card->rtd[i].dai_link->ignore_suspend)
1071                         continue;
1073                 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1074                         cpu_dai->driver->suspend(cpu_dai);
1075         }
1077         if (card->suspend_post)
1078                 card->suspend_post(pdev, PMSG_SUSPEND);
1080         return 0;
1083 /* deferred resume work, so resume can complete before we finished
1084  * setting our codec back up, which can be very slow on I2C
1085  */
1086 static void soc_resume_deferred(struct work_struct *work)
1088         struct snd_soc_card *card =
1089                         container_of(work, struct snd_soc_card, deferred_resume_work);
1090         struct platform_device *pdev = to_platform_device(card->dev);
1091         struct snd_soc_codec *codec;
1092         int i;
1094         /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1095          * so userspace apps are blocked from touching us
1096          */
1098         dev_dbg(card->dev, "starting resume work\n");
1100         /* Bring us up into D2 so that DAPM starts enabling things */
1101         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1103         if (card->resume_pre)
1104                 card->resume_pre(pdev);
1106         /* resume AC97 DAIs */
1107         for (i = 0; i < card->num_rtd; i++) {
1108                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1110                 if (card->rtd[i].dai_link->ignore_suspend)
1111                         continue;
1113                 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1114                         cpu_dai->driver->resume(cpu_dai);
1115         }
1117         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1118                 /* If the CODEC was idle over suspend then it will have been
1119                  * left with bias OFF or STANDBY and suspended so we must now
1120                  * resume.  Otherwise the suspend was suppressed.
1121                  */
1122                 if (codec->driver->resume && codec->suspended) {
1123                         switch (codec->dapm.bias_level) {
1124                         case SND_SOC_BIAS_STANDBY:
1125                         case SND_SOC_BIAS_OFF:
1126                                 codec->driver->resume(codec);
1127                                 codec->suspended = 0;
1128                                 break;
1129                         default:
1130                                 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1131                                 break;
1132                         }
1133                 }
1134         }
1136         for (i = 0; i < card->num_rtd; i++) {
1137                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1139                 if (card->rtd[i].dai_link->ignore_suspend)
1140                         continue;
1142                 if (driver->playback.stream_name != NULL)
1143                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1144                                 SND_SOC_DAPM_STREAM_RESUME);
1146                 if (driver->capture.stream_name != NULL)
1147                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1148                                 SND_SOC_DAPM_STREAM_RESUME);
1149         }
1151         /* unmute any active DACs */
1152         for (i = 0; i < card->num_rtd; i++) {
1153                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1154                 struct snd_soc_dai_driver *drv = dai->driver;
1156                 if (card->rtd[i].dai_link->ignore_suspend)
1157                         continue;
1159                 if (drv->ops->digital_mute && dai->playback_active)
1160                         drv->ops->digital_mute(dai, 0);
1161         }
1163         for (i = 0; i < card->num_rtd; i++) {
1164                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1165                 struct snd_soc_platform *platform = card->rtd[i].platform;
1167                 if (card->rtd[i].dai_link->ignore_suspend)
1168                         continue;
1170                 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1171                         cpu_dai->driver->resume(cpu_dai);
1172                 if (platform->driver->resume && platform->suspended) {
1173                         platform->driver->resume(cpu_dai);
1174                         platform->suspended = 0;
1175                 }
1176         }
1178         if (card->resume_post)
1179                 card->resume_post(pdev);
1181         dev_dbg(card->dev, "resume work completed\n");
1183         /* userspace can access us now we are back as we were before */
1184         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1187 /* powers up audio subsystem after a suspend */
1188 static int soc_resume(struct device *dev)
1190         struct platform_device *pdev = to_platform_device(dev);
1191         struct snd_soc_card *card = platform_get_drvdata(pdev);
1192         int i;
1194         /* AC97 devices might have other drivers hanging off them so
1195          * need to resume immediately.  Other drivers don't have that
1196          * problem and may take a substantial amount of time to resume
1197          * due to I/O costs and anti-pop so handle them out of line.
1198          */
1199         for (i = 0; i < card->num_rtd; i++) {
1200                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1201                 if (cpu_dai->driver->ac97_control) {
1202                         dev_dbg(dev, "Resuming AC97 immediately\n");
1203                         soc_resume_deferred(&card->deferred_resume_work);
1204                 } else {
1205                         dev_dbg(dev, "Scheduling resume work\n");
1206                         if (!schedule_work(&card->deferred_resume_work))
1207                                 dev_err(dev, "resume work item may be lost\n");
1208                 }
1209         }
1211         return 0;
1213 #else
1214 #define soc_suspend     NULL
1215 #define soc_resume      NULL
1216 #endif
1218 static struct snd_soc_dai_ops null_dai_ops = {
1219 };
1221 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1223         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1224         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1225         struct snd_soc_codec *codec;
1226         struct snd_soc_platform *platform;
1227         struct snd_soc_dai *codec_dai, *cpu_dai;
1229         if (rtd->complete)
1230                 return 1;
1231         dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1233         /* do we already have the CPU DAI for this link ? */
1234         if (rtd->cpu_dai) {
1235                 goto find_codec;
1236         }
1237         /* no, then find CPU DAI from registered DAIs*/
1238         list_for_each_entry(cpu_dai, &dai_list, list) {
1239                 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1241                         if (!try_module_get(cpu_dai->dev->driver->owner))
1242                                 return -ENODEV;
1244                         rtd->cpu_dai = cpu_dai;
1245                         goto find_codec;
1246                 }
1247         }
1248         dev_dbg(card->dev, "CPU DAI %s not registered\n",
1249                         dai_link->cpu_dai_name);
1251 find_codec:
1252         /* do we already have the CODEC for this link ? */
1253         if (rtd->codec) {
1254                 goto find_platform;
1255         }
1257         /* no, then find CODEC from registered CODECs*/
1258         list_for_each_entry(codec, &codec_list, list) {
1259                 if (!strcmp(codec->name, dai_link->codec_name)) {
1260                         rtd->codec = codec;
1262                         /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1263                         list_for_each_entry(codec_dai, &dai_list, list) {
1264                                 if (codec->dev == codec_dai->dev &&
1265                                                 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1266                                         rtd->codec_dai = codec_dai;
1267                                         goto find_platform;
1268                                 }
1269                         }
1270                         dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1271                                         dai_link->codec_dai_name);
1273                         goto find_platform;
1274                 }
1275         }
1276         dev_dbg(card->dev, "CODEC %s not registered\n",
1277                         dai_link->codec_name);
1279 find_platform:
1280         /* do we already have the CODEC DAI for this link ? */
1281         if (rtd->platform) {
1282                 goto out;
1283         }
1284         /* no, then find CPU DAI from registered DAIs*/
1285         list_for_each_entry(platform, &platform_list, list) {
1286                 if (!strcmp(platform->name, dai_link->platform_name)) {
1287                         rtd->platform = platform;
1288                         goto out;
1289                 }
1290         }
1292         dev_dbg(card->dev, "platform %s not registered\n",
1293                         dai_link->platform_name);
1294         return 0;
1296 out:
1297         /* mark rtd as complete if we found all 4 of our client devices */
1298         if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1299                 rtd->complete = 1;
1300                 card->num_rtd++;
1301         }
1302         return 1;
1305 static void soc_remove_codec(struct snd_soc_codec *codec)
1307         int err;
1309         if (codec->driver->remove) {
1310                 err = codec->driver->remove(codec);
1311                 if (err < 0)
1312                         dev_err(codec->dev,
1313                                 "asoc: failed to remove %s: %d\n",
1314                                 codec->name, err);
1315         }
1317         /* Make sure all DAPM widgets are freed */
1318         snd_soc_dapm_free(&codec->dapm);
1320         soc_cleanup_codec_debugfs(codec);
1321         codec->probed = 0;
1322         list_del(&codec->card_list);
1323         module_put(codec->dev->driver->owner);
1326 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1328         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1329         struct snd_soc_codec *codec = rtd->codec;
1330         struct snd_soc_platform *platform = rtd->platform;
1331         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1332         int err;
1334         /* unregister the rtd device */
1335         if (rtd->dev_registered) {
1336                 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1337                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1338                 device_unregister(&rtd->dev);
1339                 rtd->dev_registered = 0;
1340         }
1342         /* remove the CODEC DAI */
1343         if (codec_dai && codec_dai->probed) {
1344                 if (codec_dai->driver->remove) {
1345                         err = codec_dai->driver->remove(codec_dai);
1346                         if (err < 0)
1347                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1348                 }
1349                 codec_dai->probed = 0;
1350                 list_del(&codec_dai->card_list);
1351         }
1353         /* remove the platform */
1354         if (platform && platform->probed) {
1355                 if (platform->driver->remove) {
1356                         err = platform->driver->remove(platform);
1357                         if (err < 0)
1358                                 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1359                 }
1360                 platform->probed = 0;
1361                 list_del(&platform->card_list);
1362                 module_put(platform->dev->driver->owner);
1363         }
1365         /* remove the CODEC */
1366         if (codec && codec->probed)
1367                 soc_remove_codec(codec);
1369         /* remove the cpu_dai */
1370         if (cpu_dai && cpu_dai->probed) {
1371                 if (cpu_dai->driver->remove) {
1372                         err = cpu_dai->driver->remove(cpu_dai);
1373                         if (err < 0)
1374                                 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1375                 }
1376                 cpu_dai->probed = 0;
1377                 list_del(&cpu_dai->card_list);
1378                 module_put(cpu_dai->dev->driver->owner);
1379         }
1382 static void soc_set_name_prefix(struct snd_soc_card *card,
1383                                 struct snd_soc_codec *codec)
1385         int i;
1387         if (card->codec_conf == NULL)
1388                 return;
1390         for (i = 0; i < card->num_configs; i++) {
1391                 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1392                 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1393                         codec->name_prefix = map->name_prefix;
1394                         break;
1395                 }
1396         }
1399 static int soc_probe_codec(struct snd_soc_card *card,
1400                            struct snd_soc_codec *codec)
1402         int ret = 0;
1404         codec->card = card;
1405         codec->dapm.card = card;
1406         soc_set_name_prefix(card, codec);
1408         if (codec->driver->probe) {
1409                 ret = codec->driver->probe(codec);
1410                 if (ret < 0) {
1411                         dev_err(codec->dev,
1412                                 "asoc: failed to probe CODEC %s: %d\n",
1413                                 codec->name, ret);
1414                         return ret;
1415                 }
1416         }
1418         soc_init_codec_debugfs(codec);
1420         /* mark codec as probed and add to card codec list */
1421         if (!try_module_get(codec->dev->driver->owner))
1422                 return -ENODEV;
1424         codec->probed = 1;
1425         list_add(&codec->card_list, &card->codec_dev_list);
1426         list_add(&codec->dapm.list, &card->dapm_list);
1428         return ret;
1431 static void rtd_release(struct device *dev) {}
1433 static int soc_post_component_init(struct snd_soc_card *card,
1434                                    struct snd_soc_codec *codec,
1435                                    int num, int dailess)
1437         struct snd_soc_dai_link *dai_link = NULL;
1438         struct snd_soc_aux_dev *aux_dev = NULL;
1439         struct snd_soc_pcm_runtime *rtd;
1440         const char *temp, *name;
1441         int ret = 0;
1443         if (!dailess) {
1444                 dai_link = &card->dai_link[num];
1445                 rtd = &card->rtd[num];
1446                 name = dai_link->name;
1447         } else {
1448                 aux_dev = &card->aux_dev[num];
1449                 rtd = &card->rtd_aux[num];
1450                 name = aux_dev->name;
1451         }
1453         /* machine controls, routes and widgets are not prefixed */
1454         temp = codec->name_prefix;
1455         codec->name_prefix = NULL;
1457         /* do machine specific initialization */
1458         if (!dailess && dai_link->init)
1459                 ret = dai_link->init(rtd);
1460         else if (dailess && aux_dev->init)
1461                 ret = aux_dev->init(&codec->dapm);
1462         if (ret < 0) {
1463                 dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
1464                 return ret;
1465         }
1466         codec->name_prefix = temp;
1468         /* Make sure all DAPM widgets are instantiated */
1469         snd_soc_dapm_new_widgets(&codec->dapm);
1470         snd_soc_dapm_sync(&codec->dapm);
1472         /* register the rtd device */
1473         rtd->codec = codec;
1474         rtd->card = card;
1475         rtd->dev.parent = card->dev;
1476         rtd->dev.release = rtd_release;
1477         rtd->dev.init_name = name;
1478         ret = device_register(&rtd->dev);
1479         if (ret < 0) {
1480                 dev_err(card->dev,
1481                         "asoc: failed to register runtime device: %d\n", ret);
1482                 return ret;
1483         }
1484         rtd->dev_registered = 1;
1486         /* add DAPM sysfs entries for this codec */
1487         ret = snd_soc_dapm_sys_add(&rtd->dev);
1488         if (ret < 0)
1489                 dev_err(codec->dev,
1490                         "asoc: failed to add codec dapm sysfs entries: %d\n",
1491                         ret);
1493         /* add codec sysfs entries */
1494         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1495         if (ret < 0)
1496                 dev_err(codec->dev,
1497                         "asoc: failed to add codec sysfs files: %d\n", ret);
1499         return 0;
1502 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1504         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1505         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1506         struct snd_soc_codec *codec = rtd->codec;
1507         struct snd_soc_platform *platform = rtd->platform;
1508         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1509         int ret;
1511         dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1513         /* config components */
1514         codec_dai->codec = codec;
1515         cpu_dai->platform = platform;
1516         codec_dai->card = card;
1517         cpu_dai->card = card;
1519         /* set default power off timeout */
1520         rtd->pmdown_time = pmdown_time;
1522         /* probe the cpu_dai */
1523         if (!cpu_dai->probed) {
1524                 if (cpu_dai->driver->probe) {
1525                         ret = cpu_dai->driver->probe(cpu_dai);
1526                         if (ret < 0) {
1527                                 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1528                                                 cpu_dai->name);
1529                                 return ret;
1530                         }
1531                 }
1532                 cpu_dai->probed = 1;
1533                 /* mark cpu_dai as probed and add to card cpu_dai list */
1534                 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1535         }
1537         /* probe the CODEC */
1538         if (!codec->probed) {
1539                 ret = soc_probe_codec(card, codec);
1540                 if (ret < 0)
1541                         return ret;
1542         }
1544         /* probe the platform */
1545         if (!platform->probed) {
1546                 if (platform->driver->probe) {
1547                         ret = platform->driver->probe(platform);
1548                         if (ret < 0) {
1549                                 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1550                                                 platform->name);
1551                                 return ret;
1552                         }
1553                 }
1554                 /* mark platform as probed and add to card platform list */
1556                 if (!try_module_get(platform->dev->driver->owner))
1557                         return -ENODEV;
1559                 platform->probed = 1;
1560                 list_add(&platform->card_list, &card->platform_dev_list);
1561         }
1563         /* probe the CODEC DAI */
1564         if (!codec_dai->probed) {
1565                 if (codec_dai->driver->probe) {
1566                         ret = codec_dai->driver->probe(codec_dai);
1567                         if (ret < 0) {
1568                                 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1569                                                 codec_dai->name);
1570                                 return ret;
1571                         }
1572                 }
1574                 /* mark cpu_dai as probed and add to card cpu_dai list */
1575                 codec_dai->probed = 1;
1576                 list_add(&codec_dai->card_list, &card->dai_dev_list);
1577         }
1579         /* DAPM dai link stream work */
1580         INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1582         ret = soc_post_component_init(card, codec, num, 0);
1583         if (ret)
1584                 return ret;
1586         ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1587         if (ret < 0)
1588                 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1590         /* create the pcm */
1591         ret = soc_new_pcm(rtd, num);
1592         if (ret < 0) {
1593                 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1594                 return ret;
1595         }
1597         /* add platform data for AC97 devices */
1598         if (rtd->codec_dai->driver->ac97_control)
1599                 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1601         return 0;
1604 #ifdef CONFIG_SND_SOC_AC97_BUS
1605 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1607         int ret;
1609         /* Only instantiate AC97 if not already done by the adaptor
1610          * for the generic AC97 subsystem.
1611          */
1612         if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1613                 /*
1614                  * It is possible that the AC97 device is already registered to
1615                  * the device subsystem. This happens when the device is created
1616                  * via snd_ac97_mixer(). Currently only SoC codec that does so
1617                  * is the generic AC97 glue but others migh emerge.
1618                  *
1619                  * In those cases we don't try to register the device again.
1620                  */
1621                 if (!rtd->codec->ac97_created)
1622                         return 0;
1624                 ret = soc_ac97_dev_register(rtd->codec);
1625                 if (ret < 0) {
1626                         printk(KERN_ERR "asoc: AC97 device register failed\n");
1627                         return ret;
1628                 }
1630                 rtd->codec->ac97_registered = 1;
1631         }
1632         return 0;
1635 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1637         if (codec->ac97_registered) {
1638                 soc_ac97_dev_unregister(codec);
1639                 codec->ac97_registered = 0;
1640         }
1642 #endif
1644 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1646         struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1647         struct snd_soc_codec *codec;
1648         int ret = -ENODEV;
1650         /* find CODEC from registered CODECs*/
1651         list_for_each_entry(codec, &codec_list, list) {
1652                 if (!strcmp(codec->name, aux_dev->codec_name)) {
1653                         if (codec->probed) {
1654                                 dev_err(codec->dev,
1655                                         "asoc: codec already probed");
1656                                 ret = -EBUSY;
1657                                 goto out;
1658                         }
1659                         goto found;
1660                 }
1661         }
1662         /* codec not found */
1663         dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1664         goto out;
1666 found:
1667         ret = soc_probe_codec(card, codec);
1668         if (ret < 0)
1669                 return ret;
1671         ret = soc_post_component_init(card, codec, num, 1);
1673 out:
1674         return ret;
1677 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1679         struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1680         struct snd_soc_codec *codec = rtd->codec;
1682         /* unregister the rtd device */
1683         if (rtd->dev_registered) {
1684                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1685                 device_unregister(&rtd->dev);
1686                 rtd->dev_registered = 0;
1687         }
1689         if (codec && codec->probed)
1690                 soc_remove_codec(codec);
1693 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1694                                     enum snd_soc_compress_type compress_type)
1696         int ret;
1698         if (codec->cache_init)
1699                 return 0;
1701         /* override the compress_type if necessary */
1702         if (compress_type && codec->compress_type != compress_type)
1703                 codec->compress_type = compress_type;
1704         ret = snd_soc_cache_init(codec);
1705         if (ret < 0) {
1706                 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1707                         ret);
1708                 return ret;
1709         }
1710         codec->cache_init = 1;
1711         return 0;
1714 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1716         struct platform_device *pdev = to_platform_device(card->dev);
1717         struct snd_soc_codec *codec;
1718         struct snd_soc_codec_conf *codec_conf;
1719         enum snd_soc_compress_type compress_type;
1720         int ret, i;
1722         mutex_lock(&card->mutex);
1724         if (card->instantiated) {
1725                 mutex_unlock(&card->mutex);
1726                 return;
1727         }
1729         /* bind DAIs */
1730         for (i = 0; i < card->num_links; i++)
1731                 soc_bind_dai_link(card, i);
1733         /* bind completed ? */
1734         if (card->num_rtd != card->num_links) {
1735                 mutex_unlock(&card->mutex);
1736                 return;
1737         }
1739         /* initialize the register cache for each available codec */
1740         list_for_each_entry(codec, &codec_list, list) {
1741                 if (codec->cache_init)
1742                         continue;
1743                 /* check to see if we need to override the compress_type */
1744                 for (i = 0; i < card->num_configs; ++i) {
1745                         codec_conf = &card->codec_conf[i];
1746                         if (!strcmp(codec->name, codec_conf->dev_name)) {
1747                                 compress_type = codec_conf->compress_type;
1748                                 if (compress_type && compress_type
1749                                     != codec->compress_type)
1750                                         break;
1751                         }
1752                 }
1753                 if (i == card->num_configs) {
1754                         /* no need to override the compress_type so
1755                          * go ahead and do the standard thing */
1756                         ret = snd_soc_init_codec_cache(codec, 0);
1757                         if (ret < 0) {
1758                                 mutex_unlock(&card->mutex);
1759                                 return;
1760                         }
1761                         continue;
1762                 }
1763                 /* override the compress_type with the one supplied in
1764                  * the machine driver */
1765                 ret = snd_soc_init_codec_cache(codec, compress_type);
1766                 if (ret < 0) {
1767                         mutex_unlock(&card->mutex);
1768                         return;
1769                 }
1770         }
1772         /* card bind complete so register a sound card */
1773         ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1774                         card->owner, 0, &card->snd_card);
1775         if (ret < 0) {
1776                 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1777                         card->name);
1778                 mutex_unlock(&card->mutex);
1779                 return;
1780         }
1781         card->snd_card->dev = card->dev;
1783 #ifdef CONFIG_PM
1784         /* deferred resume work */
1785         INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1786 #endif
1788         /* initialise the sound card only once */
1789         if (card->probe) {
1790                 ret = card->probe(pdev);
1791                 if (ret < 0)
1792                         goto card_probe_error;
1793         }
1795         for (i = 0; i < card->num_links; i++) {
1796                 ret = soc_probe_dai_link(card, i);
1797                 if (ret < 0) {
1798                         pr_err("asoc: failed to instantiate card %s: %d\n",
1799                                card->name, ret);
1800                         goto probe_dai_err;
1801                 }
1802         }
1804         for (i = 0; i < card->num_aux_devs; i++) {
1805                 ret = soc_probe_aux_dev(card, i);
1806                 if (ret < 0) {
1807                         pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1808                                card->name, ret);
1809                         goto probe_aux_dev_err;
1810                 }
1811         }
1813         snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1814                  "%s",  card->name);
1815         snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1816                  "%s", card->name);
1818         ret = snd_card_register(card->snd_card);
1819         if (ret < 0) {
1820                 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1821                 goto probe_aux_dev_err;
1822         }
1824 #ifdef CONFIG_SND_SOC_AC97_BUS
1825         /* register any AC97 codecs */
1826         for (i = 0; i < card->num_rtd; i++) {
1827                 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1828                 if (ret < 0) {
1829                         printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1830                         while (--i >= 0)
1831                                 soc_unregister_ac97_dai_link(card->rtd[i].codec);
1832                         goto probe_aux_dev_err;
1833                 }
1834         }
1835 #endif
1837         card->instantiated = 1;
1838         mutex_unlock(&card->mutex);
1839         return;
1841 probe_aux_dev_err:
1842         for (i = 0; i < card->num_aux_devs; i++)
1843                 soc_remove_aux_dev(card, i);
1845 probe_dai_err:
1846         for (i = 0; i < card->num_links; i++)
1847                 soc_remove_dai_link(card, i);
1849 card_probe_error:
1850         if (card->remove)
1851                 card->remove(pdev);
1853         snd_card_free(card->snd_card);
1855         mutex_unlock(&card->mutex);
1858 /*
1859  * Attempt to initialise any uninitialised cards.  Must be called with
1860  * client_mutex.
1861  */
1862 static void snd_soc_instantiate_cards(void)
1864         struct snd_soc_card *card;
1865         list_for_each_entry(card, &card_list, list)
1866                 snd_soc_instantiate_card(card);
1869 /* probes a new socdev */
1870 static int soc_probe(struct platform_device *pdev)
1872         struct snd_soc_card *card = platform_get_drvdata(pdev);
1873         int ret = 0;
1875         /* Bodge while we unpick instantiation */
1876         card->dev = &pdev->dev;
1877         INIT_LIST_HEAD(&card->dai_dev_list);
1878         INIT_LIST_HEAD(&card->codec_dev_list);
1879         INIT_LIST_HEAD(&card->platform_dev_list);
1880         INIT_LIST_HEAD(&card->widgets);
1881         INIT_LIST_HEAD(&card->paths);
1882         INIT_LIST_HEAD(&card->dapm_list);
1884         soc_init_card_debugfs(card);
1886         ret = snd_soc_register_card(card);
1887         if (ret != 0) {
1888                 dev_err(&pdev->dev, "Failed to register card\n");
1889                 return ret;
1890         }
1892         return 0;
1895 /* removes a socdev */
1896 static int soc_remove(struct platform_device *pdev)
1898         struct snd_soc_card *card = platform_get_drvdata(pdev);
1899         int i;
1901                 if (card->instantiated) {
1903                 /* make sure any delayed work runs */
1904                 for (i = 0; i < card->num_rtd; i++) {
1905                         struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1906                         flush_delayed_work_sync(&rtd->delayed_work);
1907                 }
1909                 /* remove auxiliary devices */
1910                 for (i = 0; i < card->num_aux_devs; i++)
1911                         soc_remove_aux_dev(card, i);
1913                 /* remove and free each DAI */
1914                 for (i = 0; i < card->num_rtd; i++)
1915                         soc_remove_dai_link(card, i);
1917                 soc_cleanup_card_debugfs(card);
1919                 /* remove the card */
1920                 if (card->remove)
1921                         card->remove(pdev);
1923                 kfree(card->rtd);
1924                 snd_card_free(card->snd_card);
1925         }
1926         snd_soc_unregister_card(card);
1927         return 0;
1930 static int soc_poweroff(struct device *dev)
1932         struct platform_device *pdev = to_platform_device(dev);
1933         struct snd_soc_card *card = platform_get_drvdata(pdev);
1934         int i;
1936         if (!card->instantiated)
1937                 return 0;
1939         /* Flush out pmdown_time work - we actually do want to run it
1940          * now, we're shutting down so no imminent restart. */
1941         for (i = 0; i < card->num_rtd; i++) {
1942                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1943                 flush_delayed_work_sync(&rtd->delayed_work);
1944         }
1946         snd_soc_dapm_shutdown(card);
1948         return 0;
1951 static const struct dev_pm_ops soc_pm_ops = {
1952         .suspend = soc_suspend,
1953         .resume = soc_resume,
1954         .poweroff = soc_poweroff,
1955 };
1957 /* ASoC platform driver */
1958 static struct platform_driver soc_driver = {
1959         .driver         = {
1960                 .name           = "soc-audio",
1961                 .owner          = THIS_MODULE,
1962                 .pm             = &soc_pm_ops,
1963         },
1964         .probe          = soc_probe,
1965         .remove         = soc_remove,
1966 };
1968 /* create a new pcm */
1969 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1971         struct snd_soc_codec *codec = rtd->codec;
1972         struct snd_soc_platform *platform = rtd->platform;
1973         struct snd_soc_dai *codec_dai = rtd->codec_dai;
1974         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1975         struct snd_pcm *pcm;
1976         char new_name[64];
1977         int ret = 0, playback = 0, capture = 0;
1979         /* check client and interface hw capabilities */
1980         snprintf(new_name, sizeof(new_name), "%s %s-%d",
1981                         rtd->dai_link->stream_name, codec_dai->name, num);
1983         if (codec_dai->driver->playback.channels_min)
1984                 playback = 1;
1985         if (codec_dai->driver->capture.channels_min)
1986                 capture = 1;
1988         dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1989         ret = snd_pcm_new(rtd->card->snd_card, new_name,
1990                         num, playback, capture, &pcm);
1991         if (ret < 0) {
1992                 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1993                 return ret;
1994         }
1996         rtd->pcm = pcm;
1997         pcm->private_data = rtd;
1998         soc_pcm_ops.mmap = platform->driver->ops->mmap;
1999         soc_pcm_ops.pointer = platform->driver->ops->pointer;
2000         soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
2001         soc_pcm_ops.copy = platform->driver->ops->copy;
2002         soc_pcm_ops.silence = platform->driver->ops->silence;
2003         soc_pcm_ops.ack = platform->driver->ops->ack;
2004         soc_pcm_ops.page = platform->driver->ops->page;
2006         if (playback)
2007                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2009         if (capture)
2010                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2012         ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
2013         if (ret < 0) {
2014                 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
2015                 return ret;
2016         }
2018         pcm->private_free = platform->driver->pcm_free;
2019         printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2020                 cpu_dai->name);
2021         return ret;
2024 /**
2025  * snd_soc_codec_volatile_register: Report if a register is volatile.
2026  *
2027  * @codec: CODEC to query.
2028  * @reg: Register to query.
2029  *
2030  * Boolean function indiciating if a CODEC register is volatile.
2031  */
2032 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
2034         if (codec->driver->volatile_register)
2035                 return codec->driver->volatile_register(reg);
2036         else
2037                 return 0;
2039 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2041 /**
2042  * snd_soc_new_ac97_codec - initailise AC97 device
2043  * @codec: audio codec
2044  * @ops: AC97 bus operations
2045  * @num: AC97 codec number
2046  *
2047  * Initialises AC97 codec resources for use by ad-hoc devices only.
2048  */
2049 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2050         struct snd_ac97_bus_ops *ops, int num)
2052         mutex_lock(&codec->mutex);
2054         codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2055         if (codec->ac97 == NULL) {
2056                 mutex_unlock(&codec->mutex);
2057                 return -ENOMEM;
2058         }
2060         codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2061         if (codec->ac97->bus == NULL) {
2062                 kfree(codec->ac97);
2063                 codec->ac97 = NULL;
2064                 mutex_unlock(&codec->mutex);
2065                 return -ENOMEM;
2066         }
2068         codec->ac97->bus->ops = ops;
2069         codec->ac97->num = num;
2071         /*
2072          * Mark the AC97 device to be created by us. This way we ensure that the
2073          * device will be registered with the device subsystem later on.
2074          */
2075         codec->ac97_created = 1;
2077         mutex_unlock(&codec->mutex);
2078         return 0;
2080 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2082 /**
2083  * snd_soc_free_ac97_codec - free AC97 codec device
2084  * @codec: audio codec
2085  *
2086  * Frees AC97 codec device resources.
2087  */
2088 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2090         mutex_lock(&codec->mutex);
2091 #ifdef CONFIG_SND_SOC_AC97_BUS
2092         soc_unregister_ac97_dai_link(codec);
2093 #endif
2094         kfree(codec->ac97->bus);
2095         kfree(codec->ac97);
2096         codec->ac97 = NULL;
2097         codec->ac97_created = 0;
2098         mutex_unlock(&codec->mutex);
2100 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2102 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2104         unsigned int ret;
2106         ret = codec->read(codec, reg);
2107         dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2108         trace_snd_soc_reg_read(codec, reg, ret);
2110         return ret;
2112 EXPORT_SYMBOL_GPL(snd_soc_read);
2114 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2115                            unsigned int reg, unsigned int val)
2117         dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2118         trace_snd_soc_reg_write(codec, reg, val);
2119         return codec->write(codec, reg, val);
2121 EXPORT_SYMBOL_GPL(snd_soc_write);
2123 /**
2124  * snd_soc_update_bits - update codec register bits
2125  * @codec: audio codec
2126  * @reg: codec register
2127  * @mask: register mask
2128  * @value: new value
2129  *
2130  * Writes new register value.
2131  *
2132  * Returns 1 for change else 0.
2133  */
2134 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2135                                 unsigned int mask, unsigned int value)
2137         int change;
2138         unsigned int old, new;
2140         old = snd_soc_read(codec, reg);
2141         new = (old & ~mask) | value;
2142         change = old != new;
2143         if (change)
2144                 snd_soc_write(codec, reg, new);
2146         return change;
2148 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2150 /**
2151  * snd_soc_update_bits_locked - update codec register bits
2152  * @codec: audio codec
2153  * @reg: codec register
2154  * @mask: register mask
2155  * @value: new value
2156  *
2157  * Writes new register value, and takes the codec mutex.
2158  *
2159  * Returns 1 for change else 0.
2160  */
2161 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2162                                unsigned short reg, unsigned int mask,
2163                                unsigned int value)
2165         int change;
2167         mutex_lock(&codec->mutex);
2168         change = snd_soc_update_bits(codec, reg, mask, value);
2169         mutex_unlock(&codec->mutex);
2171         return change;
2173 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2175 /**
2176  * snd_soc_test_bits - test register for change
2177  * @codec: audio codec
2178  * @reg: codec register
2179  * @mask: register mask
2180  * @value: new value
2181  *
2182  * Tests a register with a new value and checks if the new value is
2183  * different from the old value.
2184  *
2185  * Returns 1 for change else 0.
2186  */
2187 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2188                                 unsigned int mask, unsigned int value)
2190         int change;
2191         unsigned int old, new;
2193         old = snd_soc_read(codec, reg);
2194         new = (old & ~mask) | value;
2195         change = old != new;
2197         return change;
2199 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2201 /**
2202  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2203  * @substream: the pcm substream
2204  * @hw: the hardware parameters
2205  *
2206  * Sets the substream runtime hardware parameters.
2207  */
2208 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2209         const struct snd_pcm_hardware *hw)
2211         struct snd_pcm_runtime *runtime = substream->runtime;
2212         runtime->hw.info = hw->info;
2213         runtime->hw.formats = hw->formats;
2214         runtime->hw.period_bytes_min = hw->period_bytes_min;
2215         runtime->hw.period_bytes_max = hw->period_bytes_max;
2216         runtime->hw.periods_min = hw->periods_min;
2217         runtime->hw.periods_max = hw->periods_max;
2218         runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2219         runtime->hw.fifo_size = hw->fifo_size;
2220         return 0;
2222 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2224 /**
2225  * snd_soc_cnew - create new control
2226  * @_template: control template
2227  * @data: control private data
2228  * @long_name: control long name
2229  *
2230  * Create a new mixer control from a template control.
2231  *
2232  * Returns 0 for success, else error.
2233  */
2234 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2235         void *data, char *long_name)
2237         struct snd_kcontrol_new template;
2239         memcpy(&template, _template, sizeof(template));
2240         if (long_name)
2241                 template.name = long_name;
2242         template.index = 0;
2244         return snd_ctl_new1(&template, data);
2246 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2248 /**
2249  * snd_soc_add_controls - add an array of controls to a codec.
2250  * Convienience function to add a list of controls. Many codecs were
2251  * duplicating this code.
2252  *
2253  * @codec: codec to add controls to
2254  * @controls: array of controls to add
2255  * @num_controls: number of elements in the array
2256  *
2257  * Return 0 for success, else error.
2258  */
2259 int snd_soc_add_controls(struct snd_soc_codec *codec,
2260         const struct snd_kcontrol_new *controls, int num_controls)
2262         struct snd_card *card = codec->card->snd_card;
2263         char prefixed_name[44], *name;
2264         int err, i;
2266         for (i = 0; i < num_controls; i++) {
2267                 const struct snd_kcontrol_new *control = &controls[i];
2268                 if (codec->name_prefix) {
2269                         snprintf(prefixed_name, sizeof(prefixed_name), "%s %s",
2270                                  codec->name_prefix, control->name);
2271                         name = prefixed_name;
2272                 } else {
2273                         name = control->name;
2274                 }
2275                 err = snd_ctl_add(card, snd_soc_cnew(control, codec, name));
2276                 if (err < 0) {
2277                         dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2278                                 codec->name, name, err);
2279                         return err;
2280                 }
2281         }
2283         return 0;
2285 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2287 /**
2288  * snd_soc_info_enum_double - enumerated double mixer info callback
2289  * @kcontrol: mixer control
2290  * @uinfo: control element information
2291  *
2292  * Callback to provide information about a double enumerated
2293  * mixer control.
2294  *
2295  * Returns 0 for success.
2296  */
2297 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2298         struct snd_ctl_elem_info *uinfo)
2300         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2302         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2303         uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2304         uinfo->value.enumerated.items = e->max;
2306         if (uinfo->value.enumerated.item > e->max - 1)
2307                 uinfo->value.enumerated.item = e->max - 1;
2308         strcpy(uinfo->value.enumerated.name,
2309                 e->texts[uinfo->value.enumerated.item]);
2310         return 0;
2312 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2314 /**
2315  * snd_soc_get_enum_double - enumerated double mixer get callback
2316  * @kcontrol: mixer control
2317  * @ucontrol: control element information
2318  *
2319  * Callback to get the value of a double enumerated mixer.
2320  *
2321  * Returns 0 for success.
2322  */
2323 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2324         struct snd_ctl_elem_value *ucontrol)
2326         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2327         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2328         unsigned int val, bitmask;
2330         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2331                 ;
2332         val = snd_soc_read(codec, e->reg);
2333         ucontrol->value.enumerated.item[0]
2334                 = (val >> e->shift_l) & (bitmask - 1);
2335         if (e->shift_l != e->shift_r)
2336                 ucontrol->value.enumerated.item[1] =
2337                         (val >> e->shift_r) & (bitmask - 1);
2339         return 0;
2341 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2343 /**
2344  * snd_soc_put_enum_double - enumerated double mixer put callback
2345  * @kcontrol: mixer control
2346  * @ucontrol: control element information
2347  *
2348  * Callback to set the value of a double enumerated mixer.
2349  *
2350  * Returns 0 for success.
2351  */
2352 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2353         struct snd_ctl_elem_value *ucontrol)
2355         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2356         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2357         unsigned int val;
2358         unsigned int mask, bitmask;
2360         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2361                 ;
2362         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2363                 return -EINVAL;
2364         val = ucontrol->value.enumerated.item[0] << e->shift_l;
2365         mask = (bitmask - 1) << e->shift_l;
2366         if (e->shift_l != e->shift_r) {
2367                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2368                         return -EINVAL;
2369                 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2370                 mask |= (bitmask - 1) << e->shift_r;
2371         }
2373         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2375 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2377 /**
2378  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2379  * @kcontrol: mixer control
2380  * @ucontrol: control element information
2381  *
2382  * Callback to get the value of a double semi enumerated mixer.
2383  *
2384  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2385  * used for handling bitfield coded enumeration for example.
2386  *
2387  * Returns 0 for success.
2388  */
2389 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2390         struct snd_ctl_elem_value *ucontrol)
2392         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2393         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2394         unsigned int reg_val, val, mux;
2396         reg_val = snd_soc_read(codec, e->reg);
2397         val = (reg_val >> e->shift_l) & e->mask;
2398         for (mux = 0; mux < e->max; mux++) {
2399                 if (val == e->values[mux])
2400                         break;
2401         }
2402         ucontrol->value.enumerated.item[0] = mux;
2403         if (e->shift_l != e->shift_r) {
2404                 val = (reg_val >> e->shift_r) & e->mask;
2405                 for (mux = 0; mux < e->max; mux++) {
2406                         if (val == e->values[mux])
2407                                 break;
2408                 }
2409                 ucontrol->value.enumerated.item[1] = mux;
2410         }
2412         return 0;
2414 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2416 /**
2417  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2418  * @kcontrol: mixer control
2419  * @ucontrol: control element information
2420  *
2421  * Callback to set the value of a double semi enumerated mixer.
2422  *
2423  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2424  * used for handling bitfield coded enumeration for example.
2425  *
2426  * Returns 0 for success.
2427  */
2428 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2429         struct snd_ctl_elem_value *ucontrol)
2431         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2432         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2433         unsigned int val;
2434         unsigned int mask;
2436         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2437                 return -EINVAL;
2438         val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2439         mask = e->mask << e->shift_l;
2440         if (e->shift_l != e->shift_r) {
2441                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2442                         return -EINVAL;
2443                 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2444                 mask |= e->mask << e->shift_r;
2445         }
2447         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2449 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2451 /**
2452  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2453  * @kcontrol: mixer control
2454  * @uinfo: control element information
2455  *
2456  * Callback to provide information about an external enumerated
2457  * single mixer.
2458  *
2459  * Returns 0 for success.
2460  */
2461 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2462         struct snd_ctl_elem_info *uinfo)
2464         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2466         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2467         uinfo->count = 1;
2468         uinfo->value.enumerated.items = e->max;
2470         if (uinfo->value.enumerated.item > e->max - 1)
2471                 uinfo->value.enumerated.item = e->max - 1;
2472         strcpy(uinfo->value.enumerated.name,
2473                 e->texts[uinfo->value.enumerated.item]);
2474         return 0;
2476 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2478 /**
2479  * snd_soc_info_volsw_ext - external single mixer info callback
2480  * @kcontrol: mixer control
2481  * @uinfo: control element information
2482  *
2483  * Callback to provide information about a single external mixer control.
2484  *
2485  * Returns 0 for success.
2486  */
2487 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2488         struct snd_ctl_elem_info *uinfo)
2490         int max = kcontrol->private_value;
2492         if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2493                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2494         else
2495                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2497         uinfo->count = 1;
2498         uinfo->value.integer.min = 0;
2499         uinfo->value.integer.max = max;
2500         return 0;
2502 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2504 /**
2505  * snd_soc_info_volsw - single mixer info callback
2506  * @kcontrol: mixer control
2507  * @uinfo: control element information
2508  *
2509  * Callback to provide information about a single mixer control.
2510  *
2511  * Returns 0 for success.
2512  */
2513 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2514         struct snd_ctl_elem_info *uinfo)
2516         struct soc_mixer_control *mc =
2517                 (struct soc_mixer_control *)kcontrol->private_value;
2518         int platform_max;
2519         unsigned int shift = mc->shift;
2520         unsigned int rshift = mc->rshift;
2522         if (!mc->platform_max)
2523                 mc->platform_max = mc->max;
2524         platform_max = mc->platform_max;
2526         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2527                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2528         else
2529                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2531         uinfo->count = shift == rshift ? 1 : 2;
2532         uinfo->value.integer.min = 0;
2533         uinfo->value.integer.max = platform_max;
2534         return 0;
2536 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2538 /**
2539  * snd_soc_get_volsw - single mixer get callback
2540  * @kcontrol: mixer control
2541  * @ucontrol: control element information
2542  *
2543  * Callback to get the value of a single mixer control.
2544  *
2545  * Returns 0 for success.
2546  */
2547 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2548         struct snd_ctl_elem_value *ucontrol)
2550         struct soc_mixer_control *mc =
2551                 (struct soc_mixer_control *)kcontrol->private_value;
2552         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2553         unsigned int reg = mc->reg;
2554         unsigned int shift = mc->shift;
2555         unsigned int rshift = mc->rshift;
2556         int max = mc->max;
2557         unsigned int mask = (1 << fls(max)) - 1;
2558         unsigned int invert = mc->invert;
2560         ucontrol->value.integer.value[0] =
2561                 (snd_soc_read(codec, reg) >> shift) & mask;
2562         if (shift != rshift)
2563                 ucontrol->value.integer.value[1] =
2564                         (snd_soc_read(codec, reg) >> rshift) & mask;
2565         if (invert) {
2566                 ucontrol->value.integer.value[0] =
2567                         max - ucontrol->value.integer.value[0];
2568                 if (shift != rshift)
2569                         ucontrol->value.integer.value[1] =
2570                                 max - ucontrol->value.integer.value[1];
2571         }
2573         return 0;
2575 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2577 /**
2578  * snd_soc_put_volsw - single mixer put callback
2579  * @kcontrol: mixer control
2580  * @ucontrol: control element information
2581  *
2582  * Callback to set the value of a single mixer control.
2583  *
2584  * Returns 0 for success.
2585  */
2586 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2587         struct snd_ctl_elem_value *ucontrol)
2589         struct soc_mixer_control *mc =
2590                 (struct soc_mixer_control *)kcontrol->private_value;
2591         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2592         unsigned int reg = mc->reg;
2593         unsigned int shift = mc->shift;
2594         unsigned int rshift = mc->rshift;
2595         int max = mc->max;
2596         unsigned int mask = (1 << fls(max)) - 1;
2597         unsigned int invert = mc->invert;
2598         unsigned int val, val2, val_mask;
2600         val = (ucontrol->value.integer.value[0] & mask);
2601         if (invert)
2602                 val = max - val;
2603         val_mask = mask << shift;
2604         val = val << shift;
2605         if (shift != rshift) {
2606                 val2 = (ucontrol->value.integer.value[1] & mask);
2607                 if (invert)
2608                         val2 = max - val2;
2609                 val_mask |= mask << rshift;
2610                 val |= val2 << rshift;
2611         }
2612         return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2614 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2616 /**
2617  * snd_soc_info_volsw_2r - double mixer info callback
2618  * @kcontrol: mixer control
2619  * @uinfo: control element information
2620  *
2621  * Callback to provide information about a double mixer control that
2622  * spans 2 codec registers.
2623  *
2624  * Returns 0 for success.
2625  */
2626 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2627         struct snd_ctl_elem_info *uinfo)
2629         struct soc_mixer_control *mc =
2630                 (struct soc_mixer_control *)kcontrol->private_value;
2631         int platform_max;
2633         if (!mc->platform_max)
2634                 mc->platform_max = mc->max;
2635         platform_max = mc->platform_max;
2637         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2638                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2639         else
2640                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2642         uinfo->count = 2;
2643         uinfo->value.integer.min = 0;
2644         uinfo->value.integer.max = platform_max;
2645         return 0;
2647 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2649 /**
2650  * snd_soc_get_volsw_2r - double mixer get callback
2651  * @kcontrol: mixer control
2652  * @ucontrol: control element information
2653  *
2654  * Callback to get the value of a double mixer control that spans 2 registers.
2655  *
2656  * Returns 0 for success.
2657  */
2658 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2659         struct snd_ctl_elem_value *ucontrol)
2661         struct soc_mixer_control *mc =
2662                 (struct soc_mixer_control *)kcontrol->private_value;
2663         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2664         unsigned int reg = mc->reg;
2665         unsigned int reg2 = mc->rreg;
2666         unsigned int shift = mc->shift;
2667         int max = mc->max;
2668         unsigned int mask = (1 << fls(max)) - 1;
2669         unsigned int invert = mc->invert;
2671         ucontrol->value.integer.value[0] =
2672                 (snd_soc_read(codec, reg) >> shift) & mask;
2673         ucontrol->value.integer.value[1] =
2674                 (snd_soc_read(codec, reg2) >> shift) & mask;
2675         if (invert) {
2676                 ucontrol->value.integer.value[0] =
2677                         max - ucontrol->value.integer.value[0];
2678                 ucontrol->value.integer.value[1] =
2679                         max - ucontrol->value.integer.value[1];
2680         }
2682         return 0;
2684 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2686 /**
2687  * snd_soc_put_volsw_2r - double mixer set callback
2688  * @kcontrol: mixer control
2689  * @ucontrol: control element information
2690  *
2691  * Callback to set the value of a double mixer control that spans 2 registers.
2692  *
2693  * Returns 0 for success.
2694  */
2695 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2696         struct snd_ctl_elem_value *ucontrol)
2698         struct soc_mixer_control *mc =
2699                 (struct soc_mixer_control *)kcontrol->private_value;
2700         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2701         unsigned int reg = mc->reg;
2702         unsigned int reg2 = mc->rreg;
2703         unsigned int shift = mc->shift;
2704         int max = mc->max;
2705         unsigned int mask = (1 << fls(max)) - 1;
2706         unsigned int invert = mc->invert;
2707         int err;
2708         unsigned int val, val2, val_mask;
2710         val_mask = mask << shift;
2711         val = (ucontrol->value.integer.value[0] & mask);
2712         val2 = (ucontrol->value.integer.value[1] & mask);
2714         if (invert) {
2715                 val = max - val;
2716                 val2 = max - val2;
2717         }
2719         val = val << shift;
2720         val2 = val2 << shift;
2722         err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2723         if (err < 0)
2724                 return err;
2726         err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2727         return err;
2729 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2731 /**
2732  * snd_soc_info_volsw_s8 - signed mixer info callback
2733  * @kcontrol: mixer control
2734  * @uinfo: control element information
2735  *
2736  * Callback to provide information about a signed mixer control.
2737  *
2738  * Returns 0 for success.
2739  */
2740 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2741         struct snd_ctl_elem_info *uinfo)
2743         struct soc_mixer_control *mc =
2744                 (struct soc_mixer_control *)kcontrol->private_value;
2745         int platform_max;
2746         int min = mc->min;
2748         if (!mc->platform_max)
2749                 mc->platform_max = mc->max;
2750         platform_max = mc->platform_max;
2752         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2753         uinfo->count = 2;
2754         uinfo->value.integer.min = 0;
2755         uinfo->value.integer.max = platform_max - min;
2756         return 0;
2758 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2760 /**
2761  * snd_soc_get_volsw_s8 - signed mixer get callback
2762  * @kcontrol: mixer control
2763  * @ucontrol: control element information
2764  *
2765  * Callback to get the value of a signed mixer control.
2766  *
2767  * Returns 0 for success.
2768  */
2769 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2770         struct snd_ctl_elem_value *ucontrol)
2772         struct soc_mixer_control *mc =
2773                 (struct soc_mixer_control *)kcontrol->private_value;
2774         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2775         unsigned int reg = mc->reg;
2776         int min = mc->min;
2777         int val = snd_soc_read(codec, reg);
2779         ucontrol->value.integer.value[0] =
2780                 ((signed char)(val & 0xff))-min;
2781         ucontrol->value.integer.value[1] =
2782                 ((signed char)((val >> 8) & 0xff))-min;
2783         return 0;
2785 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2787 /**
2788  * snd_soc_put_volsw_sgn - signed mixer put callback
2789  * @kcontrol: mixer control
2790  * @ucontrol: control element information
2791  *
2792  * Callback to set the value of a signed mixer control.
2793  *
2794  * Returns 0 for success.
2795  */
2796 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2797         struct snd_ctl_elem_value *ucontrol)
2799         struct soc_mixer_control *mc =
2800                 (struct soc_mixer_control *)kcontrol->private_value;
2801         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2802         unsigned int reg = mc->reg;
2803         int min = mc->min;
2804         unsigned int val;
2806         val = (ucontrol->value.integer.value[0]+min) & 0xff;
2807         val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2809         return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2811 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2813 /**
2814  * snd_soc_limit_volume - Set new limit to an existing volume control.
2815  *
2816  * @codec: where to look for the control
2817  * @name: Name of the control
2818  * @max: new maximum limit
2819  *
2820  * Return 0 for success, else error.
2821  */
2822 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2823         const char *name, int max)
2825         struct snd_card *card = codec->card->snd_card;
2826         struct snd_kcontrol *kctl;
2827         struct soc_mixer_control *mc;
2828         int found = 0;
2829         int ret = -EINVAL;
2831         /* Sanity check for name and max */
2832         if (unlikely(!name || max <= 0))
2833                 return -EINVAL;
2835         list_for_each_entry(kctl, &card->controls, list) {
2836                 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2837                         found = 1;
2838                         break;
2839                 }
2840         }
2841         if (found) {
2842                 mc = (struct soc_mixer_control *)kctl->private_value;
2843                 if (max <= mc->max) {
2844                         mc->platform_max = max;
2845                         ret = 0;
2846                 }
2847         }
2848         return ret;
2850 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2852 /**
2853  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2854  *  mixer info callback
2855  * @kcontrol: mixer control
2856  * @uinfo: control element information
2857  *
2858  * Returns 0 for success.
2859  */
2860 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2861                         struct snd_ctl_elem_info *uinfo)
2863         struct soc_mixer_control *mc =
2864                 (struct soc_mixer_control *)kcontrol->private_value;
2865         int max = mc->max;
2866         int min = mc->min;
2868         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2869         uinfo->count = 2;
2870         uinfo->value.integer.min = 0;
2871         uinfo->value.integer.max = max-min;
2873         return 0;
2875 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2877 /**
2878  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2879  *  mixer get callback
2880  * @kcontrol: mixer control
2881  * @uinfo: control element information
2882  *
2883  * Returns 0 for success.
2884  */
2885 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2886                         struct snd_ctl_elem_value *ucontrol)
2888         struct soc_mixer_control *mc =
2889                 (struct soc_mixer_control *)kcontrol->private_value;
2890         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2891         unsigned int mask = (1<<mc->shift)-1;
2892         int min = mc->min;
2893         int val = snd_soc_read(codec, mc->reg) & mask;
2894         int valr = snd_soc_read(codec, mc->rreg) & mask;
2896         ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2897         ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2898         return 0;
2900 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2902 /**
2903  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2904  *  mixer put callback
2905  * @kcontrol: mixer control
2906  * @uinfo: control element information
2907  *
2908  * Returns 0 for success.
2909  */
2910 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2911                         struct snd_ctl_elem_value *ucontrol)
2913         struct soc_mixer_control *mc =
2914                 (struct soc_mixer_control *)kcontrol->private_value;
2915         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2916         unsigned int mask = (1<<mc->shift)-1;
2917         int min = mc->min;
2918         int ret;
2919         unsigned int val, valr, oval, ovalr;
2921         val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2922         val &= mask;
2923         valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2924         valr &= mask;
2926         oval = snd_soc_read(codec, mc->reg) & mask;
2927         ovalr = snd_soc_read(codec, mc->rreg) & mask;
2929         ret = 0;
2930         if (oval != val) {
2931                 ret = snd_soc_write(codec, mc->reg, val);
2932                 if (ret < 0)
2933                         return ret;
2934         }
2935         if (ovalr != valr) {
2936                 ret = snd_soc_write(codec, mc->rreg, valr);
2937                 if (ret < 0)
2938                         return ret;
2939         }
2941         return 0;
2943 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2945 /**
2946  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2947  * @dai: DAI
2948  * @clk_id: DAI specific clock ID
2949  * @freq: new clock frequency in Hz
2950  * @dir: new clock direction - input/output.
2951  *
2952  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2953  */
2954 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2955         unsigned int freq, int dir)
2957         if (dai->driver && dai->driver->ops->set_sysclk)
2958                 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2959         else
2960                 return -EINVAL;
2962 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2964 /**
2965  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2966  * @dai: DAI
2967  * @div_id: DAI specific clock divider ID
2968  * @div: new clock divisor.
2969  *
2970  * Configures the clock dividers. This is used to derive the best DAI bit and
2971  * frame clocks from the system or master clock. It's best to set the DAI bit
2972  * and frame clocks as low as possible to save system power.
2973  */
2974 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2975         int div_id, int div)
2977         if (dai->driver && dai->driver->ops->set_clkdiv)
2978                 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2979         else
2980                 return -EINVAL;
2982 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2984 /**
2985  * snd_soc_dai_set_pll - configure DAI PLL.
2986  * @dai: DAI
2987  * @pll_id: DAI specific PLL ID
2988  * @source: DAI specific source for the PLL
2989  * @freq_in: PLL input clock frequency in Hz
2990  * @freq_out: requested PLL output clock frequency in Hz
2991  *
2992  * Configures and enables PLL to generate output clock based on input clock.
2993  */
2994 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2995         unsigned int freq_in, unsigned int freq_out)
2997         if (dai->driver && dai->driver->ops->set_pll)
2998                 return dai->driver->ops->set_pll(dai, pll_id, source,
2999                                          freq_in, freq_out);
3000         else
3001                 return -EINVAL;
3003 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3005 /**
3006  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3007  * @dai: DAI
3008  * @fmt: SND_SOC_DAIFMT_ format value.
3009  *
3010  * Configures the DAI hardware format and clocking.
3011  */
3012 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3014         if (dai->driver && dai->driver->ops->set_fmt)
3015                 return dai->driver->ops->set_fmt(dai, fmt);
3016         else
3017                 return -EINVAL;
3019 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3021 /**
3022  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3023  * @dai: DAI
3024  * @tx_mask: bitmask representing active TX slots.
3025  * @rx_mask: bitmask representing active RX slots.
3026  * @slots: Number of slots in use.
3027  * @slot_width: Width in bits for each slot.
3028  *
3029  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3030  * specific.
3031  */
3032 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3033         unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3035         if (dai->driver && dai->driver->ops->set_tdm_slot)
3036                 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3037                                 slots, slot_width);
3038         else
3039                 return -EINVAL;
3041 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3043 /**
3044  * snd_soc_dai_set_channel_map - configure DAI audio channel map
3045  * @dai: DAI
3046  * @tx_num: how many TX channels
3047  * @tx_slot: pointer to an array which imply the TX slot number channel
3048  *           0~num-1 uses
3049  * @rx_num: how many RX channels
3050  * @rx_slot: pointer to an array which imply the RX slot number channel
3051  *           0~num-1 uses
3052  *
3053  * configure the relationship between channel number and TDM slot number.
3054  */
3055 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3056         unsigned int tx_num, unsigned int *tx_slot,
3057         unsigned int rx_num, unsigned int *rx_slot)
3059         if (dai->driver && dai->driver->ops->set_channel_map)
3060                 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3061                         rx_num, rx_slot);
3062         else
3063                 return -EINVAL;
3065 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3067 /**
3068  * snd_soc_dai_set_tristate - configure DAI system or master clock.
3069  * @dai: DAI
3070  * @tristate: tristate enable
3071  *
3072  * Tristates the DAI so that others can use it.
3073  */
3074 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3076         if (dai->driver && dai->driver->ops->set_tristate)
3077                 return dai->driver->ops->set_tristate(dai, tristate);
3078         else
3079                 return -EINVAL;
3081 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3083 /**
3084  * snd_soc_dai_digital_mute - configure DAI system or master clock.
3085  * @dai: DAI
3086  * @mute: mute enable
3087  *
3088  * Mutes the DAI DAC.
3089  */
3090 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3092         if (dai->driver && dai->driver->ops->digital_mute)
3093                 return dai->driver->ops->digital_mute(dai, mute);
3094         else
3095                 return -EINVAL;
3097 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3099 /**
3100  * snd_soc_register_card - Register a card with the ASoC core
3101  *
3102  * @card: Card to register
3103  *
3104  * Note that currently this is an internal only function: it will be
3105  * exposed to machine drivers after further backporting of ASoC v2
3106  * registration APIs.
3107  */
3108 static int snd_soc_register_card(struct snd_soc_card *card)
3110         int i;
3112         if (!card->name || !card->dev)
3113                 return -EINVAL;
3115         card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3116                             (card->num_links + card->num_aux_devs),
3117                             GFP_KERNEL);
3118         if (card->rtd == NULL)
3119                 return -ENOMEM;
3120         card->rtd_aux = &card->rtd[card->num_links];
3122         for (i = 0; i < card->num_links; i++)
3123                 card->rtd[i].dai_link = &card->dai_link[i];
3125         INIT_LIST_HEAD(&card->list);
3126         card->instantiated = 0;
3127         mutex_init(&card->mutex);
3129         mutex_lock(&client_mutex);
3130         list_add(&card->list, &card_list);
3131         snd_soc_instantiate_cards();
3132         mutex_unlock(&client_mutex);
3134         dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3136         return 0;
3139 /**
3140  * snd_soc_unregister_card - Unregister a card with the ASoC core
3141  *
3142  * @card: Card to unregister
3143  *
3144  * Note that currently this is an internal only function: it will be
3145  * exposed to machine drivers after further backporting of ASoC v2
3146  * registration APIs.
3147  */
3148 static int snd_soc_unregister_card(struct snd_soc_card *card)
3150         mutex_lock(&client_mutex);
3151         list_del(&card->list);
3152         mutex_unlock(&client_mutex);
3153         dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3155         return 0;
3158 /*
3159  * Simplify DAI link configuration by removing ".-1" from device names
3160  * and sanitizing names.
3161  */
3162 static char *fmt_single_name(struct device *dev, int *id)
3164         char *found, name[NAME_SIZE];
3165         int id1, id2;
3167         if (dev_name(dev) == NULL)
3168                 return NULL;
3170         strlcpy(name, dev_name(dev), NAME_SIZE);
3172         /* are we a "%s.%d" name (platform and SPI components) */
3173         found = strstr(name, dev->driver->name);
3174         if (found) {
3175                 /* get ID */
3176                 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3178                         /* discard ID from name if ID == -1 */
3179                         if (*id == -1)
3180                                 found[strlen(dev->driver->name)] = '\0';
3181                 }
3183         } else {
3184                 /* I2C component devices are named "bus-addr"  */
3185                 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3186                         char tmp[NAME_SIZE];
3188                         /* create unique ID number from I2C addr and bus */
3189                         *id = ((id1 & 0xffff) << 16) + id2;
3191                         /* sanitize component name for DAI link creation */
3192                         snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3193                         strlcpy(name, tmp, NAME_SIZE);
3194                 } else
3195                         *id = 0;
3196         }
3198         return kstrdup(name, GFP_KERNEL);
3201 /*
3202  * Simplify DAI link naming for single devices with multiple DAIs by removing
3203  * any ".-1" and using the DAI name (instead of device name).
3204  */
3205 static inline char *fmt_multiple_name(struct device *dev,
3206                 struct snd_soc_dai_driver *dai_drv)
3208         if (dai_drv->name == NULL) {
3209                 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3210                                 dev_name(dev));
3211                 return NULL;
3212         }