/* * linux/arch/arm/mach-omap2/timer.c * * OMAP2 GP timer support. * * Copyright (C) 2009 Nokia Corporation * * Update to use new clocksource/clockevent layers * Author: Kevin Hilman, MontaVista Software, Inc. * Copyright (C) 2007 MontaVista Software, Inc. * * Original driver: * Copyright (C) 2005 Nokia Corporation * Author: Paul Mundt * Juha Yrjölä * OMAP Dual-mode timer framework support by Timo Teras * * Some parts based off of TI's 24xx code: * * Copyright (C) 2004-2009 Texas Instruments, Inc. * * Roughly modelled after the OMAP1 MPU timer code. * Added OMAP4 support - Santosh Shilimkar * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common.h" #include #include #include #include "powerdomain.h" /* Parent clocks, eventually these will come from the clock framework */ #define OMAP2_MPU_SOURCE "sys_ck" #define OMAP3_MPU_SOURCE OMAP2_MPU_SOURCE #define OMAP4_MPU_SOURCE "sys_clkin_ck" #define OMAP2_32K_SOURCE "func_32k_ck" #define OMAP3_32K_SOURCE "omap_32k_fck" #define OMAP4_32K_SOURCE "sys_32k_ck" #ifdef CONFIG_OMAP_32K_TIMER #define OMAP2_CLKEV_SOURCE OMAP2_32K_SOURCE #define OMAP3_CLKEV_SOURCE OMAP3_32K_SOURCE #define OMAP4_CLKEV_SOURCE OMAP4_32K_SOURCE #define OMAP3_SECURE_TIMER 12 #else #define OMAP2_CLKEV_SOURCE OMAP2_MPU_SOURCE #define OMAP3_CLKEV_SOURCE OMAP3_MPU_SOURCE #define OMAP4_CLKEV_SOURCE OMAP4_MPU_SOURCE #define OMAP3_SECURE_TIMER 1 #endif /* MAX_GPTIMER_ID: number of GPTIMERs on the chip */ #define MAX_GPTIMER_ID 12 static u32 sys_timer_reserved; /* Clockevent code */ static struct omap_dm_timer clkev; static struct clock_event_device clockevent_gpt; static irqreturn_t omap2_gp_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = &clockevent_gpt; __omap_dm_timer_write_status(&clkev, OMAP_TIMER_INT_OVERFLOW); evt->event_handler(evt); return IRQ_HANDLED; } static struct irqaction omap2_gp_timer_irq = { .name = "gp timer", .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL, .handler = omap2_gp_timer_interrupt, }; static int omap2_gp_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { __omap_dm_timer_load_start(&clkev, OMAP_TIMER_CTRL_ST, 0xffffffff - cycles, 1); return 0; } static void omap2_gp_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { u32 period; __omap_dm_timer_stop(&clkev, 1, clkev.rate); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: period = clkev.rate / HZ; period -= 1; /* Looks like we need to first set the load value separately */ __omap_dm_timer_write(&clkev, OMAP_TIMER_LOAD_REG, 0xffffffff - period, 1); __omap_dm_timer_load_start(&clkev, OMAP_TIMER_CTRL_AR | OMAP_TIMER_CTRL_ST, 0xffffffff - period, 1); break; case CLOCK_EVT_MODE_ONESHOT: break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_RESUME: break; } } static struct clock_event_device clockevent_gpt = { .name = "gp timer", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .shift = 32, .set_next_event = omap2_gp_timer_set_next_event, .set_mode = omap2_gp_timer_set_mode, }; static int __init omap_dm_timer_init_one(struct omap_dm_timer *timer, int gptimer_id, const char *fck_source) { char name[10]; /* 10 = sizeof("gptXX_Xck0") */ struct omap_hwmod *oh; size_t size; int res = 0; sprintf(name, "timer%d", gptimer_id); omap_hwmod_setup_one(name); oh = omap_hwmod_lookup(name); if (!oh) return -ENODEV; timer->irq = oh->mpu_irqs[0].irq; timer->phys_base = oh->slaves[0]->addr->pa_start; size = oh->slaves[0]->addr->pa_end - timer->phys_base; /* Static mapping, never released */ timer->io_base = ioremap(timer->phys_base, size); if (!timer->io_base) return -ENXIO; /* After the dmtimer is using hwmod these clocks won't be needed */ sprintf(name, "gpt%d_fck", gptimer_id); timer->fclk = clk_get(NULL, name); if (IS_ERR(timer->fclk)) return -ENODEV; sprintf(name, "gpt%d_ick", gptimer_id); timer->iclk = clk_get(NULL, name); if (IS_ERR(timer->iclk)) { clk_put(timer->fclk); return -ENODEV; } omap_hwmod_enable(oh); sys_timer_reserved |= (1 << (gptimer_id - 1)); if (gptimer_id != 12) { struct clk *src; src = clk_get(NULL, fck_source); if (IS_ERR(src)) { res = -EINVAL; } else { res = __omap_dm_timer_set_source(timer->fclk, src); if (IS_ERR_VALUE(res)) pr_warning("%s: timer%i cannot set source\n", __func__, gptimer_id); clk_put(src); } } __omap_dm_timer_init_regs(timer); __omap_dm_timer_reset(timer, 1, 1); timer->posted = 1; timer->rate = clk_get_rate(timer->fclk); timer->reserved = 1; return res; } static void __init omap2_gp_clockevent_init(int gptimer_id, const char *fck_source) { int res; res = omap_dm_timer_init_one(&clkev, gptimer_id, fck_source); BUG_ON(res); omap2_gp_timer_irq.dev_id = (void *)&clkev; setup_irq(clkev.irq, &omap2_gp_timer_irq); __omap_dm_timer_int_enable(&clkev, OMAP_TIMER_INT_OVERFLOW); clockevent_gpt.mult = div_sc(clkev.rate, NSEC_PER_SEC, clockevent_gpt.shift); clockevent_gpt.max_delta_ns = clockevent_delta2ns(0xffffffff, &clockevent_gpt); clockevent_gpt.min_delta_ns = clockevent_delta2ns(3, &clockevent_gpt); /* Timer internal resynch latency. */ clockevent_gpt.cpumask = cpumask_of(0); clockevents_register_device(&clockevent_gpt); pr_info("OMAP clockevent source: GPTIMER%d at %lu Hz\n", gptimer_id, clkev.rate); } /* Clocksource code */ #ifdef CONFIG_OMAP_32K_TIMER /* * When 32k-timer is enabled, don't use GPTimer for clocksource * instead, just leave default clocksource which uses the 32k * sync counter. See clocksource setup in plat-omap/counter_32k.c */ static void __init omap2_gp_clocksource_init(int unused, const char *dummy) { omap_init_clocksource_32k(); } #else static struct omap_dm_timer clksrc; /* * clocksource */ static DEFINE_CLOCK_DATA(cd); static cycle_t clocksource_read_cycles(struct clocksource *cs) { return (cycle_t)__omap_dm_timer_read_counter(&clksrc, 1); } static struct clocksource clocksource_gpt = { .name = "gp timer", .rating = 300, .read = clocksource_read_cycles, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static void notrace dmtimer_update_sched_clock(void) { u32 cyc; cyc = __omap_dm_timer_read_counter(&clksrc, 1); update_sched_clock(&cd, cyc, (u32)~0); } unsigned long long notrace sched_clock(void) { u32 cyc = 0; if (clksrc.reserved) cyc = __omap_dm_timer_read_counter(&clksrc, 1); return cyc_to_sched_clock(&cd, cyc, (u32)~0); } /* Setup free-running counter for clocksource */ static void __init omap2_gp_clocksource_init(int gptimer_id, const char *fck_source) { int res; res = omap_dm_timer_init_one(&clksrc, gptimer_id, fck_source); BUG_ON(res); pr_info("OMAP clocksource: GPTIMER%d at %lu Hz\n", gptimer_id, clksrc.rate); __omap_dm_timer_load_start(&clksrc, OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, 0, 1); init_sched_clock(&cd, dmtimer_update_sched_clock, 32, clksrc.rate); if (clocksource_register_hz(&clocksource_gpt, clksrc.rate)) pr_err("Could not register clocksource %s\n", clocksource_gpt.name); } #endif #define OMAP_SYS_TIMER_INIT(name, clkev_nr, clkev_src, \ clksrc_nr, clksrc_src) \ static void __init omap##name##_timer_init(void) \ { \ omap2_gp_clockevent_init((clkev_nr), clkev_src); \ omap2_gp_clocksource_init((clksrc_nr), clksrc_src); \ } #define OMAP_SYS_TIMER(name) \ struct sys_timer omap##name##_timer = { \ .init = omap##name##_timer_init, \ }; #ifdef CONFIG_ARCH_OMAP2 OMAP_SYS_TIMER_INIT(2, 1, OMAP2_CLKEV_SOURCE, 2, OMAP2_MPU_SOURCE) OMAP_SYS_TIMER(2) #endif #ifdef CONFIG_ARCH_OMAP3 OMAP_SYS_TIMER_INIT(3, 1, OMAP3_CLKEV_SOURCE, 2, OMAP3_MPU_SOURCE) OMAP_SYS_TIMER(3) OMAP_SYS_TIMER_INIT(3_secure, OMAP3_SECURE_TIMER, OMAP3_CLKEV_SOURCE, 2, OMAP3_MPU_SOURCE) OMAP_SYS_TIMER(3_secure) OMAP_SYS_TIMER_INIT(3_am33xx, 1, OMAP4_MPU_SOURCE, 2, OMAP4_MPU_SOURCE) OMAP_SYS_TIMER(3_am33xx) #endif #ifdef CONFIG_ARCH_OMAP4 static void __init omap4_timer_init(void) { #ifdef CONFIG_LOCAL_TIMERS twd_base = ioremap(OMAP44XX_LOCAL_TWD_BASE, SZ_256); BUG_ON(!twd_base); #endif omap2_gp_clockevent_init(1, OMAP4_CLKEV_SOURCE); omap2_gp_clocksource_init(2, OMAP4_MPU_SOURCE); } OMAP_SYS_TIMER(4) #endif /** * omap2_dm_timer_set_src - change the timer input clock source * @pdev: timer platform device pointer * @source: array index of parent clock source */ static int omap2_dm_timer_set_src(struct platform_device *pdev, int source) { int ret; struct dmtimer_platform_data *pdata = pdev->dev.platform_data; struct clk *fclk, *parent; char *parent_name = NULL; fclk = clk_get(&pdev->dev, "fck"); if (IS_ERR_OR_NULL(fclk)) { dev_err(&pdev->dev, "%s: %d: clk_get() FAILED\n", __func__, __LINE__); return -EINVAL; } switch (source) { case OMAP_TIMER_SRC_SYS_CLK: parent_name = "sys_ck"; break; case OMAP_TIMER_SRC_32_KHZ: parent_name = "32k_ck"; break; case OMAP_TIMER_SRC_EXT_CLK: if (pdata->timer_ip_version == OMAP_TIMER_IP_VERSION_1) { parent_name = "alt_ck"; break; } dev_err(&pdev->dev, "%s: %d: invalid clk src.\n", __func__, __LINE__); clk_put(fclk); return -EINVAL; } parent = clk_get(&pdev->dev, parent_name); if (IS_ERR_OR_NULL(parent)) { dev_err(&pdev->dev, "%s: %d: clk_get() %s FAILED\n", __func__, __LINE__, parent_name); clk_put(fclk); return -EINVAL; } ret = clk_set_parent(fclk, parent); if (IS_ERR_VALUE(ret)) { dev_err(&pdev->dev, "%s: clk_set_parent() to %s FAILED\n", __func__, parent_name); ret = -EINVAL; } clk_put(parent); clk_put(fclk); return ret; } /** * omap_timer_init - build and register timer device with an * associated timer hwmod * @oh: timer hwmod pointer to be used to build timer device * @user: parameter that can be passed from calling hwmod API * * Called by omap_hwmod_for_each_by_class to register each of the timer * devices present in the system. The number of timer devices is known * by parsing through the hwmod database for a given class name. At the * end of function call memory is allocated for timer device and it is * registered to the framework ready to be proved by the driver. */ static int __init omap_timer_init(struct omap_hwmod *oh, void *unused) { int id; int ret = 0; char *name = "omap_timer"; struct dmtimer_platform_data *pdata; struct platform_device *pdev; struct omap_timer_capability_dev_attr *timer_dev_attr; struct powerdomain *pwrdm; pr_debug("%s: %s\n", __func__, oh->name); /* on secure device, do not register secure timer */ timer_dev_attr = oh->dev_attr; if (omap_type() != OMAP2_DEVICE_TYPE_GP && timer_dev_attr) if (timer_dev_attr->timer_capability == OMAP_TIMER_SECURE) return ret; pdata = kzalloc(sizeof(*pdata), GFP_KERNEL); if (!pdata) { pr_err("%s: No memory for [%s]\n", __func__, oh->name); return -ENOMEM; } /* * Extract the IDs from name field in hwmod database * and use the same for constructing ids' for the * timer devices. In a way, we are avoiding usage of * static variable witin the function to do the same. * CAUTION: We have to be careful and make sure the * name in hwmod database does not change in which case * we might either make corresponding change here or * switch back static variable mechanism. */ sscanf(oh->name, "timer%2d", &id); pdata->set_timer_src = omap2_dm_timer_set_src; pdata->timer_ip_version = oh->class->rev; /* Mark clocksource and clockevent timers as reserved */ if ((sys_timer_reserved >> (id - 1)) & 0x1) pdata->reserved = 1; pwrdm = omap_hwmod_get_pwrdm(oh); pdata->loses_context = pwrdm_can_ever_lose_context(pwrdm); #ifdef CONFIG_PM pdata->get_context_loss_count = omap_pm_get_dev_context_loss_count; #endif pdev = omap_device_build(name, id, oh, pdata, sizeof(*pdata), NULL, 0, 0); if (IS_ERR(pdev)) { pr_err("%s: Can't build omap_device for %s: %s.\n", __func__, name, oh->name); ret = -EINVAL; } kfree(pdata); return ret; } /** * omap2_dm_timer_init - top level regular device initialization * * Uses dedicated hwmod api to parse through hwmod database for * given class name and then build and register the timer device. */ static int __init omap2_dm_timer_init(void) { int ret; ret = omap_hwmod_for_each_by_class("timer", omap_timer_init, NULL); if (unlikely(ret)) { pr_err("%s: device registration failed.\n", __func__); return -EINVAL; } return 0; } arch_initcall(omap2_dm_timer_init);