TIGL Documentation

Overview

This document describes the Tl Graph library (TIGL) implementation on Tl Keystone-Il. The library defines a set of standard
API's for developing graph algorithms on graphs of massive size. It provides a seamless interface to Tl keystone-Il hardware
for single-core/multicore, and single-device/multi-device configurations.

The library is built using generic programming concepts that is based on template C++ classes. The provides maximum
flexibility for the algorithm developer to define his customized data structure for his/her algorithms without impacting the
core library.

The library supports the following hardware configuration on Tl keystone-II:

Single Device/ Single ARM core.

Single Device/ Four ARM cores (using openMP).

Multiple Devices / Single ARM Core (using openMPI)

Multiple Devices / Four ARM cores (using openMPI + openMP)

P wnNR

Background

This Tl Graph Library (TIGL) is a software implemenation of the the Pregel model for graph processing that is developed by
Google and is widely used as a scalable platform for graph processing. It is a message-based system that uses Bulk-
Synchronization Parallel (BSP) model, where multiple devices perform local processing and exchange messages at a global
timing barrier.

A graph algorithm is segmented into stages (called supersteps) that are executed sequentially and a global time barrier is
deployed between successive stages to synchronize all workers (i.e., devices). Each worker (i.e., device) performs the
computation for a subset of vertices in the graph, and workers communicate by messages between the vertices of each
worker. At each superstep, each active vertex in each worker has a group of messages that are processed in the core
compute function. The compute function produces a set of messages (usually to the children nodes) that are to be
processed in the following superstep. The contents of the messages and the procedure for the compute function are
dependent on the graph algorithm. In addition to the core compute function, the interface defines one other algorithm-
dependent API's: combine. The combine procedure aims at reducing the overall number of messages by combining
messages going to a given destination vertex (usually using the sum or the max/min operators). Further, a general
aggregate procedure collects global statistics of the algorithm and the graph that are shared by all vertices and could be
used in the compute function. A graph algorithm terminates if the maximum number of supersteps is reached or if all
vertices become inactive.

Software Modules

Overview

The main components of the TIGL library are summarized in the following figure.

WP
MEessages

with other

Data Manager
devices

Communication
Manager

Local
Messages

Vertices
of local
subgraph

External
Messages

Computation
Manager

Mutation
Manager

TIGL Engine

The library was built using C++ object-oriented programming. We used generic programming concepts to enable the
flexibility of the graph representation to handle any application without compromising the performance. Most classes are
designed as template classes that can be customized to the application.



Therefore, most of the library is in the form of header files (.h and .hpp) that include both the definition and implementation
of the template class.

On each device, the pseudo-code for executing the engine is as follows (from tigl::run):

//comment: initializing all engine components
dataManager->init();
communicationManager->init();

//comment: running all tasks
ComputeTask();
if(numDevices > 1)

TxTask();
RxTask();

The computeTask can be summarized the following pseudo code (from tigl::computeTask)

//comment: initializing all engine components

initSuperStep(); // enable Tx/RX
computationManager->init();
endSuperStep(); // flush and disable Tx/Rx

while (ALGORITHM_NOT_COMPLETED)
{

MPI_BARRIER(); //comment: block synchronization point
initSuperStep(); // enable Tx/Rx
mutationManager->processMutations();

computationManager->superstep(); //comment: executing a single superstep
endSuperStep(); // flush and disable Tx/Rx

and the pseudo-code for the superstep execution (tiglComputationManager::superstep) is as follows

combineMessages();
initAggregateInfo();
clearMessageBuffers()
loop on active vertices
vertex = getVertex();
outMessages = execute(vertex, Messages(vertex))
updateAggregateInfo(vertex, outMessages); //comment: updating aggregate information
distributeOutMessages(currOutMessages,countSS);
endloop

and the pseudo-code for distributeOutMessages is as follows

loop on output messages
rcvr = getRcvr();
if rcvr is local
add to the local message buffer of rcvr
else
add to the external message buffer
endloop

The Rx task proceeds as follows (from tiglCommunicationManager::continuousRecvMessages)

while(Rx is Disabled)
wait
end

while there exist messages to receive

while existMessage2Read
Start a Reading Thread
end

while existMessage2Process
processSingleMessage(message)
end
end // of the target messags
RxComplete = true;

Several non-blocking MPI read thread are activated in parallel to read the data/system/mutation messages from other
devices.

Similarly, the Tx task proceeds as follows (from tiglCommunicationManager::continuousSendMessages)

while(Tx is Disabled)
wait
end

while superstep is active
while existMessage2Tx
Start a Tx Thread
end
end // of the target messags
send to each device the total number of sent messages to that device



TxComplete = true;

Data Structures
Base Classes

The two base classes for graph representation are the edge class and the vertex class. The edge class can have different
interfaces depending on the graph topology. The basic edge class which is used with unweighted graphs is

template <typename idType>
class EdgeBase {
idType node; // the id of the target/src vertex

For weighted graphs, another field is added to define the weight

template<typename idType, typename dataType >
class EdgeW: public EdgeBase<idType> {
dataType edgeData; // edge weight information

The base vertex class that contains minimal vertex information is VertexBase which is defined as

template<typename DataType, typename AlgDataType, typename EdgeType, typename IdType >
class VertexBase{

IdType id; // unique vertex ID
DataType vertexData; // vertex data field
AlgDataType algbata; // Algorithm-specific data
OUT_EDGE_BUF outEdges; // output edge buffer

}

To enable messaging between vertices during processing, few extra fields are added to define the core vertex class Vertex
that inherits the VertexBase class

template<typename DataType, typename AlgDataType, typename EdgeType, typename InitType, typename IdType,
typename MessageType>

class Vertex:

public VertexBase<DataType, AlgDataType, EdgeType, IdType>

bool flagActive; // active flag
public:

virtual uint32 compute(MESSAGE_BUF_TYPE * pIn, LOCAL_MESSAGE_BUF * pOut, uint32 numMessages);
virtual uint32 init(INIT_TYPE * initParams, LOCAL_MESSAGE_BUF * poOut);

The class has some more detalied attributes are described in the class documentation. Some of the class members are
defined as as static because only a single copy of these attributes is needed for all objects. The class defines a virtual
version of the two main APl interface functions compute and init that need to be redefined by each graph algorithm.

Container Classes

In our implementation the graph is stored as an adjacency list, which is the list of vertices that make the graph along with
their edges (the edges of each vertex are defined within the vertex object). The core container class is SubgraphBase
whose data types are determined by the vertex type.

template <typename CVertex>
class SubgraphBase

vector<CVertex> vertexList; // physical storage of the subgraph
POS_LIST_TYPE vertexPos; // the position of each vertex

bool flagDirected; // directed/undirected graph

uint32 posHashSize; // the size of the position hash table

The vertices are stored in vertexList buffer. To accelerate random-access of vertices, we use another buffer vertexPos that
contains a hash table for vertex positions. The vertices are hashed by their id, and an ordered collision table is maintained
to hold vertices with the same hash value.

The core container Subgraph inherits the SubgraphBase class and adds the necessary message buffers for messages-
based processing. It is defined as follows

template <typename CVertex, typename MessageType>
class Subgraph:

public SubgraphBase<CVertex>
{

// ping-pong data message buffers
vector<MESSAGE_BUF_TYPE> * evenTimeMessages;
vector<MESSAGE_BUF_TYPE> * oddTimeMessages;



EXTERNAL_MESSAGE_BUF * externalOutMessages;//External Data messages buffer.
vector<SysMessage> outSysMessages; // output system message buffer
// ping-pong Local system message buffer

vector<SysMessage> evenInSysMessages;
vector<SysMessage> oddInSysMessages;

MUTATION_MBUF * outMutationMessages; // buffer of external mutation messages
MUTATION_MBUF * inMutationMessages; // Buffer for local mutation messages

Aggregate Information Container

The aggregate information is an integral part of the Pregel engine, and itis used by graph algorithms for monitoring. The
class container for aggregate information Agginfo is defined as

template <typename AlgData>
class AggInfo

uint32 numVertices; //total number of vertices in the graph

uint32 numLocalVertices; //number of local vertices for this device

uint32 countSs; //superstep counter

uint32 numTotalMessages[AGGREGATE_HISTORY]; //total number of output messages over a superstep
history

uint32 numExternalMessages[AGGREGATE_HISTORY]; //total number of external output messages over a
superstep history

uint32 numLocalActiveNodes[AGGREGATE_HISTORY]; //number of local active nodes over a superstep history

uint32 numTotalActiveNodes[AGGREGATE_HISTORY]; //total number of active nodes over a superstep history

AlgData maxActiveAlgData[AGGREGATE_HISTORY]; //maximum value of algorithm data of all active
vertices over a superstep histor

AlgData minActiveAlgData[AGGREGATE_HISTORY]; //minimum value of algorithm data of all active
vertices over a superstep history

AlgData sumActiveAlgData[AGGREGATE_HISTORY]; //the sum of the values of algorithm data of all

active vertices over a superstep history

The aggregate information includes basic statistics of the engine, including for example the number of active nodes and
the number of output messages. It also contains some algorithm-specific information, e.g., the maximum and minimum
value of the AlgData field of active vertices. The statistics are stored for a window of supersteps whose width is defined by
AGGREGATE_HISTORY (which is set to 2 in the current release).

Computation Manager

The computation manager handles the vertex processing at each superstep. It executes the compute procedure for each
active vertex, routes the output messages to the message buffers, combines local and external messages, and updates the
aggregate information. It also has the initialization procedure that calls the init procedure of all local vertices. The main
attributes of the compute manager class tiglComputationManager are :

template <typename SUBGRAPH_CLASS, typename COMBINER_TYPE, typename INIT_TYPE>
class tiglComputationManager

vector<uint32> activelist; // list of active vertices

uint32 numLocalActive; // number of local active vertices
AggInfo<ALG_DATA_TYPE> aggregateInfo; // Aggregate Information object
DATA_CONTAINER_CLASS * dataManager; // pointer to the data manager object
COMBINER_TYPE * combiner; // pointer to combiner object

The activelList buffer is filled during the combine procedure where all nodes are checked for new messages. The core
public functions of the tiglComputationManager are: init and superstep . The init procedure is called at the first
superstep and has the form
init
for index = 1: numLocalVertices
outMessages = verticesList(index).init()
distributeOutMessages(outMessages)

updateAggregateInformation(outMessages)
end local vertices loop

The superstep procedure is similar but it processes only the active nodes, and runs the execute procedure of each active
vertex rather than the init procedure. Further, at the beginning a combine function is called to combine all local and
external messages, that were not available at the previous superstep, are combined. The superstep core function
proceeds as follows

superstep

CombineMessages()
processSystemMessages()



while activelList is not empty
index = pop(activelList)
outMessages = verticesList(index).execute // comment: each vertex contains a pointer to its
input message buffer
distributeOutMessages(outMessages)
updateAggregateInformation(outMessages)
end local vertices loop

if the activelList is empty
return ALGORITHM_COMPLETED
endif

The function distributeOutMessages distributes external/local messages after vertex execution. In the current
implementaiton, this function alone consumes approximately 50% of the overall execution time. A high level description is
as follows

distributeOutMessages(messagesBuffer)

while messagesBuffer is not empty
message = pop(messagesBuffer)
rcvrVertex = message.getRecvr()
if rcvrVertex is a local vertex
push message to rcvrVertex messageBuffer of the next superstep

else // rcvrVertex is in another device
push to externalMessagesBuffer
endif
end while

The last core function is combineMessages which combines input messages (both local and external) to each vertex prior
to vertex execution.

combineMessages(messagesBuffer)

for index = 1: numLocalVertices
if verticeslList(index).hasMessages
verticesList(index).combineMessages // including combining from buffers of all threads
push index to activelList
else
if verticesList(index).isActive
push index to activelList
endif
endif
endfor

Communication Manager

The communication manager handles communication between devices. It is used only if more than one device is used. The
core communication class is

template <typename DATA_CONTAINER_TYPE>
class tiglCommunicationManager

DATA_CONTAINER_TYPE * dataPtr; // pointer to the graph container that has all the message buffers

uint32 numbDevices; // total number of devices
uint64 totalNumVertices; // total number of vertices in the whole graph
uint32 rank; // rank of current device

The vertex processing is fully distributed and we do not have a controller device that oversees all the messaging.
Therefore, some system messages are broadcasted to all devices to share the algorithm status. There are two buffersin
the data manager for the input and output system messages, and we have a separate buffer for the output data messages.
We use the non-blocking MPI calls MPI_Isend() and MPI_Irecv() to send/receive messages in TX and RX tasks respectively

The communication manager is also used to help the Mutation Manager in distributed construction of the graph (see
tigl::networkReadGraph), where a single device reads the whole graph from a file and sends mutation messages to all
other devices.

Mutation Manager

The mutation manager process all mutation messages during graph construction or during algorithm execution. The class
definition is tiglMutationManager, which contains methods for all graph mutations.

Library Interface

The high-level interface class to the TIGL is the tigl class which performs all necessary allocations. The main attributes of
the class are

template <typename ALG_VERTEX_TYPE, typename ALG_COMBINER>
class tigl



uint32 rank; // rank of the device
DATA_CONTAINER_TYPE * dataManager; // The data manager object
COMMUNICATOR_TYPE* communicationManager;// The communication manager
COMPUTATION_TYPE * computationManager; // the computation manager object

ALG_COMBINER * combiner; // the user-defined combiner object
MUTATION_TYPE * mutationManager; // the mutation manager

uint32 numDevices; //total number of devices (1 if MPI is not used)
uint32 numLocalVertices; // number of local vertices

bool flagDirected; // directed/undirected graph

uint32 countSs; // superstep counter

}

A graph algorithm in the framework is fully parameterized by the definition of the vertex class and the combiner class.
These are the two template parameters of the tigl class . The core procedure in this class is run which, as the name implies,
runs the engine to execute the graph algorithm as defined by the vertex class. The interface class has also few simple I/O
and profiling functions to load a graph from a file and evaluate the algorithm output (as well as the speed) as documented
in the detailed library documentation

Example Algorithms
The Page Rank Algorithm

The page rank algorithm is a standard graph algorithm that assigns ranks to vertices in the graph. The formula for the page
rank (PR) of a vertex u is expressed as

PR(u) = sum{v in N(u)} PR(v)/L(v)

where L(v) is the number of edges connected to vertex v and N(u) is the set of neighbor vertices to vertex u. The algorithm
is computed recursively with the core compute function acts as

PR(u,t+1) = 0.15/num_vertices + 0.85*sum{v in N(u)} PR(v,t)/L(v)
where PR(v,t) is the rank of vertex v at superstep t. The convergence of the algorithm has been proven in the literature,

For this algorithm, the combine function sums the data value of all the messages from neighboring vertices.
The compute function has the form PR(v,t+1) = 0.15/num_vertices + 0.85*sum_messages

and this new page rank is broadcasted to all other neighbors as a message with the value PR(v,t+1)/L(v). The customized
vertex definition for the page rank algorithm is VertexP_pageR. The algorithm is terminated after a predetermined
number of supersteps is reached (set to 30 in our implementation).

The Single-Source Shortest Path Algorithm

The single-source shortest path problem aims at finding the shortest path between each vertex in the graph and a source
vertex. In our implementation we use a variation of the standard Dijkstra algorithm. The messages that are exchanged
between vertices contains the current distance between each vertex and the source. The algorithm proceeds as follows

all active vertices
all received messages
newDistance = min(oldDistance, messeageValue);

broadcast newDistance to all neighbors;
the newDistance is less than globalMinDistance
deactivate the vertex;

The combine function in this case is the minimum operator. The customized vertex definition for the single-source shortest
path algorithm is VertexP_SSSP. The algorithm is terminated if there is no active nodes or if there is no new messages.

Compiling

The library is cross-compiled and tested on EVMK2H. The makefile that is distributed with the library has few flags that
control the library options. The relevant flags are:

e BUILD OPENMP = Yes/No : determines whether four ARM cores (Yes) or single ARM core (No) are used for building. It
enables or disables the openMP interface.

e BUILD MPI= Yes/No : determines whether multiple devices (Yes) or single device (No) are used for building. It enables
or disables the MPI interface.

o DEBUG ENABLE = No/Yes : determines whether detailed debug information is generated while running.

e DEBUG MPI = No/Yes : determines whether MPI messaging debug information is generated while running.

o PROFILE ENABLE = No/Yes : determines whether detailed profiling information is generated while running.

a CMEM AlIINC ENARIE — NAalVac - Aatarminac whathar ar nat tha CMEM maAadiila ic nicad far mamans allacatinn fram



v Ot ALV LIVADLL T INU/ TTD . UTLTHHTHITIED WIHITUITT VI TTUL UIT UL THTUUUIT 1D UDTU 1V TTHITHTHIVE Y dHiVLCduUVvIL 11 v

MSMC memory area (more details are provided in the CMEM section)

The makefile would generate the corresponding executables in the output EVM directory which is specified by the
environment variable ARM_ROOT_DIR

In the release, we included a general makefile "./build/MakefileLib" that contains necessary definitions and paths for
compiling. This general makefile should be included in any customized makefile as illustrated by different examples.

Two executables are integral parts of the library. The first executable generates a graph with arbitrary number of vertices
and edge factor (using the standard Rmat algorithm). The corresponding makefile is "./build/MakefileGenGraph". The
second executable runs verification tests for the mutation manager. The corresponding makefile is
"./build/MakefileMutationTester".

In addition, there are two separate makefiles for the two implemented graph algorithms: "./build/MakefilePageR" and
"./build/MakefileSSSP".

General Procedure for Writing New Graph Algorithms

In the following, we show a step by step example of developing a graph algorithm using TIGL. We describe in details the
Page Rank algorithm as described in an earlier section. The algorithm computes the rank of each vertex in the graph which
is defined by the earlier Formula.

The first step in developing a new graph algorithm is defining the customized vertex class that inherits the core Vertex
class. For the page rank algorithm the algData attribute holds the rank of each vertex, which is defined as double-precision
floating number. The ID field of each vertex could be defined as uint32 or uint64 depending on the graph size. Each vertex
also needs to know the total number of vertices in the graph; which is needed for the Page Rank computation.

The messages that are exchanged between neighbring vertices contain the page rank estimate of each vertex at the
current superstep. Therefore, the customized message class is defined as

typedef Message<double,uint_fast32_t> DblMessage;
For unweighted graphs, the edge objectis a simple customization of the core EdgeBase class.

In the customized Vertex class, we need to redefine the init and the compute functions. For the page rank algorithm, the
initial value of the page rank of each vertex is set as 0.15/numVertices. The compute function implements the recursive
page rank formula. Therefore, the customized vertex class VertexP_pageR can be defined as

class VertexP_pageR:
public Vertex<DataType,double, EdgeBase<uint_fast32_t>,uint_fast32_t,uint_fast32_t,DblMessage>

{
protected:
static uint_fast32_t numVertices; // the total number of vertices in the graph
public:
uint_fast32_t compute(inputMessageBuffer, outMessageBuffer)
Iterate over all input messages

newRank += messageContent();

algbata = newRank*0.85 + 0.15/(double)numVertices;
Write algbData to the outputMessageBuffer that contains messages to all neighbors

if maximum number of supersteps is reached
vote_to_halt();

return the number of output messages;

uint_fast32_t init(outMessageBuffer)
algbata = 0.15/(double)numVertices;
Write algData to the outputMessageBuffer that contains messages to all neighbors
return the number of output messages;

}

The following step is to define the combiner class. In our case, the combine function simply sums the estimated page rank
of all neighbors. Hence the customized combiner tigiCombinerPageR that inherits the core tiglCombiner class has the
form:

class tialCombinerPaaeR: public tialCombiner<DblMessaae>



) ) ' - -

inline uint32_t combineMessages(inputMessagesBuffer, outputMessagesBuffer)

return this->sumCombineMessages(inputMessagesBuffer,outputMessagesBuffer);
Y

At this point, a new algorithm, that can use the TIGL engine, has already been defined. To run the algorithm from the user
program, the user needs to instantiate a tigl object with the customized class definitions of this algorithm as its parameters,
i.e., define

tigl <VertexP_pageR<char>,tiglCombinerPageR>
tiglInterface(DIRECTED_FLAG, NumVertices, deviceRank, numDevices);

and to execute the page rank algorithm within the user program (after loading the corresponding graph), a single
command is called

tiglInterface.run(MAX_SUPERSTEPS, &initParams);
where initParams are simply the total number of vertices in the graph.

The final step is to write the makefile that defines the hardware configuration through the compiling flags as defined in the
earlier section. For example, a sample makefile for generating the MPI version of the TIGL that executes the page rank
algorithm looks as

BUILD_OPENMP = Yes
BUILD_MPI = Yes
DEBUG_ENABLE = No
DEBUG_MPI = No
PROFILE_ENABLE = No
CMEM_ALLOC_ENABLE = No
TESTER_ENABLE = No

include build/MakefilelLib

OUTPUTFILE = <name of output file>

APPSRCFILE = <name of source file(s)>

APPHEADERFILES = <name of algorithm-specific header file(s)>
CPP += <adding any additional include flags to the compile command>

$(OUTPUTFILE): $(APPSRCFILE)
@$(CPP) $(APPSRCFILE) -0 $(OUTPUTFILE)

Generated on Tue Jan 13 2015 11:20:27 for TIGL by @j@!_@m 1.8.7



